Характеристика структурно механические свойства мучного теста. Структурно-механические (реологические) характеристики теста для различных хлебобулочных изделий

  • 07.02.2024

Структурно-механические свойства пищевых продуктов выполняют двойную функцию: они предназначены не только для количественных, но и для качественных характеристик пищевых продуктов. Структурно- механические (реологические) свойства - особенности товаров, проявляющиеся при их деформации. Они характеризуют способность товаров сопротивляться приложенным внешним силам или изменяться под их воздействием. К ним относятся прочность, твердость, упругость, эластичность, пластичность, вязкость, адгезия, тиксотропия и др.

Эти свойства зависят не только от химического состава продуктов, но и от строения, или структуры. Показатели структурно-механических свойств характеризуют качество (консистенцию) пищевых продуктов, заметно изменяются при их разрушении и учитываются при выборе условий их технологической обработки, перевозки и хранения.

Прочность - способность твердого тела сопротивляться механическому разрушению при приложении к нему внешней силы растяжения и сжатия.

Прочность материала зависит от его структуры и пористости. Прочность имеет важное значение для количественной характеристики таких пищевых продуктов, как макароны, сахар-рафинад, печенье, сухари. Если пищевые продукты недостаточно прочные, увеличивается количество лома, крошки, Этот показатель учитывается при переработке зерна на муку, при дроблении винограда, при измельчении картофеля и т.д.

Твердость - местная поверхностная прочность тела, которая характеризуется сопротивлением проникновению в него другого более твердого тела.

Твердость объектов зависит от их природы, формы, структуры, размеров и расположения атомов, а также сил межмолекулярного сцепления. Твердость определяют при оценке степени зрелости свежих плодов и овощей, по твердости сухарных и бараночных изделий судят о процессах черствения.

Деформация - способность объекта изменять размеры, форму и структуру под влиянием внешних воздействий, вызывающих смещение отдельных частиц по отношению друг к другу. Деформация товаров зависит от величины и вида нагрузки, структуры и физико-химических свойств объекта.

Деформации могут быть обратимыми и необратимыми (остаточными). При обратимой деформации первоначальные размеры, форма и структура продуктов восстанавливаются полностью после снятия нагрузки, а при необратимой - не восстанавливаются. Обратимая деформация может быть упругой, когда происходит моментальное восстановление формы и размера объекта, и эластичной, когда на восстановление требуется более или менее продолжительный отрезок времени. Остаточной называется деформация, остающаяся после прекращения действия внешних сил. Остаточная необратимая деформация называется также пластической.


Если внешние силы, приложенные к телу, будут настолько велики, что перемещающиеся в процессе деформации частицы тела потеряют взаимную связь, наступает разрушение тела.

Пищевые продукты, как правило, характеризуются мно-гокомпонентностью состава; им свойственна как упругая деформация, так и эластичная, а также пластическая деформация.

Упругость - способность тел мгновенно восстанавливать свою первоначальную форму или объем после прекращения действия деформирующих сил. Применяется этот показатель при определении упругости теста, клейковины пшеничного теста, хлебных изделий и других товаров. Этим свойством характеризуются такие товары, как, например, резиновые надувные изделия (шины, игрушки и т. п.).

Эластичность - свойство тел постепенно восстанавливать форму или объем в течение некоторого времени после прекращения действия деформирующих сил.

Это свойство также используется при оценке качества хлеба (состояние мякиша), мяса и рыбы, клейковины теста. Так, эластичность мякиша хлеба, мяса и рыбы служит показателем их свежести, так как при черствении мякиш утрачивает эластичность; при перезревании мяса и рыбы или их порче мышечная ткань сильно размягчается и также утрачивает эластичность.

Пластичность - способность объекта к необратимым деформациям, вследствие чего изменяется первоначальная форма, а после прекращения внешнего воздействия сохраняется новая форма. Типичным примером пластичных материалов служат пластилин. Пластичность пищевого сырья и полуфабрикатов используется при формовании готовых изделий. Так, благодаря пластичности пшеничного теста можно придавать определенную форму хлебобулочным, мучным кондитерским, бараночным и макаронным изделиям. Пластичностью обладают горячие карамельные, конфетные, шоколадные и мармеладные массы. После выпечки и остывания готовые изделия утрачивают пластичность, приобретая новые свойства (эластичность, твердость и т. п.).

При перевозке, хранении и реализации продукции следует учитывать ее способность к деформации и зависимость ее от механических нагрузок и температуры товара.Так, пищевые жиры, маргариновая продукция, коровье масло, хлеб при низких температурах обладают относительно высокой прочностью, а при повышенных температурах - пластичностью. Поэтому перевозка, например, горячего (неостывшего) хлеба может привести к деформированию изделий и увеличению процента санитарного брака.

Следует отметить, что тел, способных только к обратимым или необратимым деформациям, практически нет. В каждом материале или товаре проявляются различные виды деформаций, но одним в большей степени присущи обратимые деформации, упругость, эластичность, а другим - пластичные. Упругие деформации наиболее присущи товарам, имеющим кристаллическую структуру, эластичные - товарам, состоящим из высокомолекулярных органических соединений (белки, крахмал и т. п.), пластичные - товарам, обладающим слабыми связями между отдельными частицами.

Принципиальные различия между упругими, эластичными и пластичными деформациями заключаются в структурных изменениях, происходящих под воздействием внешней силы. При упругих и эластичных деформациях изменяется расстояние между частицами, а при пластичных - их взаимное расположение.

В результате длительного внешнего воздействия упругая деформация может переходить в пластическую. Этот переход связан с релаксацией - падением напряжения внутри материала при постоянной начальной деформации.

Примером может служить деформация плодов и овощей под воздействием силы тяжести верхних слоев, свежевыпеченного хлеба при ударах или давлении. При этом товар может частично или полностью утрачивать способность восстанавливать свою форму вследствие изменения взаимного расположения частиц.

Вязкость (внутреннее трение) - способность жидкости оказывать сопротивление перемещению одной ее части относительно другой под действием внешней силы.

Вязкость жидких товаров определяется с помощью прибора вискозиметра. Применяется вязкость для оценки качества товаров с жидкой и вязкой консистенцией (сиропов, экстрактов, меда, растительных масел, соков, спиртных напитков и т. п.). Вязкость зависит от химического состава (содержания воды, сухих веществ, жира) и температуры товара. При повышении содержания воды и жира, а также температуры снижается вязкость сырья, полуфабрикатов и готовых изделий, что облегчает их приготовление, вязкость возрастает с увеличением концентрации растворов, степени их дисперсности.

Вязкость косвенно свидетельствует о качестве жидких и вязких продуктов, характеризует степень их готовности при переработке сырья, влияет на потери при их перемещении из одного вида тары в другой.

Липкость (адгезия) - способность продуктов проявлять силы взаимодействия с другим продуктом или с поверхностью тары, в которой находится продукт. Этот показатель тесно связан с пластичностью, вязкостью пищевых продуктов. Адгезия характерна для таких пищевых продуктов, как сыр, сливочное масло, мясной фарш и др. Они прилипают к лезвию ножа при разрезании, к зубам при разжевывании. Липкость продуктов определяют с целью управления этим свойством в процессе производства и хранения товаров.

Ползучесть - свойство материала непрерывно деформироваться под воздействием постоянной нагрузки. Это свойство характерно для сыров, мороженого, коровьего масла, мармелада и др. В пищевых продуктах ползучесть проявляется очень быстро, с чем приходится считаться при их обработке в хранении.

Тиксотропия - способность некоторых дисперсных систем самопроизвольно восстанавливать структуру, разрушенную механическим воздействием. Она обнаружена у многих полуфабрикатов и продуктов пищевой промышленности и общественного питания, например, у студней.

Уплотненное макаронное тесто, поступающее к матрице, является упруго-пластичновязким материалом.

Упругость теста - это способность теста восстанавливать первоначальную форму после быстрого снятия нагрузки, проявляется при малых и кратковременных нагрузках.

Пластичность - это способность теста деформироваться. При длительных и значительных по величине нагрузках (выше так называемого предела упругости) макаронное тесто ведет себя как пластичный материал, т.е. после снятия нагрузки сохраняет приданную ему форму, деформируется. Именно это свойство позволяет формовать из теста сырые макаронные изделия определенного вида.

Вязкость - характеризуется величиной сил сцепления частиц между собой (сил когезии). Чем больше величина сил когезии теста, тем оно более вязкое (прочное), менее пластичное.

Пластичное тесто требует меньше энергии на формование, легче поддается формованию. При использовании металлических матриц из более пластичного теста получаются изделия с более гладкой поверхностью. С повышением пластичности тесто становится менее упругим, менее прочным, более липким, сильнее прилипает к рабочим поверхностям шнековой камеры и шнека, а сырые изделия из такого теста сильнее слипаются между собой, плохо сохраняют форму.

Реологические свойства уплотненного теста, т.е. соотношение его упругих, пластических и прочностных свойств, определяются следующими факторами.

С увеличением влажности теста увеличивается его пластичность и уменьшаются прочность и упругость.

С ростом температуры теста также наблюдается увеличение его пластичности и снижение прочности и упругости. Такая зависимость наблюдается и при температуре большей 62,5 °С, т.е. превышающей температуру клейстеризации пшеничного крахмала. Это объясняется тем, что макаронное тесто имеет недостаточное количество влаги, необходимой для полной клейстеризации крахмала при указанной температуре.

С увеличением содержания клейковины уменьшаются прочностные свойства теста и возрастает его пластичность. Наибольшей вязкостью (прочностью) тесто обладает при содержании в муке около 25 % сырой клейковины. При содержании сырой клейковины ниже 25 % с уменьшением пластических свойств теста уменьшается и его прочность. Липкая, сильно тянущаяся сырая клейковина увеличивает пластичность теста и значительно снижает его упругость и прочность.

С уменьшением размера частиц муки увеличивается прочность и уменьшается пластичность теста из нее: тесто из хлебопекарной муки более прочное, чем из полукрупки, а из полукрупки более прочное, чем из крупки. Оптимальное соотношение прочностных и пластических свойств характерно для частиц исходной муки размером от 250 до 350 мкм.

Структурно-механические, или реологические, свойства пищевых продуктов характеризуют их сопротивляемость воздействию внешней энергии, обусловленную строением и структурой продукта, а также качество пищевых продуктов и учитываются при выборе условий их перевозки и хранения.

К структурно-механическим свойствам относят прочность, твердость, упругость, эластичность, пластичность, вязкость, адгезию, тиксотропию и др.

Прочность - свойство продукта противостоять деформации и механическому разрушению.

Под деформацией понимают изменение формы и размера тела под действием внешних сил. Деформация бывает обратимой и остаточной. При обратимой деформации происходит восстановление первоначальной формы тела после снятия нагрузки. Обратимая деформация может быть упругой, когда происходит моментальное восстановление формы и размера тела, и эластичной, когда на восстановление требуется более или менее продолжительный отрезок времени. Остаточной (пластической) называется деформация, остающаяся после прекращения действия внешних сил.

Пищевые продукты, как правило, характеризуются многокомпонентностью состава; им свойственна как упругая деформация, исчезающая мгновенно, так и эластичная, а также пластическая деформация. Однако у одних преобладают упругие свойства над пластическими, у других - пластические над упругими, а у третьих преобладающими являются эластичные свойства. Если пищевые продукты не способны к остаточным деформациям, то они хрупки, например сахар-рафинад, сушки, сухари и т.д.

Прочность - один из важнейших показателей качества макаронных изделий, сахара-рафинада и других продуктов.

Этот показатель учитывается при переработке зерна на муку, при дроблении винограда (при производстве виноградных вин), при измельчении картофеля (при выработке крахмала) и т.д.

Твердость - способность материала сопротивляться внедрению в него другого более твердого тела. Твердость определяют при оценке качества плодов, овощей, сахара, зерна и других продуктов. Этот показатель играет важную роль при сборе, сортировке, упаковке, транспортировании, хранении и переработке плодов и овощей. Кроме того, твердость может быть объективным показателем степени их зрелости.

Твердость определяют вдавливанием в поверхность продукта твердого наконечника, имеющего форму шарика, конуса или пирамиды. По диаметру образующейся лунки судят о твердости продукта: чем меньше размер лунки, тем тверже продукт. Твердость плодов и овощей определяют по величине нагрузки, которую нужно приложить, чтобы игла или шарик определенных размеров вошли в мякоть плода.

Упругость - способность тел мгновенно восстанавливать свою первоначальную форму или объем после прекращения действия деформирующих сил.

Эластичность - свойство тел постепенно восстанавливать форму или объем в течение некоторого времени.

Показатели упругости и эластичности используют при определении качества теста, клейковины пшеничной муки, свежести мясных, рыбных и других изделий. Они учитываются при изготовлении тары, при определении условий перевоз­ки и хранения пищевых продуктов.

Пластичность - способность тела необратимо деформироваться под действием внешних сил. Свойство сырья изменять свою форму при переработке и сохранять ее в дальнейшем используется при производстве таких пищевых продуктов, как печенье, мармелад, карамель и др.

В результате длительного внешнего воздействия упругая деформация может переходить в пластическую. Этот переход связан с релаксацией - свойством материалов изменять напряжение при постоянной начальной деформации. На релаксации основано изготовление некоторых пищевых продуктов, например колбасных изделий. Из мяса, характеризующегося упругой деформацией, готовят фарш, а из него колбасу, обладающую свойствами пластического материала. Определенные величины релаксации характерны только для продуктов твердожидкой структуры - сыра, творога, фарша и др. Это свойство пищевых продуктов учитывается при перевозке и хранении хлебобулочных изделий, плодов, овощей и др.

Вязкость - способность жидкости оказывать сопротивление перемещению одной ее части относительно другой под действием внешней силы.

Различают вязкость динамическую и кинематическую.

Динамическая вязкость характеризует силу внутреннего трения среды, которую необходимо преодолеть для перемещения единицы поверхности одного слоя относительно другого при градиенте скорости смещения, равном единице. За единицу динамической вязкости принята вязкость такой среды, у которой один слой при действии силы, равной 1 Ньютону на квадратный метр, перемещается со скоростью 1 м/с относительно другого слоя, находящегося на расстоянии 1 м. Измеряется динамическая вязкость в Н-с/м 2 .Кинематической вязкостью называется величина, равная отношению динамической вязкости к плотности среды, и выражается В М 2 /С.

Величина, обратная вязкости, называется текучестью.

На вязкость продуктов влияют температура, давление, влажность или жирность, концентрация сухих веществ и другие факторы. Вязкость пищевых продуктов уменьшается при повышении "влажности, температуры, жирности и возрастает с увеличением концентрации растворов, степени их дисперсности.

Вязкость - свойство, характерное для таких пищевых продуктов, как мед, растительное масло, сиропы, соки, спиртные напитки и др.

Вязкость является показателем качества многих пищевых продуктов и часто характеризует степень их готовности при переработке сырья. Она играет важную роль при производстве многих продуктов, так как активно влияет на технологические процессы - перемешивание, фильтрование, нагревание, экстрагирование и др.

Ползучесть - свойство материала непрерывно деформироваться под воздействием постоянной нагрузки. Это свойство характерно для сыров, мороженого, коровьего масла, мармелада и др. В пищевых продуктах ползучесть проявляется очень быстро, с чем приходится считаться при их обработке и хранении.

Тиксотропия - способность некоторых дисперсных систем самопроизвольно восстанавливать структуру, разрушенную механическим воздействием. Она свойственна дисперсным системам и обнаружена у многих полуфабрикатов и продуктов пищевой промышленности.

Особое место среди структурно-механических свойств занимают поверхностные свойства, к которым относят адгезию, или липкость.

Адгезия характеризует усилие взаимодействия между поверхностями продукта и материала или тары, с которыми он соприкасается. Этот показатель тесно связан с пластичностью, вязкостью пищевых продуктов. Различают два вида адгезии: специфическую (собственно адгезия) и механическую. Первая является результатом сил сцепления между поверхностями материала. Вторая возникает при проникновении адгезива в поры материала и удержании его вследствие механического заклинивания.

Адгезия характерна для таких пищевых продуктов, как сыр, сливочное масло, мясной фарш, некоторые кондитерские изделия и др. Они прилипают к лезвию ножа при разрезании, к зубам при разжевывании.

Излишняя адгезия усложняет технологический процесс, при этом повышаются потери при переработке продукта. Это свойство пищевых продуктов учитывается при выборе способа их переработки, упаковочного материала и условий хранения.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реология хлебопекарного, макаронного, кондитерского теста

Реология - наука о деформации и течении различных тел, реологические свойства сырья, полуфабрикатов и готовых изделий.

Слово «реология» от греческого «рео», что означает течение.

Деформация - изменение размеров тела под действием нагрузки.

В отношении твердых тел деформация приводит к изменению формы или размера тела целиком или его части, а в отношении структуры пищевых масс -- к течению (тесто, мука, сгущенное молоко, майонез и т.д.) или даже к их разрыву (конфеты, хлеб и т.д.).

Реологические свойства :

Упругость - свойство тела восстанавливать форму и размеры после снятия нагрузки.

Пластичность - свойство тела сохранять форму и размеры после снятия деформирующей нагрузки.

Вязкость - свойство среды оказывать сопротивление перемещению в ней инородных тел.

Прочность - свойство тела выдерживать определенную внешнюю нагрузку без разрушения.

Твердость - свойство тела сопротивляться внедрению в него других тел.

Хрупкость - свойство тела разрушаться без образования пластических деформаций.

Классификация пищевых продуктов по текстурным признакам и реологическим свойствам

Классификация продуктов

Наименование продуктов

Типичные реологические свойства

Шоколад, печенье, крекеры, вафли, экструдированные продукты, карамель, сухари, сушки, макароны, хлебцы

Предел прочности, модуль упругости

Упруго-пластичные

Хлеб, пшеничное тесто, макаронное тесто, мармелад, зефир, пастила, конфеты, твердый жир, пряники, клейковина, желатин

Предел прочности, модуль упругости, предельное напряжение сдвига, адгезия

Вязко- пластичные

Ржаное тесто, песочное тесто, сметана, майонез, желирующие продукты, полуфабрикаты кондитерского производства

Вязкость, адгезия, предельное напряжение сдвига (пластическая прочность)

Жидкообразные

Дрожжевая суспензия, раствор соли, раствор сахара, растопленный маргарин, цельное молоко, молочная сыворотка

Вязкость, коэффициент поверхностного натяжения

Порошкообразные

Мука, сахар песок, крахмал,

соль поваренная пищевая

Угол естественного откоса, механические характеристики при прессовании

Содержание в муке белковых веществ, их состав, состояние и свойства имеют первостепенное значение и в значительной мере определяют и пищевую ценность хлеба, и технологические свойства муки. От них зависят такие свойства теста, как эластичность, вязкость, упругость. Белковые вещества пшеничной муки представлены на 2/3 (3/4) глиадиновой и глютениновой фракциями(составляющие глютена), которые являются основными компонентами клейковины. Их называют клейковинными белками. В пшеничной муке глиадиновой фракции содержится несколько больше, чем глютениновой.

Чем больше в муке белка, чем плотнее и прочнее его структура, тем сильнее мука, и тем лучше и устойчивее будут реологические свойства теста из нее. Поэтому, чем выше содержание в муке клейковины и чем лучше ее реологические свойства, тем сильнее мука.

Сила муки определяет количество воды, необходимое для получения теста нормальной консистенции, а также изменение реологических свойств теста при брожении и в связи с этим - поведение теста в процессе его механической разделки и тестовых заготовок при окончательной расстойке.

Сила муки обусловливает газоудерживающую способность теста, т.е. способность полуфабрикатов удерживать диоксид углерода, образующийся при брожении. Для получения хлеба максимального объема из очень сильной пшеничной муки реологические свойства теста должны быть несколько ослаблены. Это может быть достигнуто изменением режима приготовления теста: усилением его механической обработки, некоторым повышением температуры, увеличением количества воды в тесте или добавлением препаратов, форсирующих протеолиз в тесте.

Кроме того, сила муки определяет формоудерживающую способность теста, т.е. способность тестовых заготовок удерживать диоксид углерода и сохранять форму в процессе расстойки и первого периода выпечки. В связи с этим сила муки обусловливает расплываемость подового хлеба.

У ржаного хлеба большое значение имеют реологические (структурно-механические) свойства мякиша - степень его липкости, заминаемость и влажность или сухость на ощупь. У ржаного хлеба, особенно из обойной и обдирной муки, по сравнению с пшеничной наблюдается меньший объем, более темно окрашенный мякиш и корка, меньший процент пористости и более липкий мякиш. Отмеченные выше отличия в качестве ржаного хлеба обусловлены специфическими особенностями углеводно-амилазного и белково-протеиназного комплексов зерна ржи и ржаной муки.

Ржаная мука по сравнению с пшеничной отличается большим содержанием собственных сахаров, более низкой температурой клейстеризации (набухание в горячей воде, переход из кристаллического в аморфное состояние) крахмала, большей его атакуемостью и наличием в муке даже из непроросшего зерна практически значимых количеств фермента -амилазы.

Действие амилаз на крахмал ржаной муки, клейстеризующийся при более низкой температуре и более легко атакуемый, может привести к тому, что значительная часть крахмала в процессе брожения теста и выпечки хлеба будет гидролизована. Вследствие этого крахмал при выпечке тестовой заготовки из ржаной муки может оказаться неспособным связать всю влагу теста. Наличие части свободной влаги, не связанной крахмалом, будет делать мякиш хлеба влажноватым на ощупь. Наличие же б-амилазы (альфа-амилазы), особенно при недостаточной кислотности теста, приводит при выпечке хлеба к накоплению значительного количества декстринов, придающих мякишу липкость . Поэтому мякиш ржаного хлеба всегда более липок и влажен по сравнению с мякишем пшеничного хлеба. Кислотность ржаного теста с целью торможения действия б-амилазы приходится поддерживать на уровне значительно более высоком, чем в пшеничном тесте.

К углеводному комплексу ржаной муки относятся и слизи (водорастворимые пентозаны). Содержание пентозанов в ржаной муке значительно превышает содержание их в пшеничной муке. Пентозаны оказывают значительное влияние на реологические свойства ржаного теста, так как, поглощая воду при замесе теста, они делают его более вязким .

Белковые вещества ржаной муки по аминокислотному составу близки к белкам пшеничной муки, однако отличаются более высоким содержанием незаменимых аминокислот - лизина и треонина.

Существенной особенностью белков ржи является их способность к быстрому и интенсивному набуханию. Значительная часть белков при этом набухает неограниченно, переходя в состояние вязкого коллоидного раствора .

Второй особенностью белков ржаной муки является то, что они не способны, несмотря на наличие глиадина и глютенина, к образованию клейковины из-за значительного количества декстринов и водорастворимых пентозанов.

Особенности реологических свойств пшеничного и ржаного теста

Реологические свойства пшеничного теста зависят главным образом от наличия в нем клейковинного каркаса, придающего тесту упругость и эластичность. В ржаном тесте клейковинный каркас отсутствует. Ржаное тесто вязкое, пластичное, эластичные и упругие свойства в нем слабо выражены. Ржаное тесто можно рассматривать как густую жидкость, в которой взвешены набухшие зерна крахмала, ограниченно набухшая, не перешедшая в раствор часть белков, а также частички отрубей.

Формоудерживающая способность ржаного теста зависит от вязкости жидкой фазы. Вязкость жидкой фазы обусловлена пептизированным состоянием части белков, переходом в коллоидный раствор слизей, а также наличием декстринов. Переход белков ржаной муки в тесте в растворимое состояние и набухание нерастворимой части белков зависит от кислотности. Активная кислотность ржаного теста рН 4,2 - 4,4, пшеничного 5,2 - 5,4. Более высокая кислотность тормозит действие альфа-амилазы, снижает температуру ее инактивации. Это ограничивает процесс образования декстринов при выпечке, снижает липкость мякиша, улучшает процесс пептизации белков.

В пшеничном и ржаном тесте различают три фазы: твердую, жидкую и газообразную. Твердая фаза - это зерна крахмала, набухшие нерастворимые белки, целлюлоза и гемицеллюлозы. Жидкая фаза - это вода, которая не связана с крахмалом и белками (около 1/3 части от всей воды, идущей на замес), водорастворимые вещества муки (сахара, водорастворимые белки, минеральные соли), пептизированные белки и слизи. Газообразная фаза - теста представлена частицами воздуха, захваченными тестом при замес е и небольшим количеством диоксида углерода, образовавшегося в результате спиртового брожения. Чем продолжительнее замес теста , тем больший объем в нем приходится на долю газообразной фазы. При нормальной продолжительности замеса объем газообразной фазы достигает 10%, при увеличенной - 20% от общего объема теста .

Соотношение отдельных фаз в тесте обусловливает его реологические свойства. Повышение доли жидкой и газообразной фаз ослабляет тесто , делая его более липким и текучим. Повышение доли твердой фазы укрепляет тесто , делая его более упругим и эластичным.

В ржаном тесте , по сравнению с пшеничным, меньше доля твердой и газообразной, но больше доля жидкой фазы.

Механическое воздействие на тесто на разных стадиях замеса может по разному влиять на его реологические свойства. Вначале замеса механическая обработка вызывает смешивание муки, воды и другого сырья и слипание набухших частиц муки в сплошную массу теста . На этой стадии замеса механическое воздействие на тесто обусловливает и ускоряет его образование. Еще некоторое время после этого воздействие на тесто может улучшать его свойства, способствуя ускорению набухания белков и образованию клейковины. Дальнейшее продолжение замеса может привести не к улучшению, а к ухудшению свойств теста, так как возможно механическое разрушение клейковины. Поэтому знание механизма образования теста, формирования его твердой, жидкой и газообразной фаз необходимо для правильного проведения замеса.

После операции замеса следует брожение теста . В производственной практике брожение охватывает период после замеса теста до его разделки. Основное назначение этой операции - приведение теста в состояние, при котором оно по газообразующей способности и реологическим свойствам, накоплению вкусовых и ароматических веществ будет наилучшим для разделки и выпечки. реология пищевой продукт тесто

Реологические свойства созревшего теста должны быть оптимальными для деления его на куски, округления, окончательного формования, а также для удержания тестом диоксида углерода и сохранения формы изделия при окончательной расстойке и выпечке.

Спиртовое брожение - это основной вид брожения в пшеничном тесте. Вызывается ферментами дрожжевых клеток, которые обеспечивают превращение простейших сахаров (моносахаридов) в этиловый спирт и диоксид углерода.

При брожении теста продолжают интенсивно развиваться процессы ограниченного и неограниченного набухания белков. При ограниченном набухании белков в тесте сокращается количество жидкой фазы, и, следовательно, улучшаются его реологические свойства. При неограниченном набухании и пептизации белков, наоборот, увеличивается переход белков в жидкую фазу теста и ухудшаются его реологические свойства. В тесте из муки различной силы эти процессы происходят с различной интенсивностью.

Чем сильнее мука, тем медленнее протекают в тесте процессы ограниченного набухания белков, достигая оптимума только к концу брожения. В тесте из сильной муки в меньшей степени протекают процессы неограниченного набухания и пептизации белков.

В тесте из слабой муки ограниченное набухание протекает относительно быстро и вследствие малой структурной прочности белка, ослабляемой интенсивным протеолизом, начинается процесс неограниченного набухания белков, переходящий в процесс пептизации и увеличивающий количество жидкой фазы теста. Это приводит к ухудшению реологических свойств теста.

Кондитерское тесто

Использование пшеничной муки разного качества, большого набора сырья, изменение их соотношения и применение определенных технологических параметров и приемов позволяет получать тесто и изделия, различающиеся по физико-химическим и реологическим свойствам.

Реологические свойства теста зависят от степени набухания белков.

В зависимости от этих свойств кондитерское тесто делят на три вида:

пластично - вязкое (сахарное, песочное, сдобное, пряничное тесто), хорошо воспринимает и сохраняет свою форму;

упруго - пластично - вязкое (затяжное, крекерное, галетное), плохо воспринимает и плохо сохраняет форму;

слабоструктурированное (вафельное, бисквитное тесто для бисквитных полуфабрикатов и тортов), имеет жидкую консистенцию.

Пластичное тесто образуется в условиях ограниченного набухания коллоидов муки, поэтому продолжительность замеса теста должна быть минимальной и температура ниже, чем температура теста, обладающего упруго - пластично - вязкими свойствами.

В соответствии с ГОСТ "Кондитерские изделия. Термины и определения" различают два вида теста в зависимости от его структуры:

Бисквитное - сдобное, сахарное, овсяное, из которого получают изделия разнообразной формы с хорошо развитой равномерной пористостью,

Слоистое тесто -для затяжного печенья, крекера, галет, из которого вырабатывают изделия разнообразной формы слоистой структуры.

Реологические свойства теста

Формирование теста с определенными реологическими свойствами связано:

С видом изделий, рецептурой, с правильным подбором сортности муки, с оптимальным содержанием и качеством клейковины, крупноты помола,

С правильным выбором влажности теста,

С правильным выбором и поддержанием технологических параметров замеса теста (температура, продолжительность,интенсивность замеса).

Отмеченные факторы влияют на степень набухания пшеничной муки и тем самым на реологические свойства теста, его пластичность, упругость, эластичность, вязкость.

Повышая температуру теста при замесе, удлиняя продолжительность процесса из сахарного пластичного теста в результате более полного набухания коллоидов можно получить затяжное тесто с упруго-пластично-вязкими свойствами. Пластичность сахарного теста близка к 1.Чтобы можно было затяжное тесто отформовать до заготовок, исключив их деформацию, пластичность его необходимо увеличить до 0.5. С этой целью применяют такую операцию, как вылеживание теста, или используют ферментные препараты протеолитического действия. Для слабоструктурированного вафельного теста из реологических характеристик большое значение имеет вязкость теста, эластичность. От них зависит равномерность распределения теста по поверхности вафельниц, а также хрупкость вафельного листа.

Кондитерское тесто, как и все тестообразные массы, является структурированной дисперсной системой и состоит из трех фаз: твердой, жидкой и газообразной.

Твердую фазу представляют лиофильные коллоиды муки. Это водонерастворимые белковые комплексы и крахмал пшеничной муки.

Жидкая фаза представляет собой многокомпонентный водный раствор веществ, предусмотренных рецептурой теста (инвертный сироп, вода, раствор сахара, патоки, соли, гидрокарбоната натрия, карбоната аммония, молоко и др.).В состав жидкой фазы входят все растворимые в воде органические и минеральные вещества муки.

Соотношение между твердой и жидкой фазами зависит от вида теста, его влажности, количества и качества клейковины.

Газообразную фазу составляет воздух, который захватывается при замесе теста, диспергируется и удерживается в тесте. Кроме того, воздух входит с мукой, водой и другими видами сырья и полуфабрикатов. Газообразная фаза может достигать в тесте 10 %.

Степень разрыхления теста зависит от реологических свойств теста и от равномерного распределения в тесте химических разрыхлителей. Особенно увеличивается пористость и объем заготовок из пластичного теста -сахарного, пряничного. Затяжное и галетное тесто, обладающее значительной упругостью, оказывают сопротивление расширению газовых пузырьков. Эти изделия имеют небольшой подъем и недостаточно развитую пористость.

Макаронное тесто

После замеса макаронное тесто представляет собой сыпучую крошковатую массу, после прохождения шнековой камеры и продавливания сквозь отверстия матрицы - это уплотненное тесто. В таком виде его характеризуют как упруго-пластично-вязкое коллоидное тело.

Технологическая схема шнекового макаронного пресса

Факторы, влияющие на реологические свойства теста

Количество и качество клейковины. Она определяет основные технологические свойства макаронного теста и выполняет две основные функции - 1 пластификатора теста, т.е. выполняет роль смазки, придающей массе крахмальных гранул текучесть и 2 связующего вещества. Т.е. соединяет крахмальные гранулы в единую тестовую массу. Клейковина муки состоит из двух основных фракций: глиадин (растяжимый) и глютенин (упругий). Для макаронного производства большую роль играет глиадин. Именно он определяет текучесть и связанность макаронного теста. Глютенин обуславливает упругость и элластичность сырых изделий. Мягкая, сильно тянущаяся сырая клейковина увеличивает пластичность теста и снижает его упругость и прочность. Наибольшей прочностью обладает тесто из муки с содержанием клейковины около 28 %. С увеличением содержания клейковины уменьшается прочность теста и возрастает пластичность. При содержании клейковины ниже 28 % с уменьшением прочности теста ухудшаются его пластические свойства.

Гранулометрический состав муки. Гранулометрический состав муки оказывает влияние на продолжительность замеса теста и обуславливает ее водопоглотительную способность (ВПС). Мука с мелким размером частиц (хлебопекарная мука) имеет большую ВПС и образует прочное тесто. Мука с крупными частицами (макаронная мука) имеет низкую ВПС и образует более пластичное тесто.

Скоростью проникновения влаги внутрь частиц муки определяется в первую очередь размерами частиц муки. Крупные частицы требуют более длительного вымешивания. При одинаковом размере частиц влага будет медленнее проникать в частицы продуктов помола твердой пшеницы, чем в менее плотные частицы продуктов помола мягкой пшеницы.

Для производства макаронных изделий с размером частиц до 350мкм и тем более до 500мкм необходимо использовать многокорытные прессы, продолжительность замеса в которых составляет 16…20мин. При работе на прессах с продолжительностью замеса 8…10мин целесообразно использовать муку с размерами частиц не более 200-250мкм (полукрупку или хлебопекарную муку).

С увеличением времени замеса теста прочность полуфабрикатов макаронных изделий возрастает и достигает своего максимального значения, а затем начинает снижаться.

Интенсивность (продолжительность) замеса. С увеличением времени замеса снижается прочность теста и возрастает его пластичность. Продолжительность замеса теста зависит от двух факторов:

Достижения равномерного распределения воды по всей массе теста,

Скоростью проникновения влаги внутрь частиц.

Для достижения равномерного распределения воды по всей массе теста воду в месильное корыто подают в распыленном виде для быстрого и более равномерного распределения по всей тестовой массе.

Другой способ ускорения равномерного распределения влаги - интенсификация смешивания муки и воды. Для этого используют многокорытные прессы, в которых тестомесильный вал первого корыта вращается с большей частотой, чем валы последующих корыт. В современных прессах фирмы “Паван” муку и влагу предварительно смешивают в центробежном мукоувлажнителе “Турбоспрей”, где частицы муки и вода в заданном соотношении быстро и равномерно увлажняются и поступают в корыто тестосмесителя.

Влажность . С увеличением влажности теста возрастает его пластичность и уменьшаются прочность и упругость.

Влажность макаронного теста - первый технологический параметр, с помощью которого технолог может менять в определенных пределах, оказывать влияние на физические свойства теста, полуфабрикат макаронных изделий и качество продукции.

С повышением влажности теста до 32% увеличивается пластичность, текучесть теста и облегчается процесс его выпрессовывания через матрицы. Это приводит к снижению давления прессования и к увеличению скорости выпрессовывания, т.е. к повышению производительности пресса.

При более высокой влажности (более 32%) образуются комки, которые не проходят сквозь входное отверстие шнековой камеры, понижается прочность выпрессовываемых изделий и снижается давление прессования.

Увеличение влажности теста приводит к увеличению толщины сольватных оболочек, которые окружают частицы муки в уплотненном тесте. В связи с этим снижается вязкость теста и прочность полуфабрикатов изделий, увеличивается их пластичность.

Температура С ростом температуры теста примерно до 75 о С увеличивается его пластичность и снижается прочность и упругость.

Температура макаронного теста - второй технологический параметр, с помощью которого технолог может оперировать в процессе замеса теста.

Традиционный режим замеса и формования макаронного теста предусматривает повышение температуры теста перед матрицей до 50…55 0 С, при увеличении температуры выше 60 0 С структура теста не фиксируется - происходит денатурация белков, потери связующих веществ клейковины, ослабление структуры изделий, что приводит к снижению прочности изделий, увеличению потери сухих веществ во время варки изделий

Механизм образования структур. Виды структур. Показатели реологических свойств. Эффективная вязкость, пластическая вязкость, текучесть. Аномалия вязкости. Тиксотропное восстановление

Дисперсные системы, к которым относятся шоколадные полуфабрикаты и пралиновые массы, обладают структурами в результате взаимодействия между дисперсными частицами твердой фазы. По характеру связей в них образуются коагуляционные структуры. Коагуляционные структуры образованы твердыми частицами в жидкой дисперсионной среде и характеризуются сравнительно слабыми по силе взаимодействия контактами между частицами.

Различают коагуляционные структуры компактные и рыхлые.

Рыхлые дисперсные коагуляционные структуры возникают при малых объемных концентрациях дисперсной фазы (даже при концентрации менее 1 %), если дисперсность достаточно высокая и частицы анизометричны. В шоколадных массах дисперсная фаза составляет около 65%, а размер частиц в основной массе составляет 16-35 мкм. Среди частиц твердой фазы находятся частички клеточных оболочек, частички какаовеллы, имеющие форму пластинок, палочек, т.е.удлиненную форму. Сцепление частиц происходит по углам, ребрам и другим неровностям, на участках наибольшей концентрации свободных молекулярных сил. Это объясняется тем, что в этих местах утоньшаются адсорбционно-сольватные оболочки дисперсионной среды. В этих системах дисперсионная среда удерживается внутри структуры, а вся система теряет легкоподвижность и со временем не расслаивается.

Какао тертое содержит меньше дисперсной фазы - около 45%. Поэтому образующаяся рыхлая коагуляционная структура имеет меньшую прочность, которая не в состоянии препятствовать расслаиванию. Под влиянием механического воздействия происходит разрушение структуры какао тертого и шоколадных масс. Но после предварительного механического разрушения такие структуры самопроизвольно восстанавливаются во времени. Это явление называется тиксотропией , заключается в восстановлении связей между частицами после механического разрушения в результате благоприятного соударения частиц, находящихся в броуновском движении. Связано это с наличием тонких пластифицирующих прослоек между частицами.

Компактные коагуляционные структуры возникают в шоколадных массах после вальцевания. Вследствие большого обьема дисперсной фазы-75-73% и соответственно малого содержания дисперсионной среды частицы связаны друг с другом прямыми точечными (атомными) контактами. Такие дисперсные системы не обладают тиксотропными свойствами.

В шоколадных массах, прошедших все стадии технологической обработки образуются коагуляционные структуры двух типов:

1.коагуляционные структуры из микрокристалликов сахара, соединенных через тончайшие пленки воды. Содержание сахара в шоколадных массах превышает 50% и его участие в структурообразовании значительно,

2.коагуляционные структуры из микрочастиц клеточных тканей какао бобов, соединенных через прослойки жира.

Вполне вероятно образование смешанных структур.

При охлаждении шоколадных масс после формования в результате кристаллизации какао масла коагуляционные структуры с точечными контактами превращаются в конденсационно-кристаллизационные. Главными признаками таких структур является высокая по сравнению с коагуляционными структурами прочность, определяемая высокой прочностью самих фазовых (непосредственных) контактов между частицами, необратимый характер разрушения, т.е.отсутствие тиксотропного восстановления структуры, большая хрупкость из-за жесткости контактов.

Размещено на Allbest.ru

...

Подобные документы

    Основные понятия, определения и задачи инженерной реологии. Механические модели, отражающие элементарные реологические свойства биохимических, биофизических, физико-химических и органолептических показателей пищевых продуктов; реометры, вискозиметры.

    презентация , добавлен 06.06.2014

    Классификация и ассортимент хлеба ржаного и ржано–пшеничного. Органолептическая оценка качества хлеба. Исследование пористости, влажности мякиша, кислотности ржаного хлеба. Химический состав и пищевая ценность. Основные компоненты любого теста.

    презентация , добавлен 12.11.2014

    Изготовление слоеного теста. Реологические свойства сырья. Хлебопекарные свойства пшеничной муки. Дрожжи хлебопекарные и их виды. Соль поваренная пищевая, ее классификация. Жиры для кулинарии. Органолептические свойства маргарина. Яйца и яичные продукты.

    доклад , добавлен 31.01.2009

    Исследование влияния дозировки соевого обогатителя на реологические свойства теста для пряников, приготовленных на основе биоактивированного зерна пшеницы. Расчет дозировки пищевого соевого обогатителя для обеспечения оптимальных вязкостных свойств теста.

    статья , добавлен 22.08.2013

    Склады и подготовительные отделения. Тестоприготовительное и тесторазделочное отделения хлебопекарного производства. Производственная и цеховая лаборатории. Традиционные способы приготовления пшеничного и ржаного теста на больших густых опарах, заквасках.

    отчет по практике , добавлен 15.11.2012

    Рецептура и дозирование пшеничного теста. Его замес, образование, разрыхление и брожение. Нормы загрузки бродильных емкостей мукой. Дозирование сырья в хлебопекарном производстве. Традиционные способы приготовления пшеничного теста: опарный и безопарный.

    курсовая работа , добавлен 16.02.2016

    Особенности разработки проекта кондитерского цеха мощностью 10 тысяч изделий в сутки. Анализ этапов расчета сырья и пищевых продуктов. Рассмотрение проблем подбора механического оборудования. Характеристика производственной программы кондитерского цеха.

    дипломная работа , добавлен 01.02.2015

    Классификация и ассортимент изделий из воздушного теста. Товароведная характеристика основного и вспомогательного сырья, используемого при производстве изделия. Организация работы кондитерского цеха, технологического оборудования и труда работников.

    курсовая работа , добавлен 19.04.2015

    Влияние жировых продуктов на свойства теста и хлеба, их пищевую и потребительскую ценность. Сахар как компонент теста. Технико-экономическое значение упека, факторы, влияющие на его величину. Производственная рецептура хлеба, схема приготовления теста.

    контрольная работа , добавлен 05.02.2014

    Фитокомпозиции, их функций, перечень растительного сырья для обогащения кондитерского и хлебопекарного производства. История возникновения фитокомпозиций, их лечебные и побочные действия. Специализированный хлеб с фитокомпозицией для спортсменов.

Тесто является полидисперсной коллоидной твердо – жидкой системой, обладающей одновременно упруго-эластичными и вязко-пластичными свойствами, на поверхности которой проявляются свойства адгезии.Физические свойства ржаного теста в значительной мере обусловливаются свойствами его весьма вязкой жидкой фазы. Для ржаного теста характерны высокая вязкость, пластичность и малая способность к растяжению, низкая упругость.

Вязкость ржаного теста меняется в процессе брожения (таблица 2.6).

Таблица 2.6 – Зависимость вязкости хлебопекарного теста (в кПа∙с) от продолжительности брожения и скорости сдвига

Скорость сдвига, с -1

Продолжительность брожения, мин

Как видно из таблицы 2.6, с увеличением скорости сдвига вязкость теста при любой продолжительности брожения уменьшается, что характерно для большинства тестовых масс. По мере увеличения времени брожения вязкость также уменьшается. Заметим, что при длительности брожения 120 и 150 мин при всех скоростях вязкость почти не различается.

2.1.2.3 Хлебопекарные свойства ржаной муки

Хлебопекарные свойства ржаной муки обусловлены следующими показателями:

    газообразующей способностью;

    силой муки;

    цветом муки и способностью ее к потемнению;

    крупностью помола.

Газообразующая способность муки. Газообразующая способность муки - это способность приготовленного из нее теста образовывать диоксид углерода.

При спиртовом брожении вызываемом в тесте дрожжами, сбраживаются содержащиеся в нем сахариды. Больше всего в процессе спиртового брожения образуется этилового спирта и диоксида углерода и поэтому именно по количеству этих продуктов можно судить об интенсивности спиртового брожения. Следовательно газообразующая способность муки характеризуется количеством диоксида углерода в мл, образующегося за 5 ч брожения теста, приготовленного из 100 г муки, 60 мл воды и 10 г дрожжей при температуре 30° С.

Газообразующая способность зависит от содержания собственных сахаров в муке и от сахарообразующей способности муки.

Собственные сахара муки (глюкоза, фруктоза, сахароза, мальтоза и др.) сбраживаются в самом начале процесса брожения. А для получения хлеба наилучшего качества необходимо иметь интенсивное брожение как при созревании теста, так и при окончательной расстойке и в первый период выпечки. Кроме того, для реакции меланоидинообаразования (образования окраски корки, вкуса и запаха хлеба) также необходимы моносахариды. Поэтому более важным является не содержание сахаров в муке, а ее способность образовывать сахара в процессе созревания теста.

Сахарообразующая способность муки - это способность приготовленной из нее водно-мучной смеси образовывать при установленной температуре и за определенный период времени то или иное количество мальтозы. Сахарообразующая способность муки обусловливается действием амилолитических ферментов на крахмал и зависит как от наличия и количества амилолитических ферментов (а- и β-амилаз) в муке, так и от атакуемости крахмала муки. В нормальном непроросшем зерне ржи содержится достаточно большое количество активной α-амилазы. При прорастании зерна активность α-амилазы во много раз возрастает. В ржаной муке β-амилаза примерно в 3 раза менее активна, чем в пшеничной, а α-амилаза активна более чем в 3 раза.

Все это приводит к тому, что мякиш ржаного хлеба всегда имеет повышенную прилипаемость, по сравнению с хлебом из пшеничной муки, пониженного качества. Это связано с тем, что активная α-амилаза легко гидролизует крахмал до значительного количества декстринов, которые, связывая влагу, уменьшают ее связь с белком и крахмальными зернами; большое количество воды находится в свободном состоянии. Наличие части свободной, не связанной крахмалом влаги будет делать мякиш хлеба влажноватым на ощупь.

Зная газообразующую способность муки можно предвидеть интенсивность брожения теста, ход окончательной расстойки и качество хлеба. Газообразуюшая способность муки влияет на окраску корки. Цвет корки обусловлен в значительной мере количеством несброженных сахаров перед выпечкой.

Сила муки . Сила муки - это способность муки образовывать тесто, обладающее после замеса и в ходе брожения и расстойки определенными структурно-механическими свойствами. По силе муку подразделяют на сильную, среднюю и слабую.

Сильная мука содержит много белковых веществ, дает большой выход сырой клейковины. Клейковина и тесто из сильной муки характеризуются высокой упругостью и низкой пластичностью. Белковые вещества сильной муки набухают при замесе теста относительно медленно, но в целом поглощают много воды. Протеолиз в тесте протекает медленно. Тесто отличается высокой газоудерживающей способностью, хлеб имеет правильную форму, большой объем, оптимальную по величине и структуре пористость. Следует отметить, что очень сильная мука дает хлеб меньшего объема. Клейковина и тесто такой муки излишне упруги и недостаточно растяжимы.

Слабая мука образует неэластичную, излишне растяжимую клейковину. Тесто из слабой муки вследствие интенсивного протеолиза имеет малую упругость, высокую пластичность, повышенную липкость. Сформованные тестовые заготовки в период расстойки расплываются. Готовым изделиям свойственны низкий объем, недостаточная пористость и расплывчатость (подовые изделия).

Средняя мука дает сырую клейковину и тесто с хорошими реологическими свойствами. Тесто и клейковина достаточно упруги и эластичны. Хлеб имеет форму и качество, отвечающие требованиям стандарта.

Цвет муки и ее способность к потемнению в процессе приготовления хлеба. Цвет мякиша связан с цветом муки. Из темной муки получится хлеб с темным мякишем. Однако светлая мука может в определенных случаях дать хлеб с темным мякишем. Поэтому для характеристики хлебопекарного достоинства муки имеет значение не только ее цвет, но и способность к потемнению.

Цвет муки в основном определяется цветом эндосперма зерна, из которого смолота мука, а также цветом и количеством в муке периферийных (отрубянистых) частиц зерна.

Способность же муки к потемнению в процессе переработки обусловливается содержанием в муке фенолов, свободного тирозина и активностью ферментов О-дифенолоксидазы и тирозиназы, катализирующих окисление фенолов и тирозина с образованием темноокрашенных меланинов.

Крупность частиц ржаной муки. Размеры частиц муки имеют большое значение в хлебопекарном производстве, влияя в значительной мере на скорость протекания в тесте биохимических и коллоидных процессов и вследствие этого на свойства теста, качество и выход хлеба.

Как недостаточное, так и чрезмерное измельчение муки, ухудшает ее хлебопекарные свойства: чрезмерно крупная мука даст хлеб недостаточного объема с грубой толстостенной пористостью мякиша и часто с бледно окрашенной коркой; хлеб из чрезмерно измельченной муки получается пониженного объема, с интенсивно окрашенной коркой, часто с темно окрашенным мякишем. Подовый хлеб из такой муки может быть расплывчатым.

Хлеб лучшего качества получается из муки с оптимальной крупностью частиц. Оптимум измельчения, по-видимому, должен быть различным для муки из зерна с разным количеством и особенно качеством клейковины.