Основные понятия астрофизики. Астрофизика

  • 24.09.2019

Раздел астрономии, изучающей физическое состояние и химический состав небесных тел и их систем, межзвездной и межгалактических сред, а также происходящие в них процессы называется астрофизикой. Основные разделы астрофизики включают: физику планет и их спутников, физику Солнца, звездных атмосфер, межзвездной среды, теорию внутреннего строения звезд и их эволюцию. В отличие от физики, в основе которой лежит эксперимент, астрофизика основывается главным образом на наблюдениях, Но во многих случаях условия, в которых находится вещество в небесных телах и системах отличается от доступных современным лабораториям (сверхвысокие и сверхнизкие плотности, высокая температура и т.д.). Благодаря этому астрофизические наблюдения приводят к открытию новых физических закономерностей.

Собственное значение астрофизики определяется тем, что в настоящее время основное внимание в релятивистской космологии переносится на физику Вселенной – состояние вещества и физические процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии.

Релятивистская астрофизика изучает на основе общей теории относительности (теории тяготения А. Эйнштейна) объекты сверхплотного образования во Вселенной.

Методы астрофизики исследования Вселенной

Метод оптический изучение Вселенной при помощи телескопа, который является главным инструментом астрономических исследований (приложение 7). Наибольшее количество сведений о космических процессах приносит свет. Телескоп – это устройство для собирания света с помощью объектива: двояковыпуклой линзы или вогнутого зеркала. Оптические телескопы делятся на три типа: рефрактор (объектив – большая линза), рефлектор (объектив – вогнутое зеркало), зеркально – линзовый телескоп. В этих телескопах используют в качестве объектива как линзы, так и зеркала, за счет чего их оптическое устройство позволяет достичь великолепного качества изображения с высоким разрешением, при том, что вся конструкция состоит из очень портативных коротких оптических труб. Основная цель телескопа собрать как можно больше света от небесного объекта. Свет через трубу телескопа собирается объективом, Полученное с помощью телескопа изображение небесного тела фиксируется на фотопластинке. Физика подарила исследователям Вселенной такой метод изучения световых лучей, как спектральный анализ. Если пропускать луч белого солнечного света через узкую щель, а затем сквозь стеклянную трехгранную призму, то он распадается на свои составные цвета и на экране появляется радужная цветовая полоска с постепенным переходом от красного до фиолетового – непрерывный спектр. Красный конец спектра образован лучами, наименее отклоняющимися при прохождении через призму, фиолетовый – наиболее отклоняемыми. Телескоп снабжают специальным устройством спектрографом. Он не только разлагает свет на составные части, но и фиксирует спектр на фотопластинке. Расшифровкой спектра, полученного от космического объекта, занимается физика. Расшифровка спектра помогает: а) Изучить химический состав космического объекта. Каждому химическому элементу соответствуют определенные спектральные линии. Например, в спектре паров натрия можно обнаружить близкорасположенные желтые линии, в спектре паров калия – фиолетовую и желтую линии. б) Определить температуру источников излучения, т.к. красный цвет соответствует низкой температуре (у звезд, 3 – 4 тыс. градусов по Цельсию), желтый – зеленый – средней (у звезд, 5 – 6 тыс. градусов по Цельсию), бело – голубой – высокой (у звезд, 10 – 11 тыс. градусов по Цельсию). в) Измерить скорость космического объекта согласно эффекту Доплера – зависимость измеряемой длины волны от взаимного движения наблюдателя и источника волн, если космический объект приближается к нам, то в его спектре спектральные линии смещаются к фиолетовому концу, в противоположном случае к красному (приложение 12).


Метод изучения космического радиоизлучения при помощи радиотелескопа. Долгое время астрономы могли исследовать космические объекты только по видимому излучению. Это было серьезным ограничением, так как видимый свет составляет небольшую часть спектра. Видимый свет соответствует интервалу длины волны от 4000 Ǻ (1 Ǻ = 10 -10 м) у фиолетовой границы до 7200 Ǻ – у красной. Свет, длина волны которого выходит за эти пределы не воспринимается нашим зрением. За фиолетовой областью видимого спектра идут ультрафиолетовое, рентгеновское и очень коротковолновое всепроникающее g – излучение. За красной границей спектра находится инфракрасное, микроволновое и радиоизлучение, длина волн которого может превосходить километры. В начале 30 –х годов XX столетия при изучении шумов, мешающих радиосвязи, был открыт источник небольших радиопомех, расположенный в направлении центра нашей Галактики. В основном источниками радиоволн являются космические объекты, находящиеся за пределами Солнечной системы. Радиоволны по сравнению со световыми лучами проходят там, где видимый свет пробиться не может. Вся информация о самых удаленных областях Вселенной целиком получена из радионаблюдений. Главными источниками космических радиопередач в большинстве случаев являются такие объекты, в которых протекают бурные физические процессы. Именно они представляют наибольший интерес для изучения развития Вселенной и форм космической материи. Радиоволны излучает и межзвездное пространство, а именно находящийся в нем ионизированный горячий газ. Нагрев и ионизацию газа (преимущественно водорода) вызывают горячие звезды и космические лучи. Другой источник радиоизлучения – нейтральный водород, которого в межзвездном пространстве значительно больше, чем ионизированного. Исследователи Вселенной умеют сегодня не только улавливать и переводить на доступный человеку язык информацию космических радиосигналов. Они научились также «прощупывать» с помощью радиолуча, направленного с Земли, поверхность небесных тел и принимать отраженные от них сигналы. Изучение космического «радиоэха» позволяет: измерять расстояние до небесных тел, определять скорость их движения и по характеру отражения радиоволн изучать поверхность космического объекта. Ученые осуществили радиолокацию ближайших планет, Луны и Солнца.

Метод нейтринной астрофизики . Источником энергии Солнца являются термоядерные реакции. В ходе этих реакций рождается нейтрино. Одна из отличительных особенностей нейтрино состоит в том, что эта частица чрезвычайно слабо взаимодействует с веществом. Длина свободного пробега нейтрино в веществе колоссальна. Пронизывая толщу солнечного вещества, они вылетают наружу в космическое пространство, и определенная их часть достигает поверхности Земли. Регистрируя солнечное нейтрино с помощью специальных устройств, (нейтринных телескопов) и вычисляя величину их потока, можно судить о характере физических процессов, протекающих в недрах Солнца.

Методы внеатмосферной астрономии . Внеатмосферное наблюдение – современное направление физики космоса, которое исследует космические объекты при помощи аппаратуры, вынесенной для устранения атмосферных помех за пределы земной атмосферы. Внеатмосферная астрономия дает возможность устранить дрожание изображения в телескопах, вызванное атмосферными неоднородностями, и довести пространственное разрешение оптического телескопа до его теоретически возможного (дифракционного) значения. Современная внеатмосферная астрономия вносит в астрофизику вклад вполне соизмеримый с вкладами оптической и радиоастрономии.

Методы инфракрасной, ультрафиолетовой, рентгеновской и гамма – астрономии. В целях изучения инфракрасного, ультрафиолетового, рентгеновского и g – излучения созданы ИК – телескопы, УФ – телескопы, рентгеновские и g – телескопы. Благодаря установке особой аппаратуры на ракеты и спутники Земли оказалось возможным фиксировать эти виды излучений.

Космические лучи удается наблюдать по следам, оставляемым в специальных ловушках (например, пластинках с ядерной эмульсией). Космические лучи представляют собой элементарные частицы (электроны, протоны, ядра углерода, железа), которые движутся так быстро, что проникают через любые тела, включая Землю в целом.

В старину многие народы считали, что небо – это тысячеглазое всевидящее божество. Древние греки называли это божество Аргусом или Паноптесом. Звездочеты, таким образом, смело смотрели в глаза богам и даже, считалось, могли разглядеть в этих глазах судьбы людей, правителей и стран. Потому в древние времена звездочеты были в почете. Впрочем, кроме предсказаний судьбы работа древних наблюдателей небес приносила и несомненные земные результаты. Благодаря этим наблюдениям люди научились исчислять время и ориентироваться на земной поверхности и на глади вод.

И в Средние века, и в эпоху Возрождения астрономы присутствовали при дворах любых властителей Запада и Востока. Главной задачей их было составление астрологических прогнозов. В свободное от основных обязанностей время они могли смотреть на звезды, сколько душа пожелает. Датчанин Тихо Браге (1546 - 1601) для этого даже выстроил специальную обсерваторию на острове неподалеку от Копенгагена. Его астрономические наблюдения были настолько точны и многочисленны, что послужили основой для открытия законов движения планет, называемых законами Кеплера. Кстати, Иоганн Кеплер (1571 -1630) тоже зарабатывал на жизнь астрологией.

И вот в безбожном 18 веке астрономы дошли до предела безнравственности. Они заявили, что небесные тела – совсем не глаза Бога, а суть физические тела. Мертвые камни (если речь идет о планетах) или сгустки огня (если мы говорим о звездах). Собственно говоря, этим открытием астрономы подписали смертный приговор своему благополучию. Потому что одно дело – Божья воля, прочитанная на небесах, и совсем другое дело – какие-то летающие посреди холода и темноты каменные обломки.

С другой стороны, благодаря этому открытию появилась астрофизика. Астрофизика – это наука о строении и свойствах небесных тел. Она изучает химический состав планет, Солнца, других звезд, комет и галактик. Астрофизика базируется не только на наблюдениях небесных тел, но и с помощью экспериментальных методов изучает физические свойства этих отдаленных объектов. Экспериментальными методами астрофизики являются в первую очередь, фотография, фотометрия и спектральный анализ. За последние пятьдесят лет астрофизические приборы стали работать не только на поверхности Земли, не только в горных обсерваториях, но и на борту космических кораблей. Выход астрофизики в космос принес новые открытия и породил одну из интереснейших отраслей этой науки, экспериментальную астрономию. Потрогать Луну, просверлить скважину на Марсе – честное слово, это кайф!

Астрофизика – один из предметов, изучаемых на астрономических факультетах университетов. Астрофизики – это те, кто развивают эту науку. Надо сказать, что профессия эта – редкая. Ведь не так уж много астрофизиков требуется человечеству. Гораздо меньше, чем в Средние века государям требовалось астрологов.

Астрофизика, как и астрономия – наука романтическая. Красота звездного неба многих очаровывает с детства. До сих пор помню, как захватило у меня, десятилетнего, дыхание, когда я увидел Марс в объективе телескопа. А ведь стоял телескоп не где-нибудь на вершине Памира, а всего-навсего на крыше заурядного педагогического института в районном центре М.!

Так вот, красота сверкающего звездами неба многих не отпускает всю жизнь. И эти бедолаги идут на астрономические специальности в университетах, заранее зная, что ни больших денег, ни великой славы (которую тоже можно конвертировать в деньги) с этой специальностью не заработаешь. И жить, получив эту специальность, придется в какой-нибудь дыре, да на горе. В Пулковской обсерватории для всех места не хватит, да и выдающихся открытий там уже не сделать. Небо засвечивает находящийся рядом сияющий миллионом огней Санкт-Петербург.

Рабочий день астрофизика – тоже не сахар. Вернее, это рабочая ночь. Этакий ночной дозор. Астрофизик приходит в обсерваторию после заката, но еще при свете, в сумерках. Пока светло, быстро готовится аппаратура, расчехляется телескоп. Наблюдения начинаются в темноте и заканчиваются с рассветом. Романтика, однако, хотя, конечно, хочется спать.

Зимой же, когда ночи длинные, работа длится больше положенных по кодексу законов о труде восьми часов. Тогда очень радует рассвет и простывшая за ночь кровать.

Одна ночь наблюдения – это сотни фотографий, спектрограмм, записей и графиков. Наблюдения, сделанные за неделю, надо скрупулезно обрабатывать месяц. А результат – хуже, чем у поэта из стихотворения В.Маяковского: «В грамм добыча – в год труды» . Иногда (но не всегда) результатом является публикация, доклад на конференции.

Опять же, говоря словами В.Маяковского: «Если звезды зажигаются, значит это кому-нибудь нужно» . Теперь астрофизику приходится постоянно объяснять людям эту поэтическую максиму. Да, прошли благословенные времена Средневековья! Астрономия нынче финансируется плохо. Даже в школах астрономию, предмет для юных умов интереснейший, тоже не изучает. Все упирается в то же финансирование. Часов на астрономию не хватает!

Великие открытия? Они случаются. Но так же, как мест в Пулковской обсерватории, на всех астрофизиков их не хватает.

Например, 12 ноября 2014 года была произведена первая в истории посадка космического аппарата на поверхность кометы. Комета называлась кометой Чурюмова-Герасименко. Астрофизик Светлана Ивановна Герасименко, открывшая эту комету, вспоминает, что сделано это открытие было благодаря бракованной фотопластинке в далеком сентябре 1969 года. Но открытая в тот год комета получила всемирную известность только благодаря тому, что к ней был запущен космический робот.

И еще раз к вопросу о монетизации астрофизических открытий. За открытие новой кометы аспирантка Герасименко получила премию 30 рублей. Мелочь, а приятно. Опять же, если вдуматься, какая польза народному-то хозяйству от какой-то там небесной кометы? Ноль целых, шиш десятых. Так что еще много заплатили!

Нет, ребята, не стоит идти в астрофизики. Больших денег среди звезд не сыскать.

Но все-таки здорово, когда в окуляре телескопа смотришь на вспышку сверхновой звезды. Не в кино ее видишь, а в реальности. Так сказать, в режиме «он-лайн». И осознаешь, какой это страшный, всесметающий, был взрыв, и как давно это было, миллионы лет назад... И как далеко это было, если свет этой вспышки только сейчас вошел в твой глаз, преодолев непредставимое расстояние. И что никто, кроме тебя, сейчас этой вспышки не видит. Вот тут-то и представляешь себя Демиургом, творцом Вселенной. Потому что, кажется, потихоньку начинаешь догадываться, как эта Вселенная устроена и для чего построена.

И это дорогого стоит.

Астрономические исследования проводятся в научных институтах, университетах и обсерваториях. Пулковская обсерватория под Ленинградом (рис. 36) существует с 1839 г. и знаменита составлением точнейших звездных каталогов. Ее в прошлом веке называли астрономической столицей мира. К крупнейшим на постсоветском пространстве обсерваториям следует отнести Специальную астрофизическую обсерваторию на Северном Кавказе, обсерватории Крымскую (вблизи Симферополя), Бюраканскую (вблизи Еревана), Абастуманскую (вблизи Боржоми), Голосеевскую (в Киеве), Шемахинскую (вблизи Баку). Из астрономических институтов России крупнейшие - Астрономический институт имени П. К. Штернберга при МГУ и Институт теоретической астрономии Академии наук СССР в Ленинграде.

1.Оптическая астрономия.

Основным астрономическим прибором является телескоп.

Назначение телескопа - собрать как можно больше света от исследуемого объекта и (при визуальных наблюдениях) увеличить его видимые угловые размеры.

Основной оптической частью телескопа служит объектив, который собирает свет и создает изображение источника.

Если объектив телескопа представляет собой линзу или систему линз, то телескоп называют рефрактором , а если вогнутое зеркало - то рефлектором .

Большим прорывом в конструировании телескопов стало изобретение советским оптиком Д. Д. Максутовым менискового телескопа. Мениск - тонкая выпукло-вогнутая линза малой кривизны, которая устанавливается в верхней части тубуса для исправления недостатков главного зеркала. В качестве дополнительного зеркала используется напыленное на поверхность мениска круглое алюминиевое пятно.

Собираемая телескопом световая энергия зависит от размеров объектива. Чем больше площадь его поверхности, тем более слабые светящиеся объекты можно наблюдать в телескоп.

В рефракторе лучи, пройдя через объектив, преломляются и образуют изображение объекта в фокальной плоскости . В рефлекторе лучи от вогнутого зеркала отражаются и потом также собираются в фокальной плоскости.

Рис.54. Схема устройства телескопов:

а) рефрактор; б) рефлектор; в) менисковый телескоп.

Изображение небесного объекта, построенное объективом, можно либо рассматривать через линзу, называемую окуляром, либо фотографировать.

Для высокоточных измерений энергии световых потоков используют фотоэлектрические фотометры. В них свет от звезды, собираемый объективом телескопа, направляется на светочувствительный слой электронного вакуумного прибора - фотоумножителя, в котором возникает слабый ток, усиливаемый и регистрируемый специальными электронными приборами. Пропуская свет через специально подобранные различные светофильтры, астрономы количественно и с большой точностью оценивают цвет объекта.


Рис.55. Изображение галактики, сделанное оптическим телескопом.

2.Радиоастрономия.

После того как было обнаружено космическое радиоизлучение , для его приема были созданы радиотелескопы различных систем. Антенны некоторых радиотелескопов похожи на обычные рефлекторы. Они собирают радиоволны в фокусе металлического вогнутого зеркала. Это зеркало можно сделать решетчатым и громадных размеров - диаметром в десятки метров.

Рис.56. Радиотелескоп обсерватории Аресибо (Пуэрто-Рико)

Есть радиотелескопы, состоящие из системы отдельных антенн, удаленных друг от друга (иногда на многие сотни километров), при помощи которых производятся одновременные наблюдения космического радиоисточника. Такой способ позволяет узнать структуру исследуемого радиоисточника и измерить его угловой размер, даже если он во много раз меньше одной угловой секунды.

Рис.57. Радиотелескоп в пустыне Атакама (Чили).

К числу крупнейших в мире радиотелескопов относится и РАТАН-600. Этот радиотелескоп был построен в 1974 году близ станицы Зеленчукская в Карачаево-Черкессии, на высоте 970 м над уровнем моря.

Рис.58. РАТАН-600.

3.Спектральный анализ.

Важнейшим источником информации о большинстве небесных объектов является их излучение. Наиболее ценные и разнообразные сведения о телах позволяет получить спектральный анализ их излучения. Этим методом можно установить качественный и количественный химический состав светила, его температуру, наличие магнитного поля, скорость движения по лучу зрения и многое другое.

Спектральный анализ, как вы знаете, основан на явлении дисперсии света. Если узкий пучок белого света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие его лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке.

Рис.59. Образование спектра.

Как известно, свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны света уменьшается от красных лучей к фиолетовым примерно от 0,7 до 0,4 мкм. За фиолетовыми лучами в спектре лежат ультрафиолетовые лучи, не видимые глазом, но действующие на фотопластинку. Еще меньшую длину волны имеют рентгеновские лучи. За красными лучами находится область инфракрасных лучей. Они невидимы, но воспринимаются приемниками инфракрасного излучения, например, специальными фотопластинками.

Рис.60. Шкала электромагнитных излучений.

Для получения спектров применяют приборы, называемые спектроскопом и спектрографом . В спектроскоп спектр рассматривают, а спектрографом его фотографируют. Фотография спектра называется спектрограммой .

Существуют следующие виды спектров земных источников и небесных тел.

а) Сплошной, или непрерывный, спектр в виде радужной полоски дают непрозрачные раскаленные тела (уголь, нить электролампы) и достаточно протяженные плотные массы газа.

б) Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании. Каждый газ излучает свет строго определенных длин волн и дает характерный для данного химического элемента линейчатый спектр. Сильные изменения состояния газа или условий его свечения, например, нагревание или ионизация, вызывают определенные изменения в спектре данного газа. Составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре паров натрия особенно ярки две желтые линии.

в) Линейчатый спектр поглощения дают газы и пары, когда за ними находится яркий источник, дающий непрерывный спектр. Спектр поглощения представляет собой непрерывный спектр, перерезанный темными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу. Например, две темные линии поглощения паров натрия расположены в желтой части спектра.

Рис.61. Виды спектров.

Изучение спектров позволяет производить анализ химического состава газов, излучающих или поглощающих свет. Количество атомов или молекул, излучающих или поглощающих энергию, определяется по интенсивности линий. Чем заметнее линия данного элемента в спектре излучения или поглощения, тем больше таких атомов (молекул) на пути луча света.

Солнце и звезды окружены газовыми атмосферами. Непрерывный спектр их видимой поверхности перерезан темными линиями поглощения, возникающими при прохождении излучения через атмосферу звезд. Поэтому спектры Солнца и звезд - это спектры поглощения.

Рис.62. Спектры: 1) Солнца; 2) водорода; 3) гелия; 4) Сириуса (белая звезда);

5) Бетельгейзе, или α Ориона (красная звезда)

4. Внеземная астрономия

Исследования с помощью космической техники занимают особое место в методах изучения небесных тел и космической среды. Начало этому было положено запуском в СССР в 1957 г. первого в мире искусственного спутника Земли. Быстро развиваясь, космонавтика сделала возможным:

1) создание внеатмосферных искусственных спутников Земли;

2) создание искусственных спутников Луны и планет;

3) перелет и спуск приборов, управляемых с Земли, на Луну и планеты;

4) создание управляемых с Земли автоматов, доставляющих с планет пробы грунта и записи разных измерений;

5) полеты в космос лабораторий с людьми и высадку их на Луну.

Космические аппараты позволили проводить исследования во всех диапазонах длин волн электромагнитного излучения. Поэтому современную астрономию часто называют всеволновой. Внеатмосферные наблюдения дают возможность принимать в космосе излучения, поглощаемые или сильно изменяемые земной атмосферой: далекие ультрафиолетовые, рентгеновские и инфракрасные лучи, радиоизлучения некоторых длин волн, не доходящих до Земли, а также корпускулярные излучения Солнца и других тел.

Гамма-лучи излучаются сверхновыми, нейтронными звёздами, пульсарами и чёрными дырами.

Рентгеновские лучи испускают скопления галактик, чёрные дыры, активные ядра галактик, остатки сверхновых, звёзды, звёзды в паре с белым карликом (катастрофические переменные звёзды), нейтронные звезды или чёрные дыры (рентгеновские двойные).

Объекты, излучающие ультрафиолетовое излучение, включают Солнце, другие звёзды и галактики.

Оптические телескопы используются для наблюдения звезд, галактик, планетарных туманностей и протопланетных дисков.

В инфракрасном свете можно рассматривать холодные звезды (в том числе коричневые карлики), туманности, и очень далекие галактики.

В основе нейтринного телескопа лежит концептуальная идея, которая высказана была академиком Марковым в 1960 году. Она заключается в том, чтобы регистрировать заряженные частицы глубоко под водой, в озерах или океанах, посредством регистрации возникающего свечения особого рода (эффект Вавилова – Черенкова). Это довольно мощный источник, который можно регистрировать.

В 1993 году началось строительство байкальского нейтринного телескопа НТ-200. Он содержал 196 оптических модулей, поэтому цифра 200. И на этой установке уже в 1994 году были получены первые результаты. С 1995 по 2000 год на Южном полюсе была создана установка AMANDA - это детектор первого поколения, такой же, как и байкальский. А следующий шаг был сделан в 2008 году, когда в Средиземном море была поставлена уже подводная установка, ANTARES, она работает до сих пор в Тулонской бухте около Франции. В 2011 году заработала установка на Южном полюсе, называется она IceCube, и содержит около 5 тысяч фотодетекторов, распределенных в кубическом километре льда на глубине от 1500 до 2500 метров.

Рис. 63. Внеземные телескопы. Слева направо:

1) Рентгеновский телескоп «Эйнштейн»

2) Оптический телескоп «Хаббл»

3) Гамма-телескоп «Комптон»

Много информации о природе наиболее далеких от нас тел и их систем также получено благодаря исследованиям, выполненным при помощи приборов, установленных на различных космических аппаратах.

Результаты астрофизических исследований за последние десятилетия показывают, что в окружающем нас мире происходят значительные изменения, которые затрагивают не только отдельные объекты, но и всю Вселенную в целом.

Рис.64. Снимок глубокого космоса, сделанный телескопом «Хаббл».

Глава 16. Солнце.

Солнце - центральное и самое массивное тело Солнечной системы. Его масса в 333 000 раз больше массы Земли и в 750 раз превышает массу всех других планет, вместе взятых. Солнце - мощный источник энергии, постоянно излучаемой им во всех участках спектра электромагнитных волн - от рентгеновских и ультрафиолетовых лучей до радиоволн. Это излучение оказывает сильное воздействие на все тела Солнечной системы: нагревает их, влияет на атмосферы планет, дает свет и тепло, необходимые для жизни на Земле.

Вместе с тем, Солнце - ближайшая к нам звезда, у которой, в отличие от всех других звезд, мы можем наблюдать диск, и при помощи телескопа изучать на нем мелкие детали, размером даже до нескольких сотен километров. Солнце - типичная звезда, а потому его изучение помогает понять природу звезд вообще.

Видимый угловой диаметр Солнца незначительно меняется из-за эллиптичности орбиты Земли. В среднем он составляет около 32", или 1/107 радиана, т. е., диаметр Солнца равен 1/107 а. е., или приблизительно 1 400 000 км, что в 109 раз превышает диаметр Земли. Мощность полного излучения Солнца (его светимость) составляет около 4 10 кВт. Так излучает тело солнечных размеров, нагретое до температуры около 6000 К (эффективная температура Солнца). Земля получает от Солнца примерно 1/2 000 000 000 часть излучаемой им энергии.

Солнце - раскаленный газовый шар. В основном оно состоит из водорода с примесью 10% (по числу атомов) гелия. Число атомов всех остальных элементов, вместе взятых, примерно в 1000 раз меньше. Однако масса этих более тяжелых элементов составляет 1-2% массы Солнца. На Солнце вещество сильно ионизовано, т. е. атомы потеряли свои внешние электроны и вместе с ними стали свободными частицами ионизованного газа-плазмы.

Средняя плотность солнечного вещества ρ =1400 кг/м 3 . Это значение соизмеримо с плотностью воды и в тысячу раз больше плотности воздуха у поверхности Земли. Однако в наружных слоях Солнца плотность в миллионы раз меньше, а в центре - в 100 раз больше, чем средняя плотность.

Под действием сил гравитационного притяжения, направленных к центру Солнца, в его недрах создается огромное давление.

По спектральной классификации Солнце относится к типу G2V (жёлтый карлик). Солнечный спектр содержит линии ионизированных и нейтральных металлов, а также водорода и гелия. Солнце находится на расстоянии около 26 000 световых лет от центра Млечного Пути и вращается вокруг него, делая один оборот за 225-250 миллионов лет. Орбитальная скорость Солнца равна 217 км/с - таким образом, оно проходит один световой год за 1400 земных лет, а одну астрономическую единицу - за 8 земных суток. В настоящее время Солнце находится во внутреннем крае рукава Ориона нашей Галактики, между рукавом Персея и рукавом Стрельца, в так называемом «Местном межзвёздном облаке» - области повышенной плотности, расположенной, в свою очередь, в имеющем меньшую плотность «Местном пузыре» - зоне рассеянного высокотемпературного межзвёздного газа. Из звёзд, принадлежащих 50 самым близким звёздным системам в пределах 17 световых лет, известным в настоящее время, Солнце является четвёртой по яркости звездой (его абсолютная звёздная величина +4,83m).

Рис.65. Положение Солнца в Местном Пузыре.

Астрономия — это наука, которая изучает небесные тела, их движение, строение, а также системы, образованные ими. Это древнейшая область знания: истоки астрономии теряются в глубине веков.

Можно сказать, что она эволюционировала вместе с человечеством. И сегодня астрономия не стоит на месте. Пользуясь новейшими технологиями, ученые постоянно уточняют и дополняют уже сложившиеся теории. Самые громкие открытия последних лет часто бывали связаны с теми явлениями, что изучают астрофизики. На полную мощность используя достижения в области техники, астрономы неизбежно сталкиваются с ограниченностью человеческого разума. Астрофизика — раздел астрономии, пожалуй, чаще других сталкивающийся с фактами, которые пока невозможно объяснить. Ученые, работающие под ее знаменем, пытаясь найти ответы на все более сложные вопросы, тем самым стимулируют технический прогресс. О том, что изучают астрофизики, что им уже удалось узнать и какие загадки Вселенная им предлагает сегодня, и пойдет речь ниже.

Особенности

Астрофизика занимается определением физических характеристик и их взаимодействия. В своих теориях она опирается на знания о законах природы, накопленные наукой в процессе изучения свойств материи на Земле.
Ученые-астрофизики сталкиваются с существенными ограничениями в своей работе. В отличие от коллег, изучающих микромир или макрообъекты в условиях Земли, они не могут проводить эксперименты. Многие из сил, действующих в космосе, проявляют себя лишь на огромном расстоянии или при наличии гигантских по массе и объему объектов. В лаборатории такое взаимодействие не изучишь, поскольку невозможно создать необходимые условия. Общая астрофизика в основном имеет дело с результатами пассивного наблюдения.

В таких условиях трудно себе представить получение данных об объектах. Непосредственного измерения нужных параметров в силу невозможности экспериментов в этом разделе астрономии не существует. В таком случае что изучают астрофизики и на чем основывают свои выводы? Главный источник информации для ученых в подобных условиях — анализ электромагнитных волн, которые излучают небесные тела.

С чего все начиналось

Астрономия — это наука, которая изучает небесные тела с незапамятных времен, однако такой раздел, как астрофизика, был в ней далеко не всегда. Фактически свое становление он начал в 1859 году, когда Г. Кирхгоф и Р. Бунзен по завершении серии экспериментов установили, что любой химический элемент обладает уникальным линейчатым спектром. Это означало, что по спектру небесного тела можно судить о его химическом составе. Так зародился спектральный анализ, а вместе с ним появилась и астрофизика.

Значимость

В 1868 году только что созданный метод сделал возможным обнаружение нового химического элемента - гелия. Его открыли во время наблюдения полного солнечного затмения и изучения хромосферы светила.

Современная астрофизика также во многом базируется на данных Усовершенствованная технология позволяет получать сведения практически обо всех характеристиках небесных тел, а также межзвездного пространства: температуре, составе, поведении атомов, напряжении магнитных полей и так далее.

Невидимое излучение

Существенно расширило возможности астрофизики открытие радиоизлучения. Его регистрация позволила изучать холодный газ, наполняющий межзвездное пространство и испускающий невидимый для глаза свет, а также процессы, протекающие в далеких пульсарах и нейтронных звездах. Огромное значение для всей астрономии имело открытие ставшего подтверждением складывавшейся в это время теории большого взрыва.

Космическая эра подарила астрофизикам новые возможности. Стали доступными ультрафиолетовое, рентгеновское и гамма-излучение, путь к Земле которым преграждает атмосфера. Телескопы, созданные с учетом новых открытий, позволили обнаружить горячий газ в скоплениях галактик, нейтронных звезд, некоторые характеристики черных дыр.

Проблемы астрофизики

Современная наука шагнула далеко вперед по сравнению с тем состоянием, в котором она пребывала в конце 19 века. Сегодня астрофизики пользуются всеми новейшими достижениями в области регистрации электромагнитного излучения и получения на их основе данных об удаленных объектах. Однако нельзя сказать, что этот раздел астрономии абсолютно беспрепятственно движется по пути изучения Вселенной. Условия, складывающиеся в далеком космосе, подчас настолько трудны для регистрации и понимания, что интерпретация полученных данных о тех или иных объектах затруднительна.

В окрестностях черной дыры, недрах нейтронных звезд и их магнитных полях могут проявляться новые физические свойства материи. Невозможность даже приблизительно воспроизвести экстремальные или предельные условия, в которых происходят подобные космические процессы, формирует основные сложности астрофизики.

Модель Вселенной

Одна из важнейших задач современной астрономии — понять, как развивается необъятный космос. На сегодняшний день существует две основные версии: открытая и закрытая Вселенная. Первая подразумевает постоянное и неограниченное расширение. В этой модели расстояние между галактиками только увеличивается, и спустя какое-то время космос станет безжизненной пустыней с редкими островками твердой материи. Другой вариант предполагает, что на смену расширению, которое для большинства является бесспорным фактом, придет фаза сжатия Вселенной. Однозначного ответа на вопрос о том, какая теория верна, пока нет. Более того, появляются открытия, значительно усложняющие понимание будущего Вселенной и вносящие определенный хаос в, казалось бы, стройную картину. К ним относится, например, обнаружение и энергии.

Черные дыры, гамма-всплески

Среди всего того, что изучают астрофизики, есть ряд объектов с особым налетом таинственности. Они также относятся к основным проблемам этого раздела астрономии. В их число входят черные дыры, многие физические процессы в пространстве которых совершенно не изучены, и гамма-всплески. Последние представляют собой выброс огромного количества энергии, импульсы гамма-излучения. Природа их тоже до конца не ясна.

Понимание подобных объектов и явлений может существенно изменить наше представление об устройстве Вселенной и законах космоса. Именно постоянное соприкосновение с тайнами мироздания и делает астрофизику передним краем науки, одновременно высвечивающей ограниченность современных знаний и стимулирующей дальнейшее их развитие. Можно сказать, что этот раздел астрономии стал своеобразным маркером прогресса: каждое открытие знаменует собой победу человеческого разума над еще одной тайной.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

АСТРОФИЗИКА

Введение

Цель астрофизики - изучение физической природы и эволюции отдельных космических объектов, включая и всю Вселенную. Таким образом, астрофизика решает наиболее общие задачи астрономии в целом. За последние десятилетия она стала ведущим разделом астрономии. Это не означает, что роль таких «классических» разделов как небесная механика, астрометрия и т.п. - уменьшилась. Наоборот, количество и значимость работ в традиционных областях астрономии в настоящее время также растет, но в астрофизике этот рост проходит быстрее. В целом астрономия развивается гармонически, как единая наука, и направление исследований в различных ее разделах учитывает взаимные их интересы, в том числе и астрофизики. Так, например, развитие космических исследований частично способствовало возникновению нового раздела небесной механики - астродинамики. Построение космических моделей Вселенной предъявляет особые требования к «классическим задачам» астрометрии и т.д

Как известно, за свою многовековую историю астрономия претерпела несколько революций, полностью изменивших ее характер. Одним из результатов этого процесса явилось возникновение и бурное развитие астрофизики. Особенно этому способствовало применение телескопа с начала XVII века, открытие спектрального анализа и изобретение фотографии в XIX веке, возникновение фотоэлектрики, радиоастрономии и внеатмосферных методов исследования в XX веке. Все это необычно расширило возможности наблюдательной или практической астрофизики, и привело к тому, что в середине XX века астрономия стала всеволновой, т.е. получила возможность извлекать информацию из любого диапазона спектра электромагнитных излучения

Параллельно с развитием методов практической астрофизики, благодаря прогрессу в физике и особенно созданию теории излучения и строения атома, развилась теоретическая астрофизика. Ее цель - интерпретация результатов наблюдений, постановка новых задач исследований, а также обоснование методов практической астрофизики

Оба раздела астрофизики в свою очередь подразделяются на более частные. Разделение теоретической астрофизики, как правило, производится по объектам исследований: физика звезд, Солнца, планет, туманностей, космических лучей, космологией и т.д. Разделы практической астрофизики обычно отражают те или иные применяемые методы: астрофотометрия, астроспектрометрия, астрофотография, колориметрия и т.д

Разделы астрофизики, основание на применение принципиально новых методов, составившие эпоху в астрономии, и, как правило, включающие соответствующие разделы теоретической астрофизики получили такие названия, как радиоастрономия, баллонная астрономия, внеатмосферная астрономия (космические исследования), рентгеновская астрономия, гамма-астрономия, нейтринная астрономия

«Я вне себя от изумления, так как уже успел убедится, что Луна представляет собой тело, подобное Земле.»

Галилео Галилей (1610 год)

Оптические телескопы и их использование

История первых оптических наблюдений

Трудно сказать, кто первый изобрел телескоп. Известно, что еще древние употребляли увеличительные стекла. Дошла до нас и легенда о том, что якобы Юлий Цезарь во время набега на Британию с берегов Галлии рассматривал в подзорную трубу туманную британскую землю. Роджер Бекон, один из наиболее замечательных ученных и мыслителей XIII века, он изобрел такую комбинацию линз, с помощью которой отдаленные предметы при рассматривании их кажутся близкими

Так ли это было в действительности - неизвестно. Бесспорно, однако, что в самом начале XVII века в Голландии почти одновременно об изобретении подзорной трубы заявили три оптика - Липперсгей, Мециус и Янсен. Рассказывают, что будто бы дети одного из оптиков, играя с линзами, случайно расположили две из них так, что далекая колокольня вдруг показалась близкой. Как бы там ни было, к конце 1608 года первые подзорные трубы были изготовлены и слухи об этих новых оптических инструментах быстро распространились по Европе

В Падуе в это время уже пользовался широкой известностью Галилео Галилей, профессор местного университета, красноречивый оратор и страстный сторонник учения Коперника. Услышав о новом оптическом инструменте, решил собственноручно построить подзорную трубу. Сам он рассказывает об этом так: «Месяцев десять тому назад стало известно, что некий фламандец построил перспективу, при помощи которой видимые предметы, далеко расположенные от глаз, становятся отчетливо различимы, как будто они находятся вблизи. Это и было причиной, по которой я обратился к изысканию оснований и сре дств дл я изобретения сходного инструмента. Вскоре после этого, опираясь на учение о преломлении, я постиг суть дела и сначала изготовил свинцовую трубу, на концах которой я поместил два оптических стекла, оба плоских с одной стороны, с другой стороны одно стекло выпукло-сферическое, другое вогнутое»

Этот первенец телескопической техники давал увеличение всего в три раза. Позже Галилео удалось построить более совершенный инструмент, увеличивающий в 30 раз. И тогда, как пишет Галилей «оставив дела земные, я обратился к небесам»

7 января 1610 года навсегда останется памятной датой в истории человечества. Вечером этого дня Галилей впервые направил построенный им телескоп на небо. Название «телескоп» было присвоено новому инструменту по решению итальянской Академии наук. Он увидел то, что предвидеть заранее было невозможно. Луна, испещренная горами и долинами, оказалась миром, схожим хотя бы по рельефу с Землей. Планета Юпитер предстала перед глазами изумленного Галилея крошечным диском, вокруг которого обращались четыре необычные звездочки - его спутники. Картина эта в миниатюре напоминала Солнечную систему по представлению Коперника. При наблюдениях в телескоп планета Венера оказалась похожей на маленькую луну. Она меняла свои фазы, что свидетельствовал о о ее обращении вокруг Солнца. На самом Солнце (поместив перед глазами темное стекло) Галилей увидел черные пятна, опровергнув тем самым общепринятое учение Аристотеля о «неприкосновенной чистоте небес». Эти пятна смещались по отношению к краю солнца, из чего Галилей сделал правильный вывод о вращении Солнца вокруг оси

В темные прозрачные ночи в поле зрения галилеевского телескопа было видно множество звезд, недоступных невооруженным глазу. Некоторые туманные пятна на ночном небе оказались скопищами слабо светящихся звезд. Великим собранием скучено расположенных звездочек оказался и Млечный путь - беловатая, слабо светящаяся полоса, опоясывавшая все небо

Несовершенство первого телескопа помешало Галилею рассмотреть кольца Сатурна. Вместо колец он увидел по оде стороны Сатурна два каких-то странных придатка

Открытия Галилея положили начало телескопической астрономии. Но его телескопы, утвердившие окончательно новое коперническое мировоззрение, были очень не совершенны

Уже при жизни Галилея им на смену пришли телескопы несколько иного типа. Изобретателем нового инструмента был уже знакомый нам Иоган Кеплер. В 1611 году в трактате «Диоптрика» Кеплер дал описание телескопа, состоявшего из двух двояковыпуклых линз. Сам Кеплер, будучи типичным астрономом - теоретиком, ограничился лишь описанием схемы нового телескопа, а первым, кто построил такой телескоп и употребил его для астрономических целей, был иезуит Шейкер, оппонент Галилея в их горячих спорах о природе солнечных пятен

Галилей изготовил трубу с увеличением в 30 раз. Эта труба имела длину 1245 мм; объективом у нее была выпуклая линза, диаметром в 53,5 мм; плосковогнутый окуляр имел диаметр в25 мм. Труба с увеличением в 30 раз была лучшей из труб Галилея; она до сих пор сохраняется в музее во Флоренции. При ее помощи Галилей сделал все свои телескопические открытия

Галилей открыл на Луне горы и горные цепи, а также несколько темных пятен, которые назвал морем. При первом же знакомстве с поверхностью Луны Галилео бросилось в глаза сведущее обстоятельство: поверхность Луны казалась похожей на поверхность Земли - на лунной поверхности (как и на земной) оказались и большие горы, и горные цепи, и моря, и долины. Галилей первое время предполагал присутствие на Луне воды (в морях) и атмосферной оболочки

В конце 1609 и в начале 1610 годов Галилей исследовал при помощи телескопа различные небесные объекты, в том числе млечный Путь. Аристотель считал Млечный Путь атмосферным явлением. Но в телескоп Галилей сразу увидел, что сияние Млечного Пути вызывается бесчисленно скученно расположенными звездочками. Таким образом, Млечный путь оказался скоплением звезд, т.е. явлением космическим, а вовсе не атмосферным

Изумительное открытие сделал Галилей, наблюдая в начале января 1610 года планету Юпитер

Сохранился журнал наблюдений Галилея, который он начал регулярно вести с 7 января 1610 года. 7 января он увидел около Юпитера три светлые звездочки; две находились к востоку от Юпитера, а третья - к западу. 8 января он опять направил свою трубу на Юпитер. И что же? Расположение звездочек изменилось. Все три звездочки помещались теперь к западу от планеты и ближе одна к другой, чем в предшествующее наблюдение. «Они, - пишет Галилей в «Звездном вестнике», - по прежнему стояли на одной прямой линии, но уже были разделены собой равными промежутками». 9 января было видно только две, и обе они находились к востоку от Юпитера

13 января Галилей увидал уже четыре звездочки около Юпитера; затем все четыре звездочки он снова наблюдал 15 ,19, 20, 21, 22 и 26 января и окончательно уверился в том, что он сделал совершенно неожиданное открытие: установил существование четырех спутников планеты Юпитер. Этих спутников Галилей решил назвать «светилами Медичи», посвятив свое открытие герцогу Тосканскому Козимо II Медичи

В октябре 1610 года Галилей сделал новое сенсационное открытие: он заметил фазы Венеры. Галилей был уверен, что Венера имеет фазы и нисколько не был удивлен, что их увидел. К концу 1610 года относится еще одно замечательное открытие: Галилей усмотрел на диске Солнца темные пятна. Эти пята приблизительно в тоже время увидели и другие: английский математик Гарриот (1560 - 1621), голландский астроном Иоганн Фабриций (1587 - 1615) и иезуит Христофор Шейнер (1575 - 1650)

Фабриций первый оповестил ученый мир о своем открытии, издав на латинском языке брошюру «Рассказ о пятнах, наблюдениях о Солнце, и кажущемся их перемещении вместе с Солнцем». В этой брошюре автор утверждает, что впервые заметил пятно на диске Солнца 9 марта 1611 года. После нескольких дней наблюдений пятно исчезло на западном краю солнечного диска, а недели через две снова появилось на восточном. Из этих наблюдений Фабриций заключил, что пятно совершает обращение вокруг Солнца. Вскоре, однако, он понял, что перемещение пятна по солнечному диску только кажущееся, и что в действительности само Солнце вращается вокруг оси

Герриот увидел три черных пятна на солнечном диске 1 декабря 1610 года. Наконец, иезуит Христофор Шейнер увидел солнечные пятна в 1611 году, но не торопился с опубликованием своего неожиданного открытия

Открытие Галилея сравнивали с открытием Америки; писали, что текущее столетие будет по праву гордится открытием «новых небес». Имя Галилея прославлялось в многочисленных письмах, в честь него сочинялись оды. Он сделал в короткое время самым знаменитым ученым Европы. Галилей демонстрировал в телескоп небесные объекты многим своим согражданам и случайным посетителям

Замечание Галилея относительно природы Луны и относительно лунных гор и горных цепей и сделанные им измерения высот лунных гор показывают, что он стоял на точке зрения Коперника и Бруно. Из чтения «Звездного вестника» читатели могли вывести только такое заключение, что Галилей, на основании своих телескопических наблюдений, считает Луну сходной по своей природе с Землей

С точки зрения церкви это пахло ересью, так как шло в разрез с освещавшейся церковью идеей Аристотеля о категорическом различие «земного» и « небесного». В свою трубу Галилей не один раз наблюдал «пепельный свет» молодой Луны; он, как за столетие до этого и Леонардо да Винчи, объяснил совершенно правильно явление пепельного света тем, что темная часть поверхности луны в это время освещается светом Солнца, отраженным от земной поверхности. Галилей использовал свое объяснение в чисто коперническом духе в качестве сильного аргумента в пользу того предложения, что и зама Земля, подобно другим планетам, является светилом. Галилей так и пишет: «При помощи доказательств и естественнонаучных выводов мы стократно подтвердили, что Земля движется, как планета, и превосходит Луну блеском своего света». Подобное заключение вело прямо к нарушению основного положения учения Коперника, что Земля - одна из планет, обращающихся вокруг Солнца. Ученые различных лагерей, читавшие «Звездный вестник», хорошо это понимали. Вот почему «Звездный вестник» одними читался с восторгом, другими - с отвращением, как книга еретическая, противная церковной традиции и физике Аристотеля. Говоря о спутниках Юпитера. Галилей также открыто заявляет себя коперниканцем

Против открытий, описанных в «Звездном вестнике», посыпались печатные возражения. Немецкий астролог Мартин Хорки написал брошюру под заглавием: «Очень краткий поход против «Звездного вестника»». Это произведение - стряпня астролога, проникнутого верой в свою «науку» и не желавшего «верить галилеевой трубе», так как «трубы порождают иллюзии». Спутники Юпитера придуманы Галилеем, утверждал Хорки, «для удовлетворения ненасытной его жадности к золоту»

Другой оппонент - итальянец Коломбе - послал Галилею целый трактат, где между прочим возражал против лунных гор и вообще против всякого рода возвышений и углублений на луне. По мнению Коломбе, наблюдавшиеся Галилеем на луне пропасти и впадины заполнены каким-то совершенно прозрачным кристаллическим веществом. Таким образом, Луна все-таки представляет собою точную сферу, как и предполагал «великий учитель Аристотель»

Флорентинец Франческо Сицци тоже выпустил памфлет против «Звездного вестника», где свел споры о новых неожиданных открытиях Галилея к чисто богословским тонкостям. Так, Сицци заявляет, что во второй книге Моисея и в четвертой главе книги пророка Захарии будто бы содержаться указания, что число планет на небе равно семи. Число семь вообще является символом совершенства, например, в голове человека - семь «отверстий» (два уха, два глаза, две ноздри и один рот). Аналогично бог создал семь планет: две «благодетельные» - Юпитер и Венеру, две «вредоносные» - Марс и Сатурн, две являющиеся «светилами» - Солнце и Луну, и одну «безразличную» - Меркурий. Отсюда Сицци делает вывод: никаких новых планет (т.е. спутников Юпитера) не может быть, а Галилей с его трубой грубо ошибся

Таковы были аргументы тогдашних ученых. Однако открытия Галилея скоро были подтверждены. Существование спутников юпитера констатировал Иоган Кеплер. Он описал свои наблюдения в небольшой брошюре на латинском языке: «Рассказ Иоганна Кеплера о его наблюдениях четырех спутников Юпитера, которых флорентийский математик Галилей по праву открытия назвал Медическими светилами». Кеплер наблюдал в довольно посредственную трубу. Несколько раз в начале сентября 1610 года Кеплер ясно видел то двух, то трех спутников Юпитера, но в наблюдении четвертого не был уверен. В ноябре 1610 года Пейреск во Франции тоже регулярно, как и Галилей, стал наблюдать спутников Юпитера, задавшись целью составить таблицы их движения. В наблюдениях ему помогали Готье и Гассенди. Таблиц, однако, им составить не удалось, так как наблюдения их были недостаточно точны

Галилею хотелось подтвердить сделанные им телескопические открытия, отведя нелепые обвинения его в том, что он все это просто придумал. Вскоре ему это удалось. Римская коллегия подтвердила с некоторыми, очень незначительными оговорками действительность телескопических открытий Галилея. Отцы-иезуиты римской коллегии сами наблюдали весьма тщательно и усердно, записи и чертежи их наблюдений юпитеровых спутников сохранились и были опубликованы в миланском издании сочинений Галилея. Таким образом, в ожесточенной борьбе между учеными-новаторами и учеными-схоластиками, занимавшим положение Аристотеля, победил Галилей. Но его победа над упрямыми противниками создала ему множество врагов среди ученых схоластического лагеря. Католическая церковь всячески поддерживала учение Аристотеля, так что печатные выступления Галилея против последнего расценивалось его противниками как выпад против церкви и общепринятого тогда церковного миро представления. Борьба Галилея за новую науку, за новое коперническое мировоззрение началась. В последующие годы эта борьба еще более развернулась и обострилась

Рассмотрим оптические схемы и принцип действия галилеевского и кеплеровского телескопов. Линза А, обращенная к объективу наблюдения, называется объективом, а та линза В , к которой прикладывает свой глаз наблюдатель - окуляром. Если линза толще посередине, чем на краях, она называется собирательной или положительной, в противном случае - рассеивающей или отрицательной. В телескопе самого Галилея объективом служила плосковыпуклая линза, а окуляром - плосковогнутая. По существу, галилеевский телескоп был прообразом современного театрального бинокля, в котором используются двояковыпуклые и двояковогнутые линзы в телескопе Кеплера и объектив и окуляр были положительными двояковыпуклыми линзами

Представим себе простейшую двояковыпуклую линзу, сферические поверхности которой имеют одинаковую кривизну. Прямые, соединяющие центры этих поверхностей, называются оптической осью линзы. Если на такую линзу падают лучи, идущие параллельно оптической оси, они, преломляются в линзе, собираются в точке оптической оси, называемом фокусом линзы. Расстояние от центра линзы до ее фокуса называют фокусным расстоянием

Чем больше фокусное кривизна поверхностей собирательной линзы, тем меньше ее фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета

Иначе ведут себя рассеивающие, отрицательные линзы. Падающий на них параллельно оптической оси пучок они рассеивают и в фокусе такой линзы сходятся не сами лучи, а их продолжение. Поэтому рассеивающие линзы имеют, как говорят, мнимый фокус и дают мнимое изображение

Небесные светила, практически говоря, находятся «в бесконечности», то изображение их получаются в фокальной плоскости, то есть в плоскости, проходящей через фокус F и перпендикулярной к оптической оси. Между фокусом и объективом Галилей поместил рассеивающую линзу, которая давала мнимое, прямое увеличение изображение MN

Главным недостатком галилеевского телескопа было очень малое поле зрения - так называют угловой поперечник кружка неба, видимого в телескоп. Из-за этого наводить телескоп на небесное светило и наблюдать его Галилею было очень трудно. По этой же причине галилеевские телескопы после смерти их изобретателя в астрономии не употреблялись и их реликтом можно считать современные театральные бинокли

В кеплеровском телескопе изображение получается действительное, увеличенное и перевернутое. Последнее обстоятельство, неудобное при наблюдениях земных предметов в астрономии несущественно - ведь в космосе нет какого-то абсолютного верха или низа, а потому небесные тела не могут быть повернуты телескопом «вверх ногами»

Первое из двух главных преимуществ телескопа - это увеличение угла зрения, под которым видим небесные объекты. Человеческий глаз способен в отдельности различать две части предмета, если угловое расстояние между ними не меньше одной минуты дуги. Поэтому, например, на Луне невооруженный глаз различает только крупные детали, поперечник которых превышает 100 км. В благоприятных условиях, когда Солнце затянуто облачной дымкой, на его поверхности удается рассмотреть самые крупные из солнечных пятен. Никаких других подробностей невооруженным глазом на небесных телах не видно. Телескоп же увеличивает угол зрения в десятки и сотни раз

Второе преимущество телескопа по сравнению с глазом заключается в том, что телескоп собирает гораздо больше света, чем зрачок человеческого глаза, имеющий даже в полной темноте диаметр не больше 8 мм. Очевидно, что количество света, собираемого телескопом, во столько раз больше того количества, которое собирает глаз, во сколько площадь объектива больше площади зрачка. Иначе говоря, это отношение равно отношению квадратов диаметров объектива и зрачка

Собранный телескопом свет выходит из его окуляра концентрированным световым пучком. Наименьшее его сечение называется выходным зрачком. У галилеевской трубы выходного зрачка нет. В сущности, выходной зрачок - это изображение объектива, создаваемое окуляром. Можно доказать, что увеличение телескопа (то есть увеличение угла зрения по сравнению с невооруженным глазом) равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра. Казалось бы, можно достичь любых увеличений. Теоретически это так, но практически все выглядит иначе. Во-первых, чем больше употребляемое в телескопе увеличение, тем меньше его поле зренья. Во-вторых, с ростом увеличения становятся все заметней движения воздуха. Неоднородные воздушные струи размазывают, портят изображение и иногда то, что видно при малых увеличениях, пропадает для больших. Наконец, чем больше увеличение, тем бледнее, тусклее изображение небесного светила (например, Луны). Иначе говоря, с ростом увеличения хотя и видно больше подробностей на Луне, солнце и планетах, но зато уменьшается поверхностная яркость их изображений. Есть и другие препятствия, мешающие применять очень большие увеличения (например, в тысячи и десятки тысяч раз). Приходится искать некоторый оптимум и поэтому даже в современных телескопах, как правило, наибольшие увеличения не превосходят нескольких сотен раз

При создании телескопов со времен Галилея придерживаются следующего правила: выходной зрачок телескопа не должен быть больше зрачка наблюдателя. Легко сообразить, что в противном случае часть света, собранного объективом, будет напрасно потеряна. Очень важной величиной, характеризующей объектив телескопа, является его относительное отверстие, то есть отношение диаметра объектива телескопа к его фокусному расстоянию. Светосилой объектива называется квадрат относительного отверстия телескопа. Чем « светосильнее » телескоп, т.е. чем больше светосила его объектива, тем более яркие изображения объектов он дает. Количество же света, собираемого телескопом, зависит лишь от диаметра его объектива (но не от светосилы). Из-за явления, именуемого в оптике дифракцией, при наблюдениях в телескопы яркие звезды кажутся небольшими дисками, окруженными несколькими концентрическими радужными кольцами. Разумеется, к настоящим дискам звезд дифракционные диски никакого отношения не имеют

Таково было скромное начало развернувшегося позже «Чемпионата» телескопов - длительной борьбы за усовершенствование этих главных астрономических инструментов

Схема и устройство оптических телескопов

После того как в 1609 году Галилей впервые направил на небо телескоп, возможности астрономических наблюдений возросли в очень сильной степени. Этот год явился началом новой эры в науке - эры телескопической астрономии. Телескоп Галилея по нынешним понятиям был несовершенным, однако современникам казалось чудом из чудес. Каждый, заглянув в него, мог убедится, что Луна - это сложный мир, во многом подобный Земле, что вокруг Юпитера обращается четыре маленьких спутника, так же как Луна вокруг Земли. Все это будило мысль, заставляло задумываться о сложности Вселенной, ее материальности, о множестве обитаемых миров. Изобретение телескопа вместе с системой Коперника сыграло немалую роль в ниспровержении религиозной идеологии средневековья

Изобретение телескопа, как и большинство великих открытий, не было случайным, оно было подготовлено всем предыдущим ходом развития науки и техники. В XVI веке мастера-ремесленники хорошо научились делать очковые линзы, а отсюда был один шаг до телескопа и микроскопа

Телескоп имеет три основных назначения:

Собирать излучения от небесных светил на приемное устройство (глаз, фотографическую пластинку, спектрограф и др.);

Строить в своей фокальной плоскости изображение объекта или определенного участка неба;

Помочь различать объекты, расположение на близком угловом расстоянии друг от друга и поэтому неразличимые невооруженным глазом

Основной оптической частью телескопа является объектив, который собирает свет и строит изображение объекта или участка неба. Объектив соединяется с приемным устройством- трубой (тубусом). Механическая конструкция, несущая трубу и обеспечивающая ее наведение на небо, называется монтировкой. Если приемником света является глаз (при визуальных наблюдениях), то обязательно необходим окуляр, в который рассматривается изображение, построенное объективом. При фотографических, фотоэлектрических, спектральных наблюдениях окуляр не нужен. Фотографическая пластинка, входная диафрагма электрофотометр, щель спектрографа и т.д. устанавливаются непосредственное в фокальной плоскости телескопа

Телескоп с линзовым объективом называется рефрактором, т.е. преломляющим телескопом. Так как световые лучи различных длин волн преломляются по-разному, то одиночная линза дает окрашенное изображение. Это явление называется хроматической аберрацией. Хроматическая аберрация в значительной мере устранена в объективах, составленных из двух линз, изготовленных из стекол с разным коэффициентом преломления (ахроматический объектив или ахромат)

Законы отражения не зависит от длины волны, и естественно возникла мысль заменить линзовый объектив вогнутым сферическим зеркалом. Такой телескоп называется рефлектором, т.е. отражательным телескопом. Первый рефлектор (диаметром всего лишь в 3 см и длиной в 15 см) был построен ньютоном в 1671 году

Сферическое зеркало не собирает параллельного пучка лучей в точку; оно дает в фокусе несколько разлитое пятнышко. Это искажение называется сферической аберрацией. Если зеркалу придать форму параболоида вращения, то сферическая аберрация исчезает. Параллельный пучок, направленный на такой параболоид вдоль его оси, собирается в фокусе практически без искажений, если не считать неизбежного размытия из-за дифракции. Поэтому современные рефлекторы имеют зеркала параболоидальной или, как чаще говорят, параболической формы

До конца XIX века основной целью телескопических наблюдений было изучение видимых положений небесных светил. Важную роль играли наблюдения комет и деталей на планетных дисках. Все эти наблюдения производились визуально, и рефракторы с двулинзовым объективом полностью удовлетворял потребности астрономов

В конце XIX и особенно в XX веке характер астрономической науки претерпел органические изменения. Центр тяжести исследований переместился в область астрофизики и звездной астрономии. Основным предметом исследования стали физические характеристики Солнца, планет, звезд, звездных систем. Появились новые приемники излучения - фотографическая пластинка и фотоэлемент. Стала широко применяться спектроскопия. В результате изменились и требования к телескопам

Для астрофизических исследований желательно, чтобы оптика телескопа не накладывала никаких ограничений на доступный диапазон длин волн: земная атмосфера и так ограничивает его слишком сильно. Между тем стекло, из которого делаются линзы, поглощает ультрафиолетовое и инфракрасное излучение. Фотографические иммульсии и фотоэлементы чувствительны в более широкой области спектра, чем глаз, и потому хроматическая аберрация при работе с этими приемниками сказывается сильнее

Таким образом, для астрофизических исследований нужен рефлектор. К тому же большое зеркало рефлектора изготовить значительно легче, чем двухлинзовый ахромат: надо обработать с оптической точностью (до 1/8 длины световой волны или 0,07 микрона для визуальных лучей) одну поверхность вместо четырех, и при этом не предъявляется особых требований к однородности стекла. Все это привело к тому, что рефлектор стал основным инструментом астрофизики. В астрометрических работах по-прежнему применяются рефракторы. Причина этого состоит в том, что рефлекторы очень чувствительны к малым случайным поворотам зеркала: так как угол падения равен углу отражения, то поворот зеркала на некоторый угол b смещает изображение на угол 2 b . Аналогичный поворот объектива в рефракторе дает гораздо меньшее смещение. А так как в астрометрии надо измерять положение светил с максимальной точностью, то выбор был сделан в пользу рефракторов

Как уже сказано, рефлектор с параболическим зеркалом строит изображение очень четко, однако тут необходимо сделать одну оговорку. Изображение можно считать идеальным, пока оно остается вблизи оптической оси. При удалении от оси появляются искажения. Поэтому рефлектор с одним толь параболическим зеркалом не позволяет фотографировать больших участков неба размером, скажем, 5 0 x 5 0 , а это необходимо для исследования звездных скоплений, галактик и галактических туманностей. Поэтому, для наблюдений, требующих большого поля зрения, стали строить комбинированные зеркально-линзовые телескопы, в которых аберрация зеркала исправляется тонкой линзой, часто увиолевой (сорт стекла, пропускающего ультрафиолетовые лучи)

Зеркала рефлекторов в прошлом (XVIII - XIX веках) делали металлическими из специального сплава, однако впоследствии по технологическим причинам оптики перешли на стеклянные зеркала, которые после оптической обработки покрывают тонкой пленкой металла, имеющего большой коэффициент отражения (чаще всего алюминий)

Телескоп-рефлектор, приспособленный для наблюдений непосредственно в фокусе параболического зеркала, называется рефлектором с прямым фокусом. Часто используются более сложные системы рефлекторов; например, с помощью дополнительного плоского зеркала, установленного перед фокусом, можно вывести фокус в бок за пределы трубы (ньютоновский фокус). Дополнительным выпуклым пред фокальным зеркалом можно удлинить фокусное расстояние и вывести фокус в отверстие просверленное в центре главного зеркала (кассегреновский фокус), и т.д. некоторые из таких более сложных систем рефлекторов показаны на рисунке. они удобнее для присоединения приемных устройств к телескопу, но из-за дополнительных отражений дают большие потери света

Сложной технической задачей является наведение телескопа на объект и смещение за ним. Современные обсерватории оснащены телескопами диаметром от нескольких десятков сантиметров до нескольких метров. Самый большой в мире рефлектор действовал в советском Союзе. Он имел диаметр 6 м и установлен на высоте 2070 м (гора Пастухова, вблизи станицы Зеленчукской на Северном Кавказе). Следующий по размерам рефлектор имеет диаметр 5 м и находится в США (обсерватория Маунт Паломар)

Монтировка телескопа всегда имеет две взаимно перпендикулярные оси, поворот вокруг которых позволяет навести его в любую область неба. В монтировке, называемой вертикально-азимутальной, одна из осей направлена в зенит, другая лежит в горизонтальной плоскости. На ней монтируются небольшие переносные телескопы. Крупные телескопы, как правило, устанавливаются на экваториальной монтировке, одна из осей которой направлена в полюс мира (полярная ось), а другая лежит в плоскости небесного экватора (ось склонения). Телескоп на экваториальной монтировке называется экваториалом

Чтобы следить за небесным светилом в экваториал, достаточно поворачивать его только вокруг полярной оси в направлении роста часового угла, так как склонение светила остается неизменным. Этот поворот осуществляется автоматически часовым механизмом. Известно несколько типов экваториальной монтировки. Телескопы умеренного диаметра (до 50- 100 см) часто устанавливаются на «немецкой» монтировке, в которой полярная ось и ось склонения образуют параллактическую головку, опирающуюся на колонну. На оси склонения, по одну сторону от колонны, располагается труба, а по другую - уравновешивающий ее груз, противовес. «Английская» монтировка отличается от немецкой тем, что полярная ось опирается концами на две колонны, северную и южную, что придает ей дополнительную устойчивость. Иногда в английской монтировке полярную ось заменяет четырехугольной рамой, так что труба оказывается внутри рамы. Подобная конструкция не позволяет направить инструмент на полярную неба. Если северный (верхний) подшипник полярной оси сделать в форме подковы, то такого ограничения не будет. Наконец, можно вообще убрать северную колонну и подшипник. Тогда получиться «американская» монтировка или «вилка»

Часовой механизм не всегда действует только, и при получении фотографий с длительными экспозициями, достигающими иногда многих часов, приходится следить за правильностью наведения телескопа и время от времени его подправлять. Этот процесс называется гидированием. Гидирование осуществляется с помощью гида - небольшого вспомогательного телескопа, установленного на общей монтировке с главным телескопом

Использование фотографических методов

С середины прошлого века в астрономии стал применяться фотографический метод регистрации излучения. В настоящее время он занимает ведущее место в оптических методах астрономии

Длительные экспозиции на высокочувствительных пластинках позволяют получать фотографии очень слабых объектов, в том числе таких, которые практически недоступны для визуального наблюдения. В отличие от глаза, фотографическая эмульсия способна к длительному накоплению светового эффекта. Очень важным свойством фотографии является панорамность: одновременно регистрируется сложное изображение, которое может состоять из очень большого числа элементов. Существенно, наконец, что информация, которая получается фотографическим методом, не зависит от свой ств гл аза наблюдателя, как это имеет место при визуальных наблюдениях. Фотографическое изображение, полученное однажды, сохраняется как угодно долго, и его можно изучать в лабораторных условиях

Фотографическая эмульсия состоит из зерен галоидного серебра (AgBr , AgCl и др.; в различных сортах эмульсии применяются разные соли), взвешенных в желатине. Под действием света в зернах эмульсии протекают сложные фотохимические процессы, в результате которых выделяется металлическое серебро. Чем больше света поглотилось данным участком эмульсии, тем больше выделяется серебра

Галоидное серебро поглощает свет в области l < 5 0 0 0 Е. Область спектра 3000-5000Е называют иногда фотографической (аналогично визуальной, 3900-7600Е). Чтобы сделать эмульсию чувствительной к желтым и красным лучам, в ней вводят органические красители - сенсибилизаторы, расширяющие область спектральной чувствительности. Панхроматические эмульсии - это сенсибилизированные эмульсии, чувствительные до 6500-7000Е (в зависимости от сорта). Кривые спектральной чувствительности различных эмульсий показаны на рисунке. они широко применяются в астрономической и обычной фотографии. Значительно реже встречаются инфрахроматические эмульсии, чувствительные к инфракрасным лучам до 9000Е, иногда и до 13000Е

Звезды на фотографиях выходят в виде кружков. Чем ярче звезда, тем большего диаметра получается кружочек при данной экспозиции. Различие в диаметрах фотографических изображений звезд является чисто фотографическим эффектом и никак не связан с их истинными угловыми диаметрами. Научной обработке подвергаются, как правило, только сами негативы, так как при перепечатке искажается заключенная в них информация. В астрономии используются как стеклянные пластинки, так и пленки. Пластинки предпочтительнее в тех случаях, когда по негативам изучается относительное положение объектов. Сравнивая между собой фотографии одной и той же части неба, полученные в разные дни, месяцы и годы, можно судить об изменениях, которые в этой области произошли. Так, смещение малых планет и комет (когда они находятся далеко от Солнца и хвост еще не заметен) среди звезд легко обнаруживается при сравнении негативов, полученных с интервалом в несколько суток. Собственные движения звезд, а также отдельны сгустков межзвездного вещества в газовых туманностях изучаются по фотографиям, полученным через большие интервалы времени, иногда достигающие многие десятилетия. Изменение блеска переменных звезд, вспышки новых или сверхновых звезд тоже легко обнаруживается при сравнении негативов, полученных в разные моменты времени

Для исследования подобных изменений используются специальные приборы - стереокомпаратор и блинк-микроскоп. Стереокомпаратор служит для обнаружения перемещений. Он представляет собой своего рода стереоскоп. Обе пластинки, снятые в разное время, располагаются так, что исследователь видит их изображения совмещенными. Если какая-либо звезда заметно сместилась, она «выскочит» из картинной плоскости. Блинк-микроскоп отличаются от стереокомпаратора тем, что специальной заслонкой можно закрывать либо одно, либо другое изображение. Если эту заслонку быстро колебать, то можно сравнивать не только положения, но и величины изображений звезд на обеих пластинках. Изменение положения или изменение звездной величины при этом легко обнаруживаются. Точные измерения положения звезд не пластинках производятся на координатных измерительных приборах

Почернение негатива приблизительно определяется произведением освещенности E на продолжительность экспозиции t . Этот закон называется законом взаимозаместимости. Он выполняется более или менее хорошо лишь в ограниченном интервале освещенности. Для каждого сорта эмульсии, при которых он наиболее эффективен. В частности, очень чувствительные кино- и фотопленки, предназначенные для коротких экспозиций, не пригодны для длительных, применяемые в астрономии

Фотография позволяет проводить фотометрические исследования астрономических объектов, т.е. определять количество их яркость и звездную величину. Для этого необходимо знать зависимость почернения негатива от освещенности - провести калибровку негатива. Чтобы измерить степень почернения, надо пропустить сквозь негатив световой пучок, интенсивность которого регистрируется. Можно выделить три участка или области характеристической кривой: область недодержек, где крутизна кривой уменьшается с уменьшением Et , область нормальной экспозиции, где крутизна максимальная и зависимость почти линейная, и область передержек, где крутизна уменьшается с увеличением Et . При правильно выбранной экспозиции почернение должно соответствовать линейному участку. Чтобы построить характеристическую кривую, на эмульсию впечатывается изображение нескольких (обычно порядка 10) площадок, освещенность которых находится в известном отношении. Эта операция называется калибровкой негатива

Зная характеристическую кривую, можно сравнивать освещенности, соответствующие различным точкам негатива, и в случае протяженных объектов, таких как туманности или планеты, построить их щофоты. Этого достаточно для относительной фотометрии (т.е. измерения отношения яркости и блеска). Для абсолютной фотометрии (т.е. измерение абсолютных значений яркости и блеска) необходимо провести, кроме калибровки, еще и стандартизацию. Для стандартизации надо впечатать на эмульсию изображение площадки с известной яркостью (для протяженных источников) или иметь на негативе звезды с известными звездными величинами. При относительной фотометрии точечных объектов калибровка делается обычно по звездам с известным блеском

Для измерения почернения негатива применяются фотоэлектрические микрофотометры. В этих приборах интенсивность светового пучка, прошедшего сквозь негатив, измеряется фотоэлементом

Главный недостаток фотографической пластинки приемника излучения - это нелинейная зависимость почернения от освещенности. Кроме того, почернение зависит от условий обработки. В результате точность фотометрических измерений, производимых фотографическим методом, обычно не превышает 5-7 %

Спектральные наземные исследования

Рассмотрим основные типы спектральных приборов, применяемых в астрономии. Впервые спектры звезд и планет начал наблюдать в прошлом веке итальянский астроном Секки. После его работ спектральным анализом занялись многие астрономы. Вначале использовались визуальный спектроскоп, потом спектры стали фотографировать, а сейчас применяются также и фотоэлектрическая запись спектра. Спектральные приборы с фотографической регистрацией спектра обычно называют спектрографами, а с фотоэлектрической - спектрометрами

На рисунке дана оптическая схема призменного спектрографа. Перед призмой находятся щель и объектив, которые образуют коллиматор. Коллиматор посылает на призму параллельный пучок лучей. Коэффициент преломления материала призмы зависит от длины волны. Поэтому после призмы параллельные пучки, соответствующие различным длинам волн, расходятся под различными углами, и второй объектив (камера) дает в фокальной плоскости спектр, который фотографируется. Если в фокальной плоскости камеры поставить вторую щель, то спектрограф превратиться в монохроматор. Перемещая вторую щель по спектру или поворачивая призму, можно выделять отдельные более или менее узкие участки спектра. Если теперь за выходной щелью монохроматора поместить фотоэлектрический приемник, то получится спектрометр

В настоящее время наряду с призменными спектрографами и спектрометрами широко применяются и дифракционные. В этих приборах вместо призмы диспергирующим (т.е. разлагающим на спектр) элементом является дифракционная решетка. Наиболее часто используется отражательные решетки

Отражательная решетка представляет собой алюминированое зеркало, на котором нанесены параллельные штрихи. Расстояние между штрихами и их глубина сравнимы с длинной волны. Например, дифракционные решетки, работающие в видимой области спектра, часто делаются с расстоянием между штрихами 1,66 мк (600 штрихов на 1 мм). Штрихи должны быть прямыми и параллельными друг другу по всей поверхности решетки, и расстояние между ними должно сохраняться постоянным с очень высокой точностью. Изготовление дифракционных решеток, поэтому является наиболее трудным из оптических производств

Получая спектр с помощью призмы, мы пользуемся явлением преломления света на границе двух сред. Действий дифракционной решетки основано на явлении другого типа - дифракция и интерференция света. Заметим, что она дает, в отличи и от призмы, не один, а несколько спектров. Это приводит к определенным потерям света по сравнению с призмой. В результате применения дифракционных решеток в астрономии долгое время ограничивалось исследованиями Солнца. Указанный недостаток был устранен американским оптиком Вудом. Он предложил придавать штрихам решетки определенный профиль, такой, что большая часть энергии концентрируется в одном спектре, в то время как остальные оказываются сильно ослабленными. Такие решетки называются направленными или эшелеттами

Особенности оптической схемы и конструкции астрономических спектральных приборов сильно зависит от конкретного характера задач, для которых они предназначены. Спектрографы, построенные для получения звездных спектров (звездные спектрографы), заметно отличаются от небулярных, с которыми исследуются спектры туманностей. Солнечные спектрографы тоже имеют свои особенности. Реальная разрешающая сила астрономических приборов зависит от свойств объекта. Если объект слабый, т.е. от него приходит слишком мало света, то его спектр нельзя исследовать очень детально, так как с увеличением разрешающей силы количество энергии, приходящей на каждый разрешаемый элемент спектра, уменьшается. Поэтому самую высокую разрешающую силу имеют, естественно, солнечные спектральные приборы. У больших солнечных спектрографов она достигает 10 6 . линейная дисперсия этих приборов достигает 10 мм/Е (0,1 Е/мм)

При исследовании наиболее слабых объектов приходится ограничиваться разрешающей силой порядка 100 или даже 10 и дисперсиями ~1000 Е/мм. Например, спектры слабых звезд получаются с помощью объективной призмы, которая является простейшим астрономическим спектральным прибором. Объективная призма ставиться прямо перед объективом телескопа, и в результате изображение звезд растягиваются в спектр. Камерой служит сам телескоп, а коллиматор не нужен, поскольку свет от звезды приходит в виде параллельного пучка. Такая конструкция делает минимальными потери света из-за поглощения в приборе. На рисунке приведена фотография звездного поля, полученная с объективной призмой

Грубое представление о спектральном составе излучения можно получить с помощью светофильтров. В фотографической и визуальной областях спектра часто применяют светофильтры из окрашенного стекла. На рисунке приведены кривые, показывающие зависимость пропускания от длины волны для некоторых светофильтров, комбинируя которые с тем или иным приемником, можно выделить участки не уже нескольких сотен ангстрем. В светофильтрах из окрашенного стекла используется зависимость поглощения (абсорбции) света от длины волны. Светофильтры этого типа называются абсорбционными. Известны светофильтры, в которых выделение узкого участка спектра основано на интерференции света. Они называются интерференционными и могут быть сделаны довольно узкополосными, позволяющими выделять участки спектра шириной в несколько десятков ангстрем. Еще более узкие участки спектра (шириной около 1 ангстрема) позволяют выделять интерференционнополяризационные светофильтры

С помощью узкополосных светофильтров можно получить изображение объекта в каком-либо интересном участке спектра, например, сфотографировать солнечную хромосферу в лучах H a (красная линия в бальмеровской серии спектра водорода), солнечную корону в зеленой и красной линиях, газовые туманности в эмиссионных линиях

Для солнечных исследований разработаны приборы, которые позволяют получить монохроматические изображения в любой длине волны. Это - спектрогелиограф и спектрогелиоскоп. Спектрогелиограф представляет собой монохроматор, за выходной щелью которого находится фотографическая кассета. Кассета движется с постоянной скоростью в направлении, перпендикулярном выходной щели, и с такой же скоростью в плоскости выходной щели перемещается изображение Солнца. Легко понять, что в этом случае на фотографической пластинке получиться изображение Солнца в заданной длине волны, называемое спектрограммой. В спектрогелиоскопе, перед выходной щелью и после выходной щели устанавливаются вращающиеся призмы с квадратным сечением. В результате вращения первой призмы некоторый участок солнечного изображения периодически перемещается в плоскости входной щели. Вращение обеих призм согласованно, и если оно происходит достаточно быстро, то, наблюдая в зрительную трубу вторую щель, мы видим монохроматическое изображение Солнца

Достижения современной оптической астрономии

Использование ПЗУ-матриц ЭВМ

Развитие физики твердого тела и достижения в области твердотельной технологии обеспечили возможность промышленного изготовления стабильных фотоприемников, пригодных для эксплуатации в инфракрасной бортовой оптико-электронной аппаратуре. Успехи в этих областях знаний позволили создать в последние годы линейки и матрицы приемников с высокой плотностью чувствительных элементов

Для формирования выходного сигнала аппаратуры необходимо поочередно измерить электрические сигналы, поступающие с каждого элемента линейки. Можно сказать, должно быть обеспечено последовательное подключение электрических проводников от отдельных элементов к общему выходу

Путем такого «опроса» чувствительных площадок, расположенных в ряд, вырабатывается электрический сигнал, соответствующий одной строке изображения. Процесс переключения электрических цепей чувствительных элементов в аппаратуре осуществляется специальным электронным переключателем последовательного действия. В итоге линейка приемников обеспечивает строчное сканированное изображение электронным, а не механическим способом

В новейших, наиболее перспективных образцах инфракрасной аппаратуры все чаще используются твердотельные схемы, обеспечивающие прием и обработку сигнала с линейки или матрицы в одном устройстве. Первых два коротких сообщения группы американских исследователей об этой новой идее в области физики твердого тела и об ее экспериментальной проверке появились в 1970 году. Приборы с зарядовой связью - так был назван этот класс устройств - привлекали к себе чрезвычайный интерес и за прошедшие после их изобретения годы нашли самое широкое применение в устройствах формирования изображений в вычислительной технике, в устройствах отображения информации

С точки зрения физики приборы с зарядовой связью интересны тем, что электрический сигнал в них представлен не током или напряжением, а электрическим зарядом. Прибор с зарядовой связью представляет собой линейку электродов на изолирующей основе, нанесенной на поверхность тонкой пластины полупроводника. Обычно под металлическими под металлическими электродами расположен изолирующий слой окисла SiO 2 , а в качестве полупроводникового материала используется Si . В результате образуется как бы сэндвич: металл - окисел - полупроводник

В приборах с зарядовой связью появляется возможность, подавая напряжение на металлические электроды, воздействовать через изолятор на положение энергетического уровня, сдвигая его вниз от горизонтальной линии в местах расположения электродов. В итоге на границе раздела Si - SiO 2 энергетическая диаграмма будет представлять собой не ровную, а холмистую поверхность, на которой впадины будут расположены под теми электродами, к которым приложено напряжение

Для наглядности впадины этого рельефа на энергетической диаграмме представляют в виде ямы с плоским дном и вертикальными стенками. Чем выше напряжение на электроде, тем глубже яма под данным электродом в месте его расположения. Когда фотон попадает на чувствительный к излучению Si и создает электронно-дырочную пару, то электрон стекает в ближайшую потенциальную яму. При дальнейшем облучении образца электроны будут накапливаться и сохраняться в соответствующих потенциальных ямах

Для совокупности электронов, захваченных потенциальной ямой, физики также придумали образное название, ставшее общепризнанным, - «зарядовый пакет». Такие зарядовые пакеты в соответствии с изложенным механизмом будут возникать на поверхности полупроводника

Использование спутниковых систем Земли для определения расстояния до звезд

Определение расстояний до тел солнечной системы основано на измерении их горизонтальных параллаксов. Параллаксы, определенные по параллактическому смещению светила, называются тригонометрическими

Подобные документы

    Цель астрофизики – изучение физической природы и эволюции отдельных космических объектов. Оптические телескопы и их использование. История первых наблюдений. Схема и устройство телескопов. Спектральные наземные исследования. Современная астрономия.

    реферат , добавлен 01.07.2008

    Особенности проведения наблюдений и исследования избранных космических объектов в фотометрической системе Джонсона. Определение фотометрических величин оптических источников в условиях городской засветки. Алгоритм выявления таксонометрического класса.

    дипломная работа , добавлен 16.02.2016

    Эволюция Земли в тесном взаимодействии с Солнцем и Луной. Роль и значение луны для жизни на планете Земля. Спектральный анализ как один из основных методов современной астрофизики. Методы поиска различных форм жизни с помощью космических аппаратов.

    презентация , добавлен 08.07.2014

    Астрономия - наиболее древняя среди естественных наук, история ее развития. Изучение видимых движений Солнца и Луны в Древнем Китае за 2 тысячи лет до н.э. Система мира Птолемея. Возникновение науки астрофизики. Современные достижения астрономии.

    презентация , добавлен 05.11.2013

    Классификация спутников Земли, виды космических кораблей и станций. Порядок вычисления круговой орбитальной скорости. Особенности движения спутников вблизи Земли. Характеристика электромагнитных волн. Принципы работы аппаратуры оптических спутников.

    презентация , добавлен 02.10.2013

    Формирование галактик. Неустойчивость, сжатие. Наблюдая эволюцию галактик. Типы галактик. Перерождение галактик. Наша Галактика - это еще не вся Вселенная. Физика и логика эфирной Вселенной. Проблемы современной астрофизики.

    курсовая работа , добавлен 24.10.2002

    Расстояние до квазаров. Красное смещение. Скорость удаления. Возраст квазаров. Необычайная светимость. Источник энергии. Переменность и размер. Инфракрасное и рентгеновское излучение квазаров. Кратные квазары. Радиоструктура квазаров.

    реферат , добавлен 13.04.2003

    Фундаментальные проблемы в астрофизике: космология, ядра галактик, поиск внеземных цивилизаций. Граничные условия, необходимые для существования жизни. Следы жизни на планетах, естественных спутниках планет, астероидах и кометах солнечной системы.

    реферат , добавлен 03.07.2010

    Современное развитие техники наблюдений. Совершенствование спектральной аппаратуры. Снимок чёрной дыры в рентгеновских лучах. Использование специальных фильтров для исследования Солнца. Разработка теории эволюции звёзд на основе ядерных процессов.

    презентация , добавлен 09.02.2014

    Требования к структуре малых космических объектов. Основные элементы корпуса спутника, имеющие соединение с телом ракеты-носителя. Структурно-параметрический синтез универсальной платформы, ее расчет на прочность. Выбор оптимальной формы корпуса аппарата.