Строение скелетной мышцы как органа. Классификация скелетных мышц

  • 17.10.2019

К первым относится вся скелетная мускулатура человека, обеспечивающая возможность выполнения произвольных движений, мышц языка, верхней трети пищевода и некоторые др., мышца сердца (миокард), имеющая свои особенности (состав белков, характер сокращения и др.). К гладким мышцам принадлежат мышечные слои внутренних органов и стенок кровеносных сосудов человека, обеспечивающие возможность выполнения ряда важнейших физиологических функций.

Структурными элементами всех типов мышц являются мышечные волокна . Поперечнополосатые мышечные волокна в скелетных мышцах образуют пучки, соединённые друг с другом прослойками соединительной ткани. Своими концами мышечные волокна сплетаются с сухожильными волокнами, через посредство которых мышечная тяга передаётся на кости скелета. Волокна поперечнополосатых мышц представляют собой гигантские многоядерные клетки, диаметр которых варьирует от 10 до 100 мкм, а длина часто соответствует длине мышц, достигая, например, в некоторых мышцах человека 12 см. Волокно покрыто эластичной оболочкой - сарколеммой и состоит из саркоплазмы, структурными элементами которой являются такие органоиды, как митохондрии, рибосомы, трубочки и пузырьки саркоплазматической сети и так называемые Т-системы, различные включения и т. д. В саркоплазме обычно в форме пучков расположено множество нитевидных образований толщиной от 0,5 до нескольких мкм - миофибрилл, обладающих, как и всё волокно в целом, поперечной исчерченностью. Каждая миофибрилла разделена на несколько сот участков длиной 2,5-3 мкм, называемых саркомерами. Каждый саркомер, в свою очередь, состоит из чередующихся участков - дисков, обладающих неодинаковой оптической плотностью и придающих миофибриллам и мышечному волокну в целом характерную поперечную исчерченность, чётко обнаруживаемую при наблюдении в фазовоконтрастном микроскопе. Более тёмные диски обладают способностью к двойному лучепреломлению и называются анизотропными, или дисками А. Более светлые диски не обладают этой способностью и называются изотропными, или дисками I. Среднюю часть диска А занимает зона более слабого двойного лучепреломления - зона Н. Диск I делится на 2 равные части тёмной Z-пластинкой, отграничивающей один саркомер от другого. В каждом саркомере имеется два типа нитей (филаментов), состоящих из мышечных белков: толстые миозиновые и тонкие - актиновые. Несколько иную структуру имеют гладкие мышечные волокна. Они представляют собой веретенообразные одноядерные клетки, лишённые поперечной исчерченности. Длина их обычно достигает 50-250 мкм (в матке - до 500 мкм), ширина - 4-8 мкм; миофиламенты в них обычно не объединены в обособленные миофибриллы, а расположены по длине волокна в виде множества одиночных актиновых нитей. Упорядоченная система миозиновых нитей в гладкомышечных клетках отсутствует. В гладкой мускулатуре моллюсков наиболее важную роль в осуществлении запирательной функции играют, по-видимому, парамиозиновые волокна (тропомиозин А).

Химический состав мышц колеблется в зависимости от типа и функционального состояния мышцы и ряда др. факторов. Основные вещества, входящие в состав поперечнополосатых мышц человека и их содержание (в % к сырой массе) представлены ниже:

  • Вода 72-80
  • Плотные вещества 20-28

В том числе:

  • Белки 16,5-20,9
  • Гликоген 0,3-3,0
  • Фосфатиды 0,4-1,0
  • Холестерин 0,06-0,2
  • Креатин + креатинфосфат 0,2-0,55
  • Креатинин 0,003-0,005
  • АТФ 0,25-0,4
  • Карнозин 0,2-0,3
  • Карнитин 0,02-0,05
  • Анзерин 0,09-0,15
  • Свободные аминокислоты 0,1-0,7
  • Молочная кислота 0,01-0,02
  • Зола 1,0-1,5

В среднем около 75% сырой массы мышцы составляет вода. Основное количество плотных веществ приходится на долю белков. Различают белки миофибриллярные (сократительные) - миозин, актин и их комплекс - актомиозин, тропомиозин и ряд так называемых минорных белков (a и b-актинины, тропонин и др.), и саркоплазматические - глобулины X, миогены, дыхательные пигменты, в частности миоглобин, нуклеопротеиды и ферменты, участвующие в процессах обмена веществ в мышцах. Из др. соединений важнейшими являются экстрактивные, принимающие участие в обмене веществ и осуществлении сократительной функции мышц: АТФ, фосфокреатин, карнозин, анзерин и др.; фосфолипиды, играющие важную роль в образовании клеточных микроструктур и в обменных процессах; безазотистые вещества: гликоген и продукты его распада (глюкоза, молочная кислота и др.), нейтральные жиры, холестерин и др.; минеральные вещества - соли К, Na, Ca, Mg. Гладкие мышцы существенно отличаются по химическому составу от поперечнополосатых (более низкое содержание контрактальных белков - актомиозина, макроэргических соединений, дипептидов и др.).

Функциональные особенности поперечнополосатых мышц. Поперечнополосатые мышцы богато снабжены различными нервами, с помощью которых осуществляется регуляция мышечной деятельности со стороны нервных центров. Важнейшие из них: двигательные нервы, проводящие к мышцам импульсы, вызывающие её возбуждение и сокращение; чувствительные нервы, по которым от мышцы к нервным центрам поступает информация о её состоянии, и, наконец, адаптационно-трофические волокна симпатической нервной системы, воздействующие на обмен веществ и замедляющие развитие утомления мышц.

Каждая веточка двигательного нерва, иннервирующего целую группу мышечных волокон, образующих так называемую моторную единицу, доходит до отдельного мышечного волокна. Все мышечные волокна, входящие в состав такой единицы, сокращаются при возбуждении практически одновременно. Под влиянием нервного импульса в окончаниях двигательного нерва высвобождается медиатор - ацетилхолин, взаимодействующий с холинорецептором постсинаптической мембраны (синапсы). В результате этого происходит повышение проницаемости мембраны для ионов Na и К, что, в свою очередь, обусловливает её деполяризацию (появление постсинаптического потенциала). После этого на соседних участках мембраны мышечного волокна возникает волна возбуждения (волна электроотрицательности), которая распространяется по скелетному мышечному волокну обычно со скоростью несколько метров в 1 сек. В результате возбуждения мышца изменяет свои эластические свойства. Если точки прикрепления мышцы не фиксированы неподвижно, происходит её укорочение (сокращение). При этом мышца производит определённую механическую работу. Если точки прикрепления мышцы неподвижны, в ней развивается напряжение. Между возникновением возбуждения и появлением волны сокращения или волны напряжения протекает некоторое время, называемое латентным периодом. Сокращение мышцы сопровождается выделением тепла, которое продолжается в течение определённого времени и после их расслабления.

В мышцах человека установлено существование "медленных" мышечных волокон (к ним принадлежат "красные", содержащие дыхательный пигмент миоглобин) и "быстрых" ("белых", не имеющих миоглобина), различающихся скоростью проведения волны сокращения и её продолжительностью. В "медленных" волокнах длительность волны сокращения примерно в 5 раз больше, а скорость проведения в 2 раза меньше, чем в "быстрых" волокнах. Почти все скелетные мышцы относятся к смешанному типу, т.е. содержат как "быстрые", так и "медленные" волокна. В зависимости от характера раздражения возникает либо одиночное - фазное - сокращение мышечных волокон, либо длительное - тетаническое. Тетанус возникает в случае поступления в мышцу серии раздражений с такой частотой, при которой каждое последующее раздражение ещё застает мышцу в состоянии сокращения, вследствие чего происходит суммирование сократительных волн. Н.Е. Введенский установил, что увеличение частоты раздражений вызывает возрастание тетануса, но лишь до известного предела, называемого им "оптимумом". Дальнейшее учащение раздражений уменьшает тетаническое сокращение (пессимум). Развитие тетануса имеет большое значение при сокращении "медленных" мышечных волокон. В мышцах с преобладанием "быстрых" волокон максимальное сокращение - обычно результат суммации сокращений всех моторных единиц, в которые нервные импульсы поступают, как правило, не одновременно, асинхронно.

В поперечнополосатых мышцах установлено также существование так называемых чисто тонических волокон. Тонические волокна участвуют в поддержании "неутомляемого" мышечного тонуса. Тоническим сокращением называется медленно развивающееся слитное сокращение, способное длительно поддерживаться без значительных энергетических затрат и выражающееся в "неутомляемом" противодействии внешним силам, стремящимся растянуть мышечный орган. Тонические волокна реагируют на нервный импульс волной сокращения лишь локально (в месте раздражения). Тем не менее, благодаря большому числу концевых двигательных бляшек тоническое волокно может возбуждаться и сокращаться всё целиком. Сокращение таких волокон развивается настолько медленно, что уже при весьма малых частотах раздражения отдельные волны сокращения накладываются друг на друга и сливаются в длительно поддерживающееся укорочение. Длительное противодействие тонических волокон, а также медленных фазных волокон растягивающим усилиям обеспечивается не только упругим напряжением, но и возрастанием вязкости мышечных белков.

Для характеристики сократительной функции мышц пользуются понятием "абсолютной силы" , которая является величиной, пропорциональной сечению мышцы , направленной перпендикулярно её волокнам, и выражается в кг/см2. Так, например, абсолютная сила двуглавой мышцы человека равна 11,4, икроножной - 5,9 кг/см2.

Систематическая усиленная работа мышц (тренировка) увеличивает их массу, силу и работоспособность. Однако чрезмерная работа приводит к развитию утомления, т.е. к падению работоспособности мышцы. Бездеятельность мышцы ведет к их атрофии.

Функциональные особенности гладких мышц

Гладкие мышцы внутренних органов по характеру иннервации, возбуждения и сокращения существенно отличаются от скелетных мышц. Волны возбуждения и сокращения протекают в гладких мышцах в очень замедленном темпе. Развитие состояния "неутомляемого" тонуса гладких мышц связано, как и в тонических скелетных волокнах, с замедленностью сократительных волн, сливающихся друг с другом даже при редких ритмических раздражениях. Для гладких мышц характерна также способность к автоматизму, т.е. к деятельности, не связанной с поступлением в мышцу нервных импульсов из центральной нервной системы. Установлено, что способностью к ритмическому самопроизвольному возбуждению и сокращению обладают не только нервные клетки, имеющиеся в гладких мышцах, но и сами гладкомышечные клетки.

Существенное значение для организма имеет способность гладких мышц изменять длину без повышения напряжения (наполнение полых органов, например мочевого пузыря, желудка и др.).

Скелетные мышцы человека

Скелетные мышцы человека, различные по форме, величине, положению,составляют свыше 40% массы его тела. При сокращении происходит укорочение мышцы, которое может достигать 60% их длины; чем длиннее мышца (самая длинная мышца тела портняжная достигает 50 см), тем больше размах движении. Сокращение куполообразной мышцы (например, диафрагмы) обусловливает ее уплощение, сокращение кольцеобразных мышц (сфинктеров) сопровождается сужением или закрытием отверстия. Мышцы радиального направления, наоборот, вызывают при сокращении расширение отверстий. Если мышцы расположены между костными выступами и кожей, их сокращение обусловливает изменение кожного рельефа.

Все скелетные, или соматические (от греч. soma - тело), мышцы по топографо-анатомическому принципу могут быть разделены на мышцы головы, среди которых различают мимические и жевательные мышцы, воздействующие на нижнюю челюсть, мышцы шеи, туловища и конечностей. Мышцы туловища покрывают грудную клетку, составляют стенки брюшной полости, вследствие чего их делят на мышцы груди, живота и спины. Расчленённость скелета конечностей служит основанием для выделения соответствующих групп мышц: для верхней конечности - это мышцы плечевого пояса, плеча, предплечья и кисти; для нижней конечности - мышцы тазового пояса, бедра, голени, стопы.

У человека около 500 мышц, связанных со скелетом. Среди них одни крупные (например, четырёхглавая мышца бедра), другие - мелкие (например, короткие мышцы спины). Совместная работа мышц выполняется по принципу синергизма, хотя отдельные функциональные группы мышц при выполнении определенных движений работают как антагонисты. Так, спереди на плече находятся двуглавая и плечевая мышцы, выполняющие сгибание предплечья в локтевом суставе, а сзади располагается трёхглавая мышца плеча, сокращение которой вызывает противоположное движение - разгибание предплечья.

В суставах шаровидной формы происходят простые и сложные движения. Например, в тазобедренном суставе сгибание бедра вызывает пояснично-подвздошная мышца, разгибание - большая ягодичная. Бедро отводится при сокращении средней и малой ягодичных мышц, а приводится с помощью пяти мышц медиальной группы бедра. По окружности тазобедренного сустава локализуются также мышцы, которые обусловливают вращение бедра внутрь и наружу.

Наиболее мощные мышцы размещаются на туловище. Это мышцы спины - выпрямитель туловища, мышцы живота, составляющие у человека особую формацию - брюшной пресс. В связи с вертикальным положением тела мышцы нижней конечности человека стали более сильными, поскольку, кроме участия в локомоции, они обеспечивают опору тела. Мышцы верхней конечности в процессе эволюции, напротив, сделались более ловкими, гарантирующими выполнение быстрых и точных движений.

На основе анализа пространственного положения и функциональной деятельности мышц современная наука пользуется также следующим их объединением: группа мышц, осуществляющая движения туловища, головы и шеи; группа мышц, осуществляющая движения плечевого пояса и свободной верхней конечности; мышцы нижней конечности. В пределах этих групп выделяются более мелкие ансамбли.

Патология мышц

Нарушения сократительной функции мышц и их способности к развитию и поддержанию тонуса наблюдаются при гипертонии, инфаркте миокарда, миодистрофии, атонии матки, кишечника, мочевого пузыря, при различных формах параличей (например, после перенесенного полиомиелита) и др. Патологические изменения функций мышечных органов могут возникать в связи с нарушениями нервной или гуморальной регуляции, повреждениями отдельных мышц или их участков (например, при инфаркте миокарда) и, наконец, на клеточном и субклеточном уровнях. При этом может иметь место нарушение обмена веществ (прежде всего ферментной системы регенерации макроэргических соединений - главным образом АТФ) или изменение белкового сократительного субстрата. Указанные изменения могут быть обусловлены недостаточным образованием мышечных белков на почве нарушения синтеза соответствующих информационных, или матричных, РНК, т.е. врождённых дефектов в структуре ДНК хромосомного аппарата клеток. Последняя группа заболеваний, таким образом, относится к числу наследственных заболеваний.

Саркоплазматические белки скелетных и гладких мышц представляют интерес не только с точки зрения возможного участия их в развитии вязкого последействия. Многие из них обладают ферментативной активностью и участвуют в клеточном метаболизме. При повреждении мышечных органов, например при инфаркте миокарда или нарушении проницаемости поверхностных мембран мышечных волокон, ферменты (креатинкиназа, лактатдегидрогеназа, альдолаза, аминотрансферазы и др.) могут выходить в кровь. Таким образом, определение активности этих ферментов в плазме крови при ряде заболеваний (инфаркт миокарда, миопатии и др.) представляет серьёзный клинический интерес.

Физиология двигательного аппарата.

ЛЕКЦИЯ № 15

Потребность организма в кислороде

При многих состояниях, включая упомянутые выше, кислород назначается в лечебных целях. В тех случаях, когда поступление О 2 прекращается более чем на 4 минуты, в мозге происходят необратимые изменения и человек умирает. Подобная ситуация возникает, например, когда ребенок, играя с полиэтиленовым пакетом, надевает его себе на голову и задыхается. Если поступление СО 2 только уменьшается, может развиваться гипоксия мозга . Обычно это происходит с людьми, работающими в ограниченном пространстве (трюмах, цистернах, котлах). В этих условиях они быстро используют имеющийся в распоряжении воздух и могут погибнуть от аноксии , если их дополнительно не обеспечить кислородом или не вывести на свежий воздух.

При недостатке кислорода кровь теряет присущий ей ярко красный цвет и приобретает голубоватый оттенок. Одновременно губы пациента, ушные раковины и конечности становятся цианотическими , то есть синюшного цвета.


У человека существует три вида мышц (Рис. 32):

Ø поперечно-полосатые скелетные мышцы составляют 30-35% массы тела и имеют площадь около 3 м 2 . Целая мышца – отдельный орган, а мышечное волокно – отдельная клетка (Рис. 33);

Ø особая поперечно-полосатая сердечная мышца;

Ø гладкие мышцы внутренних органов.

Рис. 32. Виды мышечной ткани: I- продольный разрез; II- поперечный срез; А - гладкая (неисчерченная); Б - поперечнополосатая скелетная; В - поперечнополосатая сердечная

Мышцы иннервируются тремя способами:

Ø двигательными нервами, которые передают из центра моторные команды;

Ø чувствительными нервами, информация по которым передается в центр о напряжении и движении мышц;

Ø симпатическими нервными волокнами, которые влияют на обменные процессы в мышцах.

Функции скелетных мышц:

– перемещение частей тела друг относительно друга, фиксация внутренностей;

– перемещение тела в пространстве (локомоция);

– поддержание позы;

– участите в обмене веществ, терморегуляции и поддержания тонуса нервной и сердечно-сосудистой систем.

Рис. 33. Схема скелетной мышцы: А - мышечные волокна прикреплены к сухожилиям; Б- отдельное волокно, состоящее из миофибрилл; В- отдельная миофибрилла: чередование светлых актиновых I-дисков и темных миозиновых А-дисков; наличие Н-зоны и М-линии; Г- попе­речные мостики между толстыми миозиновыми и тонкими актиновыми нитями

Функциональной единицей скелетной мышцы является двигательная единица, которая состоит из мотонейрона спинного мозга, его аксона (двигательного нерва) с многочисленными окончаниями, и иннервируемых им мышечных волокон. Возбуждение мотонейрона вызывает одновременное сокращение всех входящих в эту единицу мышечных волокон. Двигательные единицы (ДЕ) небольших мышц содержат мало мышечных волокон (ДЕ глазного яблока 3-6 волокон), ДЕ крупных мышц туловища и конечностей – около 2000 волокон.


Мышечное волокно представляет собой вытянутую клетку длиной 10-12 см (длина мышечного волокна обычно равна длине самой мышцы), диаметр волокна около 10-100 мкм. В состав мышечного волокна входит (Рис. 33):

· Оболочка – сарколемма.

· Жидкое содержимое – саркоплазма.

· Митохондрии – энергетические центры клетки.

· Рибосомы – белковые депо.

· Миофибриллы (фибриллы) – сократительные элементы, кторые состоят из 2 видов белков (тонкие нити актина и вдвое более толстые нити миозина). Миофибриллы разделены Z – мембранами (или Z – линиями) на отдельные участки – саркомеры, в средней части которых расположены преимущественно миозиновые нити (толстые филаменты), а актиновые нити (тонкие филаменты) прикреплены к Z – мембранам по бокам саркомера (разная способность преломлять свет у актина и миозина создает в состоянии покоя мышцы поперечно-полосатый вид в световом микроскопе). Темные участки называются А-диски, светлые I-диски. В средней части А-диска есть более светлый участок – Н-зона. В покоящейся мышце в Н-зоне нет тонких филаментов, а в I-диске нет толстых.

· Саркоплазматический ретикулум – замкнутая система продольных трубочек и цистерн, расположенных вдоль миофибрилл и содержащих ионы Са 2+

Толстые филаменты состоят примерно из 400 молекул миозина (закрученных друг относительно друга), который имеет вид палочковидной молекулы с утолщенным концом – головкой (Рис. 33, Г).

Тонкие филаменты образованы тремя белками (Рис. 34):

- актин – глобулярный белок, который образует спиральный двухнитевой полимер, состоящий из 13-14 молекул;

- тропомиозин – палочковидная молекула, которая располагается в желобке двойной спирали актина, длина молекулы тропомиозина равна длине 7 мономеров актина

- тропонин – сферическая молекула состоит из 3 субъединиц (ТнС, ТнТ, ТнI): Са-связывающая, тропомиозинсвязывающая и ингибирующая.

Анатомия мышц человека, их строение и развитие, пожалуй, можно назвать той самой наиболее актуальной темой, которая вызывает максимальный общественный интерес к культуризму. Стоит ли говорить о том, что именно строение, работа и функции мышц это та тема, которой персональный тренер должен уделять особое внимание. Как и в изложении других тем, введение в курс мы начнем с детального изучения анатомии мышц, их строения, классификации, работы и функций.

Ведение здорового образа жизни, правильное питание и систематическая физическая активность способствуют развитию мускулатуры и снижению уровня жира в организме. Строение и работы мышц человека будут понятны лишь при последовательном изучении сначала скелета человека и только затем мышц. И теперь, когда из статьи мы знаем, что он, в том числе выполняет функцию каркаса для крепления мышц, настало самое время изучить, какие же основные группы мышц формируют тело человека, где они находятся, как они выглядят и какие функции выполняют.

Выше вы можете видеть, как выглядит строение мышц человека на фото (3D модель). Сначала рассмотрим мускулатуру тела мужчины с терминами, применяемыми к бодибилдингу, затем мускулатуру тела женщины. Забегая наперед, стоит заметить, что строение мышц у мужчин и женщин принципиальных отличий не имеет, мускулатура тела практически полностью сходна.

Анатомия мышц человека

Мышцами называются органы тела, которые формирует эластичная ткань, и активность которой регулируется нервными импульсами. Функции мышц – это в том числе, движение и перемещение в пространстве частей тела человека. Полноценное их функционирование непосредственно влияет на физиологическую активность множества процессов в организме. Работа мышц регулируется нервной системой. Она способствует их взаимодействию с головным и спинным мозгом, а также участвует в процессе преобразования химической энергии в механическую. Тело человека формирует порядка 640 мышц (различные методы подсчета дифференцированных групп мышц, определяют их число от 639 до 850). Ниже приведено строение мышц человека (схема) на примере мужского и женского тела.

Строение мышц мужчины, вид спереди: 1 – трапеции; 2 – передняя зубчатая мышца; 3 – наружные косые мышцы живота; 4 – прямая мышца живота; 5 – портняжная мышца; 6 – гребенчатая мышца; 7 – длинная приводящая мышца бедра; 8 – тонкая мышца; 9 – напрягатель широкой фасции; 10 – большая грудная мышца; 11 – малая грудная мышца; 12 – передняя головка плеча; 13 – средняя головка плеча; 14 – брахиалис; 15 – пронатор; 16 – длинная головка бицепса; 17 – короткая головка бицепса; 18 – длинная ладонная мышца; 19 – экстензорная мышца запястья; 20 – длинная приводящая мышца запястья; 21 – длинный сгибатель; 22 – лучевой сгибатель запястья; 23 – плечелучевая мышца; 24 – латеральная мышца бедра; 25 – медиальная мышца бедра; 26 – прямая мышца бедра; 27 – длинная малоберцовая мышца; 28 – длинный разгибатель пальцев; 29 – передняя большеберцовая мышца; 30 – камбаловидная мышца; 31 – икроножная мышца

Строение мышц мужчины, вид сзади: 1 – задняя головка плеча; 2 – малая круглая мышца; 3 – большая круглая мышца; 4 – подостная мышца; 5 – ромбовидная мышца; 6 – экстензорная мышца запястья; 7 – плечелучевая мышца; 8 – локтевой сгибатель запястья; 9 – трапециевидная мышца; 10 – прямая остистая мышца; 11 – широчайшая мышца; 12 – грудопоясничная фасция; 13 – бицепс бедра; 14 – большая приводящая мышца бедра; 15 – полусухожильная мышца; 16 – тонкая мышца; 17 – полуперепончатая мышца; 18 – икроножная мышца; 19 – камбаловидная мышца; 20 – длинная малоберцовая мышца; 21 – мышца отводящая большой палец стопы; 22 – длинная головка трицепса; 23 – латеральная головка трицепса; 24 – медиальная головка трицепса; 25 – наружные косые мышцы живота; 26 – средняя ягодичная мышца; 27 – большая ягодичная мышца

Строение мышц женщины, вид спереди: 1 – лопаточно подъязычная мышца; 2 – грудинно-подъязычная мышца; 3 – грудинно-ключично-сосцевидная мышца; 4 – трапециевидная мышца; 5 – малая грудная мышца (не видна); 6 – большая грудная мышца; 7 – зубчатая мышца; 8 – прямая мышца живота; 9 – наружная косая мышца живота; 10 – гребенчатая мышца; 11 – портняжная мышца; 12 – длинная приводящая мышца бедра; 13 – напрягатель широкой фасции; 14 – тонкая мышца бедра; 15 – прямая мышца бедра; 16 – промежуточная широкая мышца бедра (не видна); 17 – латеральная широкая мышца бедра; 18 – медиальная широкая мышца бедра; 19 – икроножная мышца; 20 – передняя большеберцовая мышца; 21 – длинный разгибатель пальцев стопы; 22 – длинная большеберцовая мышца; 23 – камбаловидная мышца; 24 – передний пучок дельт; 25 – средний пучок дельт; 26 – плечевая мышца брахиалис; 27 – длинный пучок бицепса; 28 – короткий пучок бицепса; 29 – плечелучевая мышца; 30 – лучевой разгибатель запястья; 31 – круглый пронатор; 32 – лучевой сгибатель запястья; 33 – длинная ладонная мышца; 34 – локтевой сгибатель запястья

Строение мышц женщины, вид сзади: 1 – задний пучок дельт; 2 – длинный пучок трицепса; 3 – латеральный пучок трицепса; 4 – медиальный пучок трицепса; 5 – локтевой разгибатель запястья; 6 – наружная косая мышца живота; 7 – разгибатель пальцев; 8 – широкая фасция; 9 – бицепс бедра; 10 – полусухожильная мышца; 11 – тонкая мышца бедра; 12 – полуперепончатая мышца; 13 – икроножная мышца; 14 – камбаловидная мышца; 15 – короткая малоберцовая мышца; 16 – длинный сгибатель большого пальца; 17 – малая круглая мышца; 18 – большая круглая мышца; 19 – подостная мышца; 20 – трапециевидная мышца; 21 – ромбовидная мышца; 22 – широчайшая мышца; 23 – разгибатели позвоночника; 24 – грудопоясничная фасция; 25 – малая ягодичная мышца; 26 – большая ягодичная мышца

Мышцы отличаются довольно разнообразной формой. Мышцы, имеющие общее сухожилие, но обладающие двумя или более головками, называются двухглавыми (бицепс), трехглавыми (трицепс) или четырехглавыми (квадрицепс). Функции мышц так же довольно разнообразны, это сгибатели, разгибатели, отводящие, приводящие, вращатели (кнутри и кнаружи), поднимающие, опускающие, выпрямляющие и другие.

Типы мышечной ткани

Характерные черты строения позволяют классифицировать мышцы человека по трем типам: скелетные, гладкие и сердечную.

Типы мышечной ткани человека: I- скелетные мышцы; II- гладкие мышцы; III- сердечная мышца

  • Скелетные мышцы. Сокращение данного типа мышц полностью контролируется человеком. Объединенные со скелетом человека, они образуют опорно-двигательный аппарат. Скелетными данный тип мышц называют именно по причине их крепления к костям скелета.
  • Гладкие мышцы. Данный тип ткани присутствует в составе клеток внутренних органов, кожи и кровеносных сосудов. Строение гладких мышц человека подразумевает их нахождение по большей части в стенках полых внутренних органов, таких как пищевод или мочевой пузырь. Также они играют важную роль в процессах, не контролируемых нашим сознанием, например в моторике кишечника.
  • Сердечная мышца (миокард). Работу данной мышцы контролирует вегетативная нервная система. Ее сокращения не контролируются сознанием человека.

Поскольку сокращение гладкой и сердечной мышечной ткани не контролируется сознанием человека, акцент в данной статье мы сосредоточим именно на скелетных мышцах и подробном их описании.

Строение мышц

Мышечное волокно является структурным элементом мышц. По отдельности, каждое из них представляет собой не только клеточную, но и физиологическую единицу, которая способна сокращаться. Мышечное волокно имеет вид многоядерной клетки, диаметр волокна находится в диапазоне от 10 до 100 мкм. Эта многоядерная клетка находится в оболочке, называемой сарколеммой, которая в свою очередь наполнена саркоплазмой, а уже в саркоплазме находятся миофибриллы.

Миофибрилла представляет собой нитевидное образование, которое состоит из саркомеров. В толщину миофибриллы, как правило, составляют менее 1 мкм. С учетом количества миофибрилл, обычно различают белые (они же – быстрые) и красные (они же – медленные) мышечные волокна. Белые волокна содержат больше миофибрилл, но меньше саркоплазмы. Именно по этой причине они сокращаются быстрее. Красные волокна содержат много миоглобина, потому и получили такое название.

Внутреннее строение мышцы человека: 1 – кость; 2 – сухожилие; 3 – мышечная фасция; 4 – скелетная мышца; 5 – фиброзная оболочка скелетной мышцы; 6 – соединительно-тканная оболочка; 7 – артерии, вены, нервы; 8 – пучок; 9 – соединительная ткань; 10 – мышечное волокно; 11 – миофибрилла

Работа мышц характерна тем, что способность быстрее и сильнее сокращаться, свойственна именно белым волокнам. Они могут развивать усилие и скорость сокращения в 3-5 раз выше, чем медленные волокна. Физическая активность анаэробного типа (работа с отягощениями) выполняется преимущественно быстрыми мышечными волокнами. Длительная аэробная физическая активность (бег, плавание, велосипед) выполняется преимущественно медленными мышечными волокнами.

Медленные волокна более устойчивы к утомлению, в то же время, быстрые волокна к продолжительной физической активности не приспособлены. Что касается соотношения быстрых и медленных мышечных волокон в мышцах человека, то их количество примерно одинаково. У большей части обоих полов, порядка 45-50% мышц конечностей составляют медленные мышечные волокна. Сколько ни будь значительных половых различий в соотношении различных типов мышечных волокон у мужчин и женщин нет. Их соотношение формируется в начале жизненного цикла человека, иными словами является генетически запрограммированным и до самой старости практически не меняется.

Саркомеры (составные компоненты миофибрилл) формируются толстыми миозиновыми нитями и тонкими актиновыми нитями. Остановимся на них более детально.

Актин – белок, являющийся структурным элементом цитоскелета клеток и обладающий способностью сокращаться. Состоит из 375 остатков аминокислот, и составляет порядка 15% мышечного белка.

Миозин – главный компонент миофибрилл – сократительных волокон мышц, где его содержание может составлять порядка 65%. Молекулы сформированы двумя полипептидными цепочками, каждая из которых содержит около 2000 аминокислот. Каждая из таких цепочек имеет на конце так называемую головку, которая включает две маленькие цепочки, состоящие из 150-190 аминокислот.

Актомиозин – комплекс белков, сформированный из актина и миозина.

ФАКТ. По большей части, мышцы состоят из воды, белков и прочих компонентов: гликогена, липидов, азотсодержащих веществ, солей и т. д. Содержание воды колеблется в диапазоне 72-80% от общей массы мышц. Скелетная мышца состоит из большого количества волокон, и что характерно, чем их больше, тем мышца сильнее.

Классификация мышц

Мышечная система человека характерна разнообразием формы мышц, которые в свою очередь делятся на простые и сложные. Простые: веретенообразные, прямые, длинные, короткие, широкие. К сложным можно отнести многоглавые мышцы. Как мы уже говорили, если у мышц общее сухожилие, а головок две или больше, то их называют двухглавыми (бицепс), трехглавыми (трицепс) или четырехглавыми (квадрицепс), так же к многоглавым относятся многосухожильные и двубрюшные мышцы. К сложным относятся и следующие типы мышц с определенной геометрической формой: квадратные, дельтовидные, камбаловидные, пирамидальные, круглые, зубчатые, треугольные, ромбовидные, камбаловидные.

Основные функции мышц это сгибание, разгибание, отведение, приведение, супинация, пронация, поднятие, опускание, выпрямление и не только. Под термином супинация подразумевается вращение кнаружи, а под термином пронация – вращение кнутри.

По направлению волокон мышцы делят на: прямые, поперечные, круговые, косые, одноперистые, двуперистые, многоперистые, полусухожильные и полуперепончатые.

По отношению к суставам , учитывая число суставов, через которые они перекидываются: односуставные, двусуставные и многосуставные.

Работа мышц

В процессе сокращения нити актина проникают глубоко в промежутки между нитями миозина, причём длина обеих структур не меняется, а лишь сокращается общая длина актомиозинового комплекса – такой способ сокращения мышц называется скользящим. Скольжение актиновых нитей вдоль миозиновых нуждается в энергии, а энергия, необходимая для сокращения мышц, освобождается в результате взаимодействия актомиозина с АТФ (аденозинтрифосфат). Кроме АТФ важную роль в сокращении мышц играет вода, а также ионы кальция и магния.

Как уже говорилось, работа мышц полностью контролируется нервной системой. Это говорит о том, что их работой (сокращением и расслаблением) можно управлять сознательно. Для нормального и полноценного функционирования организма и передвижения его в пространстве, мышцы работают группами. Большая часть мышечных групп тела человека работает в парах, и выполняют противоположные функции. Выглядит это таким образом, что когда мышца «агонист» сокращается, мышца «антагонист» растягивается. То же справедливо и наоборот.

  • Агонист – мышца, выполняющая определенное движение.
  • Антагонист – мышца, выполняющая противоположное движение.

Мышцы обладают такими свойствами: эластичность, растяжение, сокращение. Эластичность и растяжение дают мышцам возможность меняться в размере и возвращаться к исходному состоянию, третье качество дает возможность создать усилие на ее концах и приводить к укорачиванию.

Нервное стимулирование может вызвать следующие типы мышечного сокращения: концентрическое, эксцентрическое и изометрическое. Концентрическое сокращение возникает в процессе преодоления нагрузки при выполнении заданного движения (подъем вверх при подтягиваниях на перекладине). Эксцентрическое сокращение возникает в процессе замедления движений в суставах (опускание вниз при подтягиваниях на перекладине). Изометрическое сокращение возникает в момент, когда усилие создаваемое мышцами равно нагрузке оказываемой на них (удержание корпуса в висе на перекладине).

Функции мышц

Зная, как называется и где находится та или иная мышца или группа мышц мы можем перейти к изучению блока – функции мышц человека. Ниже в таблице мы рассмотрим самые основные мышцы, которые тренируются в зале. Как правило, тренингу подвергаются шесть основных мышечных групп: грудь, спина, ноги, плечи, руки и пресс.

ФАКТ. Самая большая и самая сильная мышечная группа в теле человека это ноги. Самая большая мышца – ягодичная. Самая сильная – икроножная, она может удерживать вес до 150 кг.

Заключение

В данной статье мы рассмотрели такую сложную и объемную тему, как строение и функции мышц человека. Говоря о мышцах, мы конечно же подразумеваем и мышечные волокна, а вовлечение в работу мышечных волокон предполагает взаимодействие с ними нервной системы, поскольку выполнению мышечной активности предшествует иннервация двигательных нейронов. Именно по этой причине, в нашей следующей статье мы перейдем к рассмотрению строения и функций нервной системы.

Мышечная ткань признана доминантной тканью человеческого организма, удельный вес которой в общем весе человека составляет до 45 % у мужчин и до 30 % у представительниц прекрасного пола. Мускулатура включает разнообразные мышцы. Виды мышц насчитывают более шестисот наименований.

Значение мышц в организме

Мышцы играют крайне важную роль в любом живом организме. С их помощью приводится в движение опорно-двигательный аппарат. Благодаря работе мышц человек, как другие живые организмы, может не только ходить, стоять, бегать, совершать любое движение, но и дышать, жевать и перерабатывать пищу, и даже самый главный орган - сердце - тоже состоит из мышечной ткани.

Как осуществляется работа мышц?

Функционирование мышц происходит благодаря следующим их свойствам:

  • Возбудимость - это процесс активации, проявляемый в виде ответной реакции на раздражитель (как правило, это внешний фактор). Свойство проявляется в виде изменения обмена веществ в мышце и её мембране.
  • Проводимость - свойство, означающее способность мышечной ткани передавать образовавшийся в результате воздействия раздражителя нервный импульс от мышечного органа к спинному и головному мозгу, а также в обратном направлении.
  • Сократимость - конечное действие мускулатуры в ответ на стимулирующий фактор, проявляется в виде укорачивания мышечного волокна, также меняется тонус мышц, то есть степень их напряжённости. При этом скорость сокращения и максимальная напряжённость мускулатуры могут быть различными как следствие разного влияния раздражителя.

Следует отметить, что работа мышц возможна благодаря чередованию вышеописанных свойств чаще всего в следующем порядке: возбудимость-проводимость-сократимость. В случае если речь идёт о произвольной работе мускулатуры и импульс идёт от центральной нервной системы, то алгоритм будет иметь вид проводимость-возбудимость-сократимость.

Строение мышц

Любая мышца человека состоит из совокупности продолговатых действующих в одном и том же направлении клеток, называемой мышечным пучком. Пучки, в свою очередь, содержат мышечные клетки длиной до 20 см, именуемые также волокнами. Форма клеток поперечно-полосатых мышц продолговатая, гладких - веретенообразная.

Мышечное волокно представляет собой продолговатой формы клетку, ограниченную внешней оболочкой. Под оболочкой параллельно друг другу располагаются способные сокращаться белковые волокна: актиновые (светлые и тонкие) и миозиновые (тёмные, толстые). В периферийной части клетки (у поперечно-полосатых мышц) располагается несколько ядер. У гладких мышц ядро всего одно, оно имеет местоположение в центре клетки.

Классификация мышц по различным критериям

Наличие различных характеристик, отличных у тех или иных мышц, позволяет их условно группировать по объединяющему признаку. На сегодняшний день анатомия не располагает единой классификацией, по которой можно было бы сгруппировать человеческие мышцы. Виды мышц однако можно классифицировать по разнообразным признакам, а именно:

  1. По форме и длине.
  2. По выполняемым функциям.
  3. По отношению к суставам.
  4. По локализации в теле.
  5. По принадлежности к определённым частям тела.
  6. По расположению мышечных пучков.

Наряду с видами мышц выделяют три основные группы мышц в зависимости от физиологических особенностей строения:

  1. Поперечно-полосатые скелетные мышцы.
  2. Гладкие мышцы, составляющие структуру внутренних органов и сосудов.
  3. Сердечные волокна.

Одна и та же мышца может принадлежать одновременно к нескольким группам и видам, перечисленных выше, поскольку может содержать сразу несколько перекрёстных признаков: форму, функции, отношение к части тела и т.д.

Форма и величина мышечных пучков

Несмотря на относительно одинаковое строение всех мышечных волокон, они могут быть разной величины и формы. Таким образом, классификация мышц по данному признаку выделяет:

  1. Короткие мышцы приводят в движение небольшие участки опорно-двигательной системы человека и, как правило, находятся в глубоких слоях мускулатуры. Пример - межпозвоночные спинные мышцы.
  2. Длинные, наоборот, локализованы на тех частях тела, которые совершают большие амплитуды движений, например конечности (руки, ноги).
  3. Широкие покрывают в основном туловище (на животе, спине, грудине). Могут иметь разную направленность мышечных волокон, обеспечивая тем самым разнообразные сократительные движения.

Встречаются в организме человека и различные формы мускулатуры: круглые (сфинктеры), прямые, квадратные, ромбовидные, веретенообразные, трапециевидные, дельтовидные, зубчатые, одно- и двухперистые и мышечные волокна других форм.

Разновидности мускулатуры по выполняемым функциям

Скелетные мышцы человека могут выполнять различные функции: сгибание, разгибание, приведение, отведение, вращение. Исходя из данного признака, мышцы можно условно сгруппировать следующим образом:

  1. Разгибатели.
  2. Сгибатели.
  3. Приводящие.
  4. Отводящие.
  5. Вращательные.

Первые две группы всегда находятся на одной части тела, но в противоположных сторонах таким образом, что когда сокращаются первые, вторые расслабляются, и наоборот. Сгибающие и разгибающие мышцы приводят в движение конечности и являются мышцами-антогонистами. Например, мышца плеча бицепс сгибает руку, а трицепс разгибает. Если в результате работы мускулатуры часть тела или орган совершает движение в сторону тела, эти мышцы приводящие, если в обратном направлении - отводящие. Вращатели обеспечивают круговые движения шеи, поясницы, головы, при этом вращатели делятся на два подвида: пронаторы, осуществляющие движение внутрь, и супинаторы, обеспечивающие движение в наружную сторону.

По отношению к суставам

Мускулатура крепится с помощью сухожилий к суставам, приводя их в движение. В зависимости от варианта крепления и количества суставов, на которые воздействуют мышцы, они бывают: односуставные и многосуставные. Таким образом, если мускулатура крепится только к одному суставу, то это односуставная мышца, если к двум - двусуставная, а если больше суставов - многосуставная (сгибатели/разгибатели пальцев).

Как правило, односуставные мышечные пучки длиннее многосуставных. Они обеспечивают более полную амплитуду движения сустава относительно своей оси, поскольку расходуют свою сократительную способность только на один сустав, в то время как свою сократимость распределяют на два сустава многосуставные мышцы. Виды мышц последние короче и могут обеспечить гораздо меньшую подвижность при одновременном движении суставов, к которым они прикреплены. Ещё одним свойством многосуставной мускулатуры называют пассивную недостаточность. Её можно наблюдать, когда под влиянием внешних факторов мышца полностью растягивается, после этого она не продолжает движение, а, напротив, затормаживает.

Локализация мускулатуры

Мышечные пучки могут располагаться в подкожном слое, образуя поверхностные группы мышц, а могут и в более глубоких слоях - к ним относятся глубинные мышечные волокна. Так например, мускулатура шеи состоит из поверхностных и глубинных волокон, одни из которых отвечают за движения шейного отдела, а другие оттягивают кожу шеи, прилегающего участка кожи груди, а также участвуют в поворотах и опрокидываниях головы. В зависимости от расположения по отношению к определённому органу могут быть внутренние и наружные мышцы (наружные и внутренние мышцы шеи, живота).

Виды мускулатуры по частям тела

По отношению к частям тела мускулатура делится на следующие виды:

  1. Мышцы головы подразделяются на две группы: жевательные, отвечающие за механическое измельчение пищи, и мимические мышцы - виды мышц, благодаря которым человек выражает свои эмоции, настроение.
  2. Мышцы туловища подразделяются по анатомическим отделам: шейные, грудные (большая грудинная, трапециевидная, грудинно-ключичная), спинные (ромбовидная, широчайшая спинная, большая круглая), брюшные (внутренние и наружные брюшные, в том числе пресс и диафрагма).
  3. Мышцы верхних и нижних конечностей: плечевые (дельтовидная, трёхглавая, двуглавая плечевая), локтевые сгибатели и разгибатели, икроножные (камбаловидная), берцовые, мышцы стопы.

Разновидности мускулатуры по расположению мышечных пучков

Анатомия мышц у различных видов может отличаться расположением мышечных пучков. В связи с этим выделяют такие мышечные волокна, как:

  1. Перистые напоминают строение птичьего пера, в них пучки мышц крепятся к сухожилиям только одной стороной, а другой расходятся. Перистая форма расположения мышечных пучков характерна для так называемых сильных мышц. Место их крепления к надкостнице является довольно обширным. Как правило, они короткие и могут развивать большую силу и выносливость, при этом тонус мышц не будет отличаться большой величиной.
  2. Мышцы с параллельным расположением пучков также называют ловкими. По сравнению с перистыми они имеют большую длину, при этом менее выносливы, однако могут выполнять более тонкую работу. При сокращении напряжение в них значительно увеличивается, что значительно снижает их выносливость.

Группы мускулатуры по структурным особенностям

Скопления мышечных волокон образуют целые ткани, структурные особенности которых обуславливает их условное разделения на три группы:


Скелетная мускулатура представляет собой активную часть опорно-двигательного аппарата. Она состоит из скелетных мышц и их вспомогательных приспособлений, к которым относятся фасции, синовиальные сумки, синовиальные влагалища сухожилий, блоки, сезамовидные кости.

В теле животного насчитывается около 500 скелетных мышц . Большинство из них парные и располагаются симметрично по обеим сторонам тела животного. Их суммарная масса составляет у лошади 38-42% от массы тела, у крупного рогатого скота 42-47%, у свиней 30-35% от массы тела.

Мышцы в теле животного располагаются не беспорядочно, а закономерно в зависимости от действия силы тяжести животного и выполняемой работы. Они оказывают свое действие на те части скелета, которые соединены подвижно, т.е. мышцы действуют на суставы, синдесмозы.

Основными местами прикрепления мышц являются кости, но иногда они прикрепляются к хрящам, связкам, фасциям, коже. Они покрывают скелет так, что кости лишь в некоторых местах лежат непосредственно под кожей. Закрепляясь на скелете, как на системе рычагов, мышцы при своем сокращении вызывают различные движения тела, фиксируют скелет в определенном положении и придают форму телу животного

Основные функции скелетных мышц:

1) Основная функция мышц - динамическая . Сокращаясь, мышца укорачивается на 20-50% своей длины и тем самым меняет положение связанных с ней костей. Производится работа, результатом которой является движение.

2) Другая функция мышц – статическая . Проявляется она в фиксации тела в определенном положении, в сохранении формы тела и его частей. Одна из проявлений этой функции – способность спать стоя (лошадь).

3) Участие в обмене веществ и энергии . Скелетные мышцы являются «источниками тепла», так как при их сокращении около 70% энергии превращается в тепло и только 30% энергии обеспечивает движение. В скелетных мышцах удерживается около 70% воды организма, поэтому их еще называют «источниками воды». Кроме этого, между мышечными пучками и внутри их может накапливаться жировая ткань (особенно при откорме у свиней).

4) Одновременно, при своей работе скелетные мышцы помогают работе сердца, проталкивая венозную кровь по сосудам . В экспериментах удалось выяснить, что скелетные мышцы действуют подобно насосу, обеспечивая движение крови по венозному руслу. Поэтому скелетные мышцы еще называют «периферическими мышечными сердцами».

Строение мышцы с точки зрения биохимика

Скелетная мышца состоит из органических и неорганических соединений. К неорганическим соединениям относятся вода и минеральные соли (соли кальция, фосфора, магния). Органическое вещество в основном представлено белками, углеводами (гликоген), липидами (фосфатиды, холестерин).Таблица 2.

Химический состав скелетной мышцы