Какой из способов эффективнее защищает от токов Фуко? Токи фуко полезное и вредное действие.

  • 30.09.2019

Как общепринято, «токи Фуко – это токи, которые возникают в массивном проводнике, находящемся в переменном магнитном поле. Токи Фуко имеют вихревой характер. Если обычные индукционные токи движутся по тонкому замкнутому проводнику, то вихревые токи замыкаются внутри толщи массивного проводника. Хотя при этом они больше ничем не отличаются от обычных индукционных токов» . По правилу Ленца, эти токи направлены так, чтобы противодействовать причине, их вызвавшей , . «Поэтому движущиеся в сильном магнитном поле проводники испытывают сильное торможение из-за взаимодействия токов Фуко с магнитным полем» . «Токи Фуко экранируют переменное магнитное поле так, что оно не проникает вглубь проводника. Однако токи Фуко не могут экранировать статическое магнитное поле, так как из-за омического сопротивления они не могут существовать вечно. Статическое магнитное поле свободно проникает в проводник. Однако чем быстрее изменяется поле, тем на меньшую глубину оно проникает в проводник. В хороших проводниках, где омические потери малы, уменьшение глубины проникновения поля становится заметным при весьма умеренных частотах» . Считается, что этим обусловлено размагничивающее действие токов Фуко. Оно «сильнее проявляется в середине сердечника и меньше на его поверхности, так как участки в середине сердечника охватываются большими вихревыми токами, чем участки, близкие к поверхности» . Как установлено, в сверхпроводниках этот эффект присущ даже постоянным токам из-за отсутствия сопротивления проводника. «При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник отличается от идеального проводника, у которого при падении сопротивления до нуля индукция магнитного поля в объёме должна сохраняться без изменения» .

В рамках теоретической физики, исходя из общего признания вихревой природы токов Фуко, а значит, и вихревого характера электрического поля , их описание основывается на индукционной паре уравнений Максвелла :


В предположении равенства нулю плотности ρ свободных зарядов в проводнике и стандартной связи между плотностью тока и напряжённостью поля


получают уравнение для напряжённости магнитного поля, описывающего токи Фуко, как и скин-эффект:


При этом «сила вихревого тока по закону Ома равна


где Φ m – магнитный поток, сцепленный с контуром тока, R – сопротивление цепи вихревого тока. Подсчитать это сопротивление трудно. Однако совершенно очевидно, что оно тем меньше, чем больше удельная проводимость проводника и чем больше его размеры» .

Поэтому для расчёта потерь от токов Фуко обычно пользуются приближёнными формулами, в которых удельные потери зависят от сорта железа, толщины железных листов, частоты индуцирующего поля и максимальной индукции этого поля .

Как мы можем видеть, характер токов Фуко связывается исключительно с проводимостью проводника и их структура обуславливается исключительно фактом проводимости металлов, будучи одинаковой, как для ферро-, пара-, так и для диамагнетиков. Направленность этих токов встречна индуцирующему переменному полю, хотя сами указанные вещества во внешних полях ведут себя принципиально различно. Как известно , диамагнетики создают собственное поле, направленное встречно внешнему, пара- и ферромагнетики создают поля, направленные по направлению внешнего магнитного поля. К диамагнетикам относятся, в частности, инертные газы, молекулярный водород и азот, цинк, медь, золото, висмут, парафин и т.д., к парамагнетикам относятся алюминий; воздух. К ферромагнетикам относятся, в частности, железо, никель, кобальт. Но это различие, как считается, не оказывает существенного влияния на сущность токов Фуко.

Проводимые эксперименты тоже не вскрывают данное различие. Большинство из них сводится к торможению падения проводящих тел в неоднородном магнитном поле или к демпфированию колебаний металлического маятника , . При этом считается, что для опытов «рекомендуется брать именно медную или алюминиевую пластины, так как у этих материалов мало удельное сопротивление. Следовательно, сила тока в них будет большей и эффект проявится более явно» .

Второй комплекс экспериментов с токами Фуко связан с индукционным нагревом как проводящих тел, так и диэлектриков (в частности, сушка древесины ). В теорию данного процесса заложена та же основа, базирующаяся на уравнениях Максвелла и вихревом характере индуцирующего электрического поля. Использование стандартной базы предопределяет и акценты, на которых строится моделирование. И хотя учитываются изменения магнитной проницаемости ферромагнетиков с температурой, существенное различие токов Фуко от вида магнетика не проводится, как и ограничивается случаем ферромагнетика. В работах, посвящённых индукционному нагреву алюминия , , феноменологическая база также сводится к стандартному представлению вихревых токов, возбуждающих поле встречной направленности возбуждающему полю и на этом строится моделирование процесса.

Вместе с тем, для промышленно выпускаемых индукционных бытовых печей, главным условием эксплуатации является ферромагнитный материал используемой посуды. При любом ином материале, даже для неферромагнитной стали, печь работать отказывается . Это свидетельствует об определённых нюансах, которые не учитываются существующей моделью вихревых токов, несмотря на обилие научных разработок и технологического использования самого процесса.

Для исследования особенностей вихревых токов была разработана специальная головка со взаимно перпендикулярными обмотками, как показано на рис. 1.

Рис. 1. Схема и общий вид (a ) головки для исследования вихревых токов, а также схема мгновенных вихревых токов в сердечнике (I 2) и в накладке 4 (I 3) этой головки с точки зрения стандартной концепции (b ) при мгновенном токе в первичной обмотке I 1 ; 1 – сердечник из ферромагнитного материала (трансформаторное железо Э330), 2 – первичная однорядовая сплошная обмотка 110 витков провода ø0,23, 3 - вторичная однорядовая сплошная обмотка 110 витков провода ø0,23, 4 – накладка из исследуемого материала размером 15х15х6 мм

Обе обмотки головки были намотаны на подвижном каркасе из фторопласта для регулировки взаимной перпендикулярности. Размер исследуемой накладки выбирался несколько большим свободного от обмоток пространства, с целью, которая будет ясна из дальнейшего исследования. Индукционные токи, возникающие в сердечнике и накладке с точки зрения современных представлений о встречном вихревом характере этих токов, представлены на рис. 1b . Как следует из этого построения, при наложении ассиметричной накладки ток во вторичной обмотке принципиально возникнуть не может из-за взаимной перпендикулярности этих токов виткам вторичной обмотки.

Электрическая схема эксперимента представлена на рис. 2.

Рис. 2. Электрическая схема эксперимента.

Опыт проводился на частоте 20 кГц, амплитуда входного сигнала составляла 2 В, синхронизация осциллографа была внешняя и осуществлялась по сигналу, подаваемому на первичную обмотку головки.

В качестве накладок, ассиметрично устанавливаемых в углах головки, использовались четыре материала: медь – диамагнетик, алюминий – парамагнетик, трансформаторное железо и феррит – ферромагнетики. Вид накладок представлен на рис. 3.

Рис. 3. Вид накладок, используемых в исследовании.

Все накладки были изготовлены из нескольких слоёв. Медная накладка содержала 8 слоёв, алюминиевая – 4 слоя, железная – 20 слоёв и феррит – 2 слоя. Всё это было склеено клеем Стелс. Указатели положения, наклеенные на каждой из накладок, были установлены на их середину. Шкала делений на головке также была установлена на середину первичной обмотки, расположенной вертикально. Общий вид установки показан на рис. 4.

Рис. 4. Общий вид установки: 1 – осциллограф, 2 – измерительная головка, 3 – генератор сигналов, 4 – выходной мощный каскад, 5 – питание выходного каскада

Прежде всего, был исследован сам факт индукции во вторичной обмотке при асимметричном наложении накладок из различных материалов. Как было уже сказано, синхронизация осуществлялась по входному напряжению на первичную обмотку головки. Результаты опыта представлены на рис. 5.

a) медь

b) алюминий

c ) железо

d ) феррит

Рис. 5. Осциллограммы эдс индукции во вторичной обмотке головки (нижняя осциллограмма) в зависимости от материала и местоположения накладки на головке

Как видно из осциллограмм, для меди и алюминия эдс индукции противофазна индуцирующему току (правые фото). У феррита в этом положении наблюдается синфазность. Отклонения для железа будут прояснены далее. Кроме того, видно, что перемещение накладки из правого угла в левый приводит к изменению фазы эдс на 180°. Различие фаз свидетельствует, что природа возникновения эдс индукции в ферромагнетиках, с одной стороны, и пара- и диамагнетиках, с другой стороны, различна.

Чтобы выявить траекторию эдс индукции, было использовано то, что все накладки были набраны из пластин. В этом втором эксперименте накладки ставились в один и тот же угол измерительной головки, вдоль и поперёк плоскости головки. Результаты представлены на рис. 6.

a) медь

b) алюминий

c ) железо


d ) феррит

Рис. 6. Характер токов индукции в накладках из исследуемых материалов при их повороте относительно измерительной головки

Из осциллограмм мы видим, что при повороте накладок из меди и алюминия сигнал значительно ослабляется. Это говорит о том, что возникает существенное сопротивление вихревому току. В феррите сигнал почти не изменяется, что свидетельствует об отсутствии индукционного тока, характерного меди и алюминию, но присутствует ток второго типа, характерный ферромагнетику. Этот ток синфазен возбуждающему. В железной накладке при повороте на торец изменяется не только амплитуда, возрастая на торце, когда токи Фуко уменьшаются, но изменяется и фаза сигнала. Это бывает только в том случае, когда результирующая фаза сигнала зависит от амплитуд исходных компонент, что легко показать тригонометрически. Действительно, если предположим, что исходные составляющие результирующего сигнала строго смещены приблизительно на 180° и имеют различные амплитуды, то


Понятно, что при изменении амплитуд вследствие изменения условий протекания токов в накладках, будет смещаться и амплитуда результирующего сигнала A Ξ , и результирующая фаза φ Ξ . Описанный характер токов представлен на построении, приведенном на рис. 7.

a)Индукционные токи в пара- и диамагнетиках

b) Индукционные токи в ферритах

c ) Индукционные токи в железе

Рис. 7. Схема возбуждения электронных I e и ориентационных I c токов

В случае пара- и диамагнетиков торцевое расположение накладки (справа) приводит к тому, что вместо единого тока I e в ней образуются токи в каждой пластине, которые индуцируются не всей областью контакта накладки с индуцирующим проводником, а только частью, ограниченной толщиной пластины. А значит, этот индуцирующий ток при повороте накладки с плоскости на торец будет индуцировать и меньший ток во вторичной обмотке.

В случае феррита ситуация изменяется. Ток I c образуется молекулярными токами феррита. Электронный ток в феррите практически отсутствует из-за высокого его электрического сопротивления, а молекулярные токи мало зависят от ориентации феррита, вследствие чего поворот практически не изменяет амплитуду тока во вторичной обмотке.

В железе присутствуют оба тока, а потому изменение тока I e приводит, как показано в общем случае нами, к изменению и амплитуды, и фазы сигнала, поскольку этот ток компенсирует ток I c .

Кстати, конкурирующее действие указанных токов приводит и к неверной физической трактовке пара- и диамагнетизма, предполагающей некие особые способы разворота орбиталей атомов у диамагнетиков, чтобы создавать поле, встречное индуцирующему. Как показал вышеприведенный эксперимент, различие между магнетиками сводится исключительно к соотношению индуцирующих токов. В диамагнетике I e превышает I c , вследствие чего формируется встречное поле. В пара- и ферромагнетиках соотношение токов обратное, поэтому формируется поле по направлению внешнего индуцирующего поля. Данная особенность приводит и к неверному измерению относительной магнитной проницаемости пара- и диамагнетиков. Фактически, когда измеряется проницаемость этих веществ, измеряют её с компенсирующим действием тока I e . Чтобы измерить реальную магнитную проницаемость, нужно измерять мелкодисперсную фазу вещества, скреплённую изолирующим компаундом с μ = 1. Эта особенность тоже является причиной многих парадоксов в электромагнетизме.

Также следует обратить внимание и на тот факт, что уменьшение индукционного тока во вторичной обмотке обусловлено уменьшением области контакта пластины накладки с индуцирующим проводником. Опять-таки, как и в предыдущих наших экспериментах, выясняется, что индуцирующие токи возбуждаются не неким мифическим магнитным полем, а конкретным изменением взаимного положения проводников или изменением тока в индуцирующем проводнике и для электронного тока I e пропорционально области контакта проводника с материалом накладки. Фактически, в накладке формируются невихревые токи. Ток возникает исключительно в области контакта, а далее он уже замыкается через тело накладки в области слабого индуцирующего взаимодействия. Вследствие этого электрическая цепь тока может быть представлена, как показано на рис. 8.

Рис. 8. Эквивалентная схема токов Фуко в пара- и диамагнетиках

Согласно данной схеме, электрическое поле, индуцирующееся в пара- и диамагнетиках, не является вихревым. Оно остаётся потенциальным, как и во всех остальных проявлениях, но сам ток, возбуждаемый в материале, замыкается через тело проводника, создавая иллюзию циркулярности.

Вышесказанное подтверждается и следующими двумя экспериментами. В первом из них устанавливается противоположность направленности электронного тока I e и ориентационного молекулярного тока I c . Как мы могли обратить внимание в первом из приведенных экспериментов, при смещении накладки из одного угла измерительной головки в другой, фаза эдс во вторичной обмотке всегда изменялась на 180° (или близко к этому). Что произойдёт, если мы установим накладки из разных материалов на оба угла головки? На рис. 9 представлены результаты этой операции. На снимках слева показаны эдс во вторичной обмотке при установке одной из накладок. На снимках справа – обоих указанных в подписи к снимкам накладок.

a) медь и алюминий

b) Железо (плоскостью) и феррит

c ) Железо (торцом) и феррит

d ) Феррит и медь

e ) феррит и алюминий

В 1824 году французский физик Даниэль Араго впервые наблюдал действие вихревых токов на медный диск, расположенный под магнитной стрелкой на одной оси. При вращении стрелки в диске наводились вихревые токи, приводя его в движение. Это явление получило название «эффекта Араго» в честь его первооткрывателя.

Исследования вихревых токов были продолжены французским физиком Жаном Фуко. Он подробно описал их природу и принцип действия, а также наблюдал явление нагрева ферромагнетика, вращаемого в статическом магнитном поле. Токи новой природы были тоже названы в честь исследователя.

Природа вихревых токов

Токи Фуко могут иметь место при воздействии на проводник переменного магнитного поля, либо при перемещении проводника в статическом магнитном поле. Природа вихревых токов аналогична индукционным, которые возникают в линейных проводах при прохождении через них электрического тока. Направление вихревых токов замкнуто по кругу и противоположно вызывающей их силе.

Токи Фуко в хозяйственной деятельности человека

Самый простой пример проявления токов Фуко в обыденной жизни - их воздействие на магнитопровод обмоточного трансформатора. Из-за воздействия наведенных токов появляется низкочастотная вибрация (трансформатор гудит), способствующая сильному нагреву. В этом случае энергия тратится впустую, а КПД установки падает. Для предотвращения значительных потерь сердечники трансформаторов не изготовляют цельными, а набирают из тонких полос электротехнической стали с низкой удельной электропроводностью. Полосы изолированы между собой электротехническим лаком или слоем окалины. Появление ферритовых элементов позволило выполнять малогабаритные магнитопроводы цельными.

Эффект от действия вихревых токов используется повсеместно в промышленности и машиностроении. Поезда на магнитной подвеске используют токи Фуко для торможения, высокоточные приборы имеют систему демпфирования указывающей стрелки, основанной на действии вихревых токов. В металлургии широко распространены индукционные печи, имеющие целый комплекс преимуществ перед аналогичными установками. В индукционной печи нагреваемый металл можно поместить в безвоздушное пространство, добиваясь его полной дегазации. Индукционная плавка черных металлов также получила широкое распространение в металлургии ввиду высокой экономичности установок.

Двигатели с постоянными магнитами используются в различных высокотехнологичных устройствах, но они имеют некоторые конструктивные ограничения. Одним из таких примеров является чувствительность к высоким температурам, которые могут быть вызваны выделением тепла от протекающих токов, и в частности, вихревых токов. Версия 5.3 программного обеспечения COMSOL® включает в себя функцию учета потерь на вихревые токи в постоянных магнитах таких двигателей. Инженеры могут использовать эти результаты, чтобы в полной мере изучить характеристики двигателей с постоянными магнитами и определить способы оптимизации их производительности.

Использование электродвигателей с постоянными магнитами в высокотехнологичных устройствах.

Экономия энергии — общая цель, к которой стремятся все производители по всему миру. Например, рассмотрим транспортный сектор. Только в прошлом году в Китае представили новую высокоскоростную систему метрополитена , которая обеспечивает значительную экономию энергии. Между тем, у самого старого действующего парома в Финляндии заменили оригинальные дизельные двигатели на новые электрические. А на улицах Лондона известный автомобильный бренд класса "Люкс" впервые представил полностью электрический автомобиль .

Эти примеры демонстрируют развитие транспорта в сторону более экологичного будущего. Также указанные примеры объединяет тот факт, что для данной цели, они используют двигатели с постоянными магнитами (ПМ). Такие типы двигателей с магнитами вместо обмоток в роторе, как правило, находят применение в высокотехнологичных устройствах. Наиболее важным является их использование в электрических и гибридных транспортных средствах.

Электротранспорт — одно из применений двигателей с постоянными магнитами. Изображение, предоставленное Mariodo. Доступно по лицензии Creative Commons 2.0 из Wikimedia Commons .

Двигатели с ПМ высоко ценятся за счет их экономичности, но наряду с тем существуют некоторые ограничения при их проектировании. К примеру, постоянные магниты очень чувствительны к высоким температурам. Такие температуры могут достигаться, когда токи, в частности, вихревые токи, при протекании вызывают выделение тепла. Хотя ламинирование стальных/железных секций ротора помогает уменьшить потери на вихревые токи в этих областях, производственные ограничения делают этот процесс сложным. Таким образом, нагрев постоянных магнитов может быть довольно существенным.

Давайте рассмотрим новую учебную модель, доступную в версии 5.3 COMSOL Multiphysics®, которая учитывает потери на вихревые токи в двигателях с ПМ

Моделирование потерь на вихревые токи в двигателе с постоянными магнитами с помощью COMSOL Multiphysics®.

Начнем с геометрии нашей модели. В этом примере мы используем трехмерную модель 18-ти полюсного двигателя с ПМ. Для одновременного сокращения вычислительных затрат и учёта всей трехмерной геометрии модели, мы будем моделировать один полюс, используя продольную и зеркальную симметрии.

Вы можете видеть анимацию работы всего двигателя ниже. На ней изображены ротор и железный статор (серым цветом), обмотка статора (из меди) и постоянные магниты (синие и красные в зависимости от радиальной намагниченности).

Конструкция двигателя с постоянными магнитами.

Для моделирования проводящей части ротора мы используем узел Ampère’s law (закон Ампера). Для непроводящих частей ротора и статора мы используем узел Magnetic flux conservation (Закон сохранения магнитной индукции) относительно скалярного магнитного потенциала.

Используя встроенный физический интерфейс Rotating Machinery (Магнитные вращающиеся механизмы), легко смоделировать вращение двигателя. В модели мы рассматриваем центральный верхний полюс, в котором располагаются ротор вместе с участком воздушного зазора, вращающиеся относительно системы координат статора. Обратите внимание, что в данном случае требуется формирование сборки (Assembly) при завершении построения геометрии, поскольку ротор и статор являются двумя отдельными частями конструкции.

Чтобы вычислить и дальше использовать значение потерь на вихревые токи в магнитах с течением времени, мы введем дополнительную переменную. Хотя в рамках данной модели она не потребуется, переменная может использоваться в последующем анализе теплопередачи в качестве усредненного по времени и распределенного источника тепла. Так как тепловые процессы устанавливаются гораздо дольше, чем происходит изменение направления вихревых токов и вызванных ими потерь, необходимо разделять электромеханический и тепловой расчеты для большей эффективности расчёта.

Анализ результатов моделирования.

По результатам моделирования на первом рисунке мы можем видеть распределение магнитной индукции в двигателе в неподвижном стационарном состоянии, другими словами, на графике показаны начальные условия для нестационарного исследования. Ток катушки в начальном состоянии равен нулю. На рисунке справа показано распределение магнитной индукции после того, как двигатель повернулся на один сектор. Для лучшей наглядности можно исключить на рисунке области воздуха и катушек.

Слева: Распределение магнитной индукции в стационарном начальном состоянии. Справа: Распределение магнитной индукции в двигателе после поворота на один сектор.

На приведенном ниже графике мы можем видеть, как с течением времени происходит изменение потерь на вихревые токи в магнитах. Анимация справа показывает изменение потерь на вихревые токи при повороте статора на один сектор. Вихревые токи изображены стрелками.

Слева: График потерь на вихревые токи в зависимости от времени. Справа: Изменение плотности потерь на вихревые токи при повороте на один сектор.

Вышеприведенные примеры дают более полное представление о характеристиках двигателей с ПМ c учетом потерь на вихревые токи в постоянных магнитах. Эта информация будет полезной для улучшения конструкции двигателей с ПМ и, следовательно, технологии, в которой они используются.

Электрическое поле окружает человека повсеместно, как в производственных процессах, так и в повседневной жизни. Большинство людей даже не подразумевают, что в процессе своей жизнедеятельности сталкиваются с таким явлением, как вихревые токи. Эти токи могут оказывать как положительное, так и негативное влияние на жизнь человека, и нет однозначного ответа: больше от них пользы или вреда.

Jpg?x15027" alt="Французский физик Жанн Фуко, давший вразумительное объяснение вихревым потокам" width="600" height="450" srcset="" data-srcset="https://elquanta.ru/wp-content/uploads/2018/03/1-fuko-600x450..jpg 768w, https://elquanta.ru/wp-content/uploads/2018/03/1-fuko.jpg 824w" sizes="(max-width: 600px) 100vw, 600px">

Французский физик Жанн Фуко, давший вразумительное объяснение вихревым потокам

Так, благодаря данному явлению функционируют индукционные электрические плиты и печи, либо свет включается при нажатии на кнопку. Но в тоже время под воздействием этих потоков теряется энергия в катушках и проводнике, и для ее сохранения приходится применять дополнительные технологические действия. Например, данная технология применима в трансформаторах. Его сердцевина (сердечник) состоит из большого количества мелких и плоских шихтовых пластин, которые прочно соединены друг с другом при помощи лака. Очень часто сердечник дополнительно обтянут шпилькой, основное предназначение которой снизить вихревые токи. В современном мире этот феномен стали называть токи Фуко.

История открытия

Первое понятие о вихревых потоках было упомянуто в 1824 году физиком французского происхождения Д.Ф. Арго (1786-1853), который проводил ряд экспериментов с намагниченной стрелкой, крутящейся над диском из меди. В определенный момент он заметил, что без какого-либо дополнительного воздействия диск начинал крутиться вместе со стрелкой. Точного объяснения данного феномена физик дать не смог, но оно получило наименование «явление Арго».

Спустя некоторое время, Максвелл Фарадей, рассматривавший вихревые токи с точки зрения постулата, основанного на знаниях об электромагнитной индукции, который он же и открыл, сделал заключение, что электрическое поле, исходящее от вращающейся стрелки, оказывает прямое воздействие на атомное строение диска из меди, что и способствует образованию направленного движения заряженных частиц. Электроток способствует образованию электромагнитного поля вокруг медного диска.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-vixrevie-toki-768x576..jpg 904w" sizes="(max-width: 600px) 100vw, 600px">

Понятие вихревых токов

Более тщательно изучил, а также подробно описал в своих работах вихревые токи французский физик Жанн Фуко (1819-1868), впоследствии данное действие было названо в честь него и получило название актуальное в сегодняшние дни – токи Фуко. Эти токи схожи с индукционными токами, вырабатываемыми электрогенераторами. При наличии постоянного или временного магнитно-вихревого поля в непосредственной близости от проводника обязательно образуются токи Фуко: чем объемнее проводник, тем сильнее будет сила потоков тока.

Мощность вихревых токов

Периодические и непостоянные токи появляются в проводниках только в том случае, когда магнитное поле не одинаково и попеременно меняется в зависимости от силы вращения. Соответственно, сила вихревого потока прямо пропорционально связана с изменением магнитного поля вокруг проводника.

Токи Фуко функционируют немного по другому принципу. Они находятся непосредственно в самом проводнике, образуя замкнутые очертания, напрямую взаимодействуя с магнитным полем, послужившим их появлению. Изучая вихревые токи, русский физик Эмилий Христианович Ленц (1804-1865) пришел к выводу, что магнитное поле вихревых потоков не дает измениться магнитному полю, благодаря которому они зародились. Сила индукционного тока и вихревого потока движется по одному векторному направлению.

Варианты уменьшения силы вихревых потоков

Для увеличения КПД различных технических приборов требуется существенное уменьшение вихревых токов. Для этого требуется увеличение электрического сопротивления магнитопровода. Способ уменьшения вредного воздействия токов Фуко зависит напрямую от типа электрического оборудования.

Якорные сердечники машин с постоянным током и магнитные провода устройств с переменным током в процессе сборки тщательным образом изолируются друг от друга при помощи специальных пластин из штампованной листовой электротехнической стали, толщина которых может варьироваться от 0,1 до 0,5 мм, и «запекаются» специальными лаками или окалиной. Пластины при этом должны быть расположены параллельно магнитным потокам.

В процессе литья деталей сердечника в его состав добавляются специальные компоненты, к примеру, кремний, увеличивающие силу его электрического сопротивления.

В другом случае при сборке сердечников применяются куски железной проволоки, прошедшие специальную тепловую обработку, которые располагаются строго параллельно магнитному полю. Также дополнительно могут быть использованы специальные изолирующие прокладки.

При такой сборке сердечника сила вихревых потоков существенно снижается, а КПД увеличивается.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-podavlenie-1-768x576..jpg 900w" sizes="(max-width: 600px) 100vw, 600px">

Уменьшение мощности вихревых потоков

В магнитных проводах устройств с высокой частотой работы для снижения силы вихревого потока провода тщательно изолируются друг от друга и располагаются в виде спирали (жгута), каждый из которых покрыт специальным изолирующим материалом. Такой метод изоляции получил название – лицендрат. Его применяют на сегодняшний день для снижения потоков Фуко.

В процессе передачи электрической энергии на дальние расстояния применяется особый многожильный кабель, где каждая жила изолирована отдельно, это существенно уменьшает потери электроэнергии, тем самым увеличивая производительность.

Применение токов Фуко

Многие ученные разных времен считали и считают, что негативного воздействия от вихревых потоков куда больше, чем позитивного. Но тем не менее, человечество научилось применять токи Фуко во благо в различных областях жизнедеятельности.

Наиболее широкое применение они получили в промышленной и машиностроительной сферах. Так, на основе этого явления удалось создать насос для перекачки и закалки расплавленных металлов, а в металлургической и промышленной отраслях используются индукционные печи, которые в несколько раз превосходят аналогичные системы, работающие по другому принципу. Плавление и закалка различных металлов возможны только с применением этого явления. Вихревые потоки способствуют торможению и снижению скорости вращения металлических дисков в индукционных тормозах, без этого бы просто не функционировали скоростные поезда на магнитных подвесках. Также без вихревых потоков Фуко не обходятся современные вычислительные приборы и аппараты, вакуумные устройства, где необходима полная откачка воздуха и других газов, принцип работы современных трансформаторов возможен только благодаря применению в их конструкции вихревых потоков. Более того, оборудование, работающее на основе токов Фуко, обладает существенной экономичностью и хорошей производительностью.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-induk-motor-768x432..jpg 900w" sizes="(max-width: 600px) 100vw, 600px">

Индукционный мотор, работающий на вихревых потоках

Таким образом, такое действие, как токи Фуко, – полезное, легко объяснимое и довольно понятное явление на сегодняшний день, представляет собой вихревые потоки, которые возникают под воздействием электромагнитной индукции в металлическом, а также любом другом проводнике. Вихревые токи Фуко многие ученые современности относят к удивительным явлениям в электротехнике, которые современное общество научилось использовать с пользой для себя, при необходимости доводя их до нужной мощности, уменьшая при надобности и направляя полученную энергию в правильное русло. Жанн Фуко был умным и одаренным человеком, который, помимо объяснения феномена вихревых потоков, сделал немало других важных открытий, одним из них является нагревание металлических объектов, вертящихся в магнитном потоке благодаря воздействию вихревого тока. Он первым дал вразумительное и достаточно понятное объяснения данного факта.

Оцените статью:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Реферат По предмету «Физика» Тема: «Токи Фуко и их применение»

Выполнил: Студент группы Т-10915 Логунова М.В.

Преподаватель Воронцов Б.С.

Курган 2016

Введение 3

1. Токи Фуко 4

2.Вихри и скин-эффект 7

3.Практическое применение токов Фуко 8

4.Вывод формул 10

4.1. Сила вихревого тока по закону Ома 10

4.2. Формулы для посчёта потерь на токи Фуко 10

Заключение 11

Список использованной литературы 12

Введение

Индукционный ток может возникать не только в линейных контурах, то есть в проводниках, поперечные размеры которых пренебрежимо малы по сравнению с их длиной. Индукционный ток возникает и в массивных проводниках. В этом случае проводник не обязательно включать в замкнутую цепь. Замкнутая цепь индукционного тока образуется в толще самого проводника. Такие индукционные токи называются вихревыми илитоками Фуко .

Вихревые токи, или токи Фуко (в честь Ж. Б. Л. Фуко) - вихревые индукционные токи, возникающие впроводникахлибо вследствие изменения во времени магнитного поля, в котором находится тело, либо вследствие движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть.

Величина токов Фуко тем больше, чем быстрее меняется магнитный поток.

  1. Токи Фуко

Впервые вихревые токи были обнаружены французским учёным Д. Ф. Араго(1786-1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустяM. Фарадеемс позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске вихревые токи, которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физикомФуко(1819-1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах.

Но, в отличие от электрического тока в проводах, текущего по точно определённым путям, вихревые токи замыкаются непосредственно в проводящей массе, образуя вихреобразные контуры. Эти контуры тока взаимодействуют с породившим их магнитным потоком. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. Согласно правилу Ленца, магнитное поле вихревых токов направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего эти вихревые токи.

Рис. 1

Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем.

Например, если медную пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью υ в пространство между полосами магнита, то пластина практически остановится в момент её вхождения в магнитное поле (рис. 1).

Замедление движения связано с возбуждением в пластине вихревых токов, препятствующих изменению потока вектора магнитной индукции. Поскольку пластина обладает конечным сопротивлением, токи индукции постепенно затухают и пластина медленно двигается в магнитном поле. Если электромагнит отключить, то медная пластина будет совершать обычные колебания, характерные для маятника.

Вихревые токитакже приводят к неравномерному распределению магнитного потока по сечению магнитопровода. Это объясняется тем, что в центре сечения магнитопровода намагничивающая сила вихревых токов, направленная навстречу основному потоку, является наибольшей, так как эта часть сечения охватывается наибольшим числом контуров вихревых токов. Такое «вытеснение» потока из середины сечения магнитопровода выражено тем резче, чем выше частота переменного тока и чем больше магнитная проницаемость ферромагнетика. При высоких частотах поток проходит лишь в тонком поверхностном слое сердечника. Это вызывает уменьшение кажущейся (средней по сечению) магнитной проницаемости. Явление вытеснения из ферромагнетика магнитного потока, изменяющегося с большой частотой, аналогично электрическому скин-эффекту и называемому магнитным скин-эффектом.

В соответствии с законом Джоуля - Ленца вихревые токи нагревают проводники, в которых они возникли. Поэтому вихревые токи приводят к потерям энергии (потери на вихревые токи) в магнитопроводах (в сердечниках трансформаторов и катушек переменного тока, в магнитных цепях машин).

Для уменьшения потерь энергии на вихревые токи (и вредного нагрева магнитопроводов) и уменьшения эффекта «вытеснения» магнитного потока из ферромагнетиков магнитопроводы машин и аппаратов переменного тока делают не из сплошного куска ферромагнетика (электротехнической стали), а из отдельных пластин, изолированных друг от друга. Такое деление на пластины, расположенные перпендикулярно направлению вихревых токов, ограничивает возможные контуры путей вихревого тока, что сильно уменьшает величину этих токов. При очень высоких частотах применение ферромагнетиков для магнитопроводов нецелесообразно; в этих случаях их делают из магнитодиэлектриков, в которых вихревые токи практически не возникают из-за очень большого сопротивления этих материалов.

При движении проводящего тела в магнитном поле индуцированные вихревые токи обусловливают заметное механическое взаимодействие тела с полем. На этом принципе основано, например, торможение подвижной системы в счётчиках электрической энергии, в которых алюминиевый диск вращается в поле постоянного магнита. В машинах переменного тока с вращающимся полем сплошной металлический ротор увлекается полем из-за возникающих в нём вихревых токов. Взаимодействие вихревого тока с переменным магнитным полем лежит в основе различных типов насосов для перекачки расплавленного металла.

Вихревые токи возникают и в самом проводнике, по которому течёт переменный ток, что приводит к неравномерному распределению тока по сечению проводника. В моменты увеличения тока в проводнике индукционные вихревые токи направлены у поверхности проводника по первичному электрическому току, а у оси проводника - навстречу току. В результате внутри проводника ток уменьшится, а у поверхности увеличится. Токи высокой частоты практически текут в тонком слое у поверхности проводника, внутри же проводника тока нет. Это явление называется электрическим скин-эффектом. Чтобы уменьшить потери энергии на вихревые токи, провода большого сечения для переменного тока делают из отдельных жил, изолированных друг от друга.