Построение статистических рядов. Статистические ряды распределения, их значение и применение в статистике

  • 30.09.2019

Математическая статистика - раздел математики, посвященный математическим методам обработки, систематизации и использования статистических данных для научных и практических выводов.

3.1. ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

В медико-биологических задачах часто приходится исследовать распределение того или иного признака для очень большого числа индивидуумов. У разных индивидуумов этот признак имеет различное значение, поэтому он является случайной величиной. Например, любой лечебный препарата имеет различную эффективность при его применении к разным пациентам. Однако для того чтобы составить представление об эффективности данного препарата, нет необходимости применять его ко всем больным. Можно проследить результаты применения препарата к сравнительно небольшой группе больных и на основании полученных данных выявить существенные черты (эффективность, противопоказания) процесса лечения.

Генеральная совокупность - подлежащая изучению совокупность однородных элементов, характеризуемых некоторым признаком. Этот признак является непрерывной случайной величиной с плотностью распределения f(x).

Например, если нас интересует распространенность какого-либо заболевания в некотором регионе, то генеральная совокупность - все население региона. Если же мы хотим выяснить подверженность этому заболеванию мужчин и женщин по отдельности, то следует рассматривать две генеральные совокупности.

Для изучения свойств генеральной совокупности отбирают некоторую часть ее элементов.

Выборка - часть генеральной совокупности, выбираемая для обследования (лечения).

Если это не вызывает недоразумений, то выборкой называют как совокупность объектов, отобранных для обследования, так и совокупность

значений исследуемого признака, полученных при обследовании. Эти значения могут быть представлены несколькими способами.

Простой статистический ряд - значения исследуемого признака, записанные в том порядке, в котором они были получены.

Пример простого статистического ряда, полученного при измерении скорости поверхностной волны (м/с) в коже лба у 20 пациентов приведен в табл. 3.1.

Таблица 3.1. Простой статистический ряд

Простой статистический ряд - основной и самый полный способ записи результатов обследования. Он может содержать сотни элементов. Окинуть такую совокупность одним взглядом весьма затруднительно. Поэтому большие выборки обычно подвергают разбиению на группы. Для этого область изменения признака разбивают на несколько (N) интервалов равной ширины и подсчитывают относительные частоты (n/n) попадания признака в эти интервалы. Ширина каждого интервала равна:

Границы интервалов имеют следующие значения:

Если какой-то элемент выборки является границей между двумя соседними интервалами, то его относят к левому интервалу. Сгруппированные таким образом данные называют интервальным статистическим рядом.

- это таблица, в которой приведены интервалы значений признака и относительные частоты попадания признака в эти интервалы.

В нашем случае можно образовать, например, такой интервальный статистический ряд (N = 5, d = 4), табл. 3.2.

Таблица 3.2. Интервальный статистический ряд

Здесь к интервалу 28-32 отнесены два значения равные 28 (табл. 3.1), а к интервалу 32-36 - значения 32, 33, 34 и 35.

Интервальный статистический ряд можно изобразить графически. Для этого по оси абсцисс откладывают интервалы значений признака и на каждом из них, как на основании, строят прямоугольник с высотой, равной относительной частоте. Полученная столбцовая диаграмма называется гистограммой.

Рис. 3.1. Гистограмма

На гистограмме статистические закономерности распределения признака просматриваются достаточно отчетливо.

При большом объеме выборки (несколько тысяч) и малой ширине столбцов форма гистограммы близка к форме графика плотности распределения признака.

Число столбцов гистограммы можно выбрать по следующей формуле:

Построение гистограммы вручную - процесс долгий. Поэтому разработаны компьютерные программы для их автоматического построения.

3.2. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СТАТИСТИЧЕСКОГО РЯДА

Многие статистические процедуры используют выборочные оценки для математического ожидания и дисперсии (или СКО) генеральной совокупности.

Выборочное среднее (Х) - это среднее арифметическое всех элементов простого статистического ряда:

Для нашего примера Х = 37,05 (м/с).

Выборочное среднее - это наилучшая оценка генерального среднего М.

Выборочная дисперсия s 2 равна сумме квадратов отклонений элементов от выборочного среднего, поделенной на n - 1:

В нашем примере s 2 = 25,2 (м/с) 2 .

Обратите внимание, что при вычислении выборочной дисперсии в знаменателе формулы стоит не объем выборки n, а n-1. Это связано с тем, что при вычислении отклонений в формуле (3.3) вместо неизвестного математического ожидания используется его оценка - выборочное среднее.

Выборочная дисперсия - это наилучшая оценка генеральной дисперсии (σ 2).

Выборочное среднеквадратическое отклонение (s) - это квадратный корень из выборочной дисперсии:

Для нашего примера s = 5,02 (м/с).

Выборочное среднеквадратическое отклонение - это наилучшая оценка генерального СКО (σ).

При неограниченном увеличении объема выборки все выборочные характеристики стремятся к соответствующим характеристикам генеральной совокупности.

Для вычисления выборочных характеристик используют компьютерные формулы. В приложении Excel эти вычисления выполняют статистические функции СРЗНАЧ, ДИСП. СТАНДОТКЛОН.

3.3. ИНТЕРВАЛЬНАЯ ОЦЕНКА

Все выборочные характеристики являются случайными величинами. Это означает, что для другой выборки того же объема значения выборочных характеристик получатся другими. Таким образом, выборочные

характеристики являются лишь оценками соответствующих характеристик генеральной совокупности.

Недостатки выборочного оценивания компенсирует интервальная оценка, представляющая числовой интервал, внутри которого с заданной вероятностью Р д находится истинное значение оцениваемого параметра.

Пусть U r - некоторый параметр генеральной совокупности (генеральное среднее, генеральная дисперсия и т.д.).

Интервальной оценкой параметра U r называется интервал (U 1 , U 2), удовлетворяющий условию:

P(U < Ur < U2) = Рд. (3.5)

Вероятность Р д называется доверительной вероятностью.

Доверительная вероятность Р д - вероятность того, что истинное значение оцениваемой величины находится внутри указанного интервала.

При этом интервал (U 1 , U 2) называется доверительным интервалом для оцениваемого параметра.

Часто вместо доверительной вероятности используют связанную с ней величину α = 1 - Р д, которая называется уровнем значимости.

Уровень значимости - это вероятность того, что истинное значение оцениваемого параметра находится за пределами доверительного интервала.

Иногда α и Р д выражают в процентах, например, 5% вместо 0,05 и 95% вместо 0,95.

При интервальном оценивании сначала выбирают соответствующую доверительную вероятность (обычно 0,95 или 0,99), а затем находят соответствующий интервал значений оцениваемого параметра.

Отметим некоторые общие свойства интервальных оценок.

1. Чем ниже уровень значимости (чем больше Р д), тем шире интервальная оценка. Так, если при уровне значимости 0,05 интервальная оценка генерального среднего есть 34,7 < М < 39,4, то для уровня 0,01 она будет гораздо шире: 33,85 < М < 40,25.

2. Чем больше объем выборки n, тем уже интервальная оценка с выбранным уровнем значимости. Пусть, например, 5 - процентная оценка генеральной средней (β=0,05), полученная по выборке из 20 элементов, тогда 34,7 < М < 39,4.

Увеличив объем выборки до 80, мы при том же уровне значимости получим более точную оценку: 35,5 < М < 38,6.

В общем случае построение надежных доверительных оценок требует знания закона, по которому оцениваемый случайный признак распределен в генеральной совокупности. Рассмотрим, как строится интервальная оценка генерального среднего признака, который распределен в генеральной совокупности по нормальному закону.

3.4. ИНТЕРВАЛЬНАЯ ОЦЕНКА ГЕНЕРАЛЬНОГО СРЕДНЕГО ДЛЯ НОРМАЛЬНОГО ЗАКОНА РАСПРЕДЕЛЕНИЯ

Построение интервальной оценки генерального среднего М для генеральной совокупности с нормальным законом распределения основано на следующем свойстве. Для выборки объема n отношение

подчиняется распределению Стьюдента с числом степеней свободы ν = n - 1.

Здесь Х - выборочное среднее, а s - выборочное СКО.

Используя таблицы распределения Стьюдента или их компьютерный аналог, можно найти такое граничное значение что c заданной доверительной вероятностью выполняется неравенство:

Этому неравенству соответствует неравенство для М:

где ε - полуширина доверительного интервала.

Таким образом, построение доверительного интервала для М проводится в следующей последовательности.

1. Выбирают доверительную вероятность Р д (обычно 0,95 или 0,99) и для нее по таблице распределения Стьюдента находят параметр t

2. Рассчитывают полуширину доверительного интервала ε:

3. Получают интервальную оценку генерального среднего с выбранной доверительной вероятностью:

Кратко это записывается так:

Для нахождения интервальных оценок разработаны компьютерные процедуры.

Поясним, как пользоваться таблицей распределения Стьюдента. Эта таблица имеет два «входа»: левый столбец, называемый числом степеней свободы ν = n - 1, и верхняя строка - уровень значимости α. На пересечении соответствующей строки и столбца находят коэффициент Стьюдента t.

Применим этот метод к нашей выборке. Фрагмент таблицы распределения Стьюдента представлен ниже.

Таблица 3.3. Фрагмент таблицы распределения Стьюдента

Простой статистический ряд для выборки из 20 человек (n = 20, ν =19) представлен в табл. 3.1. Для этого ряда расчеты по формулам (3.1-3.3) дают: Х = 37,05; s = 5,02.

Выберем α = 0,05 (Р д = 0,95). На пересечении строки «19» и столбца «0,05» найдем t = 2,09.

Вычислим точность оценки по формуле (3.6): ε = 2,09?5,02/λ /20 = 2,34.

Построим интервальную оценку: с вероятностью 95% неизвестное генеральное среднее удовлетворяет неравенству:

37,05 - 2,34 < М < 37,05 + 2,34, или М = 37,05 ± 2,34 (м/с), Р д = 0,95.

3.5. МЕТОДЫ ПРОВЕРКИ СТАТИСТИЧЕСКИХ ГИПОТЕЗ

Статистические гипотезы

Прежде чем сформулировать, что такое статистическая гипотеза, рассмотрим следующий пример.

Для сравнения двух методик лечения некоторого заболевания были отобраны две группы пациентов по 20 человек, лечение которых проводилось по этим методикам. Для каждого пациента фиксировалось количество процедур, после которого достигался положительный эффект. По этим данным для каждой группы находились выборочные средние (Х), выборочные дисперсии (s 2) и выборочные СКО (s).

Результаты представлены в табл. 3.4.

Таблица 3.4

Количество процедур, необходимое для получения положительного эффекта, - случайная величина, вся информация о которой на данный момент содержится в приведенной выборке.

Из табл. 3.4 видно, что выборочное среднее в первой группе меньше, чем во второй. Означает ли это, что и для генеральных средних имеет место такое же соотношение: М 1 < М 2 ? Достаточно ли статистических данных для такого вывода? Ответы на эти вопросы и дает статистическая проверка гипотез.

Статистическая гипотеза - это предположение относительно свойств генеральных совокупностей.

Мы будем рассматривать гипотезы о свойствах двух генеральных совокупностей.

Если генеральные совокупности имеют известные, одинаковые распределения оцениваемой величины, а предположения касаются величин некоторого параметра этого распределения, то гипотезы называются параметрическими. Например, выборки извлечены из генеральных совокупностей с нормальным законом распределения и одинаковой дисперсией. Требуется выяснить, одинаковы ли генеральные средние этих совокупностей.

Если о законах распределения генеральных совокупностей ничего не известно, то гипотезы об их свойствах называют непараметрическими. Например, одинаковы ли законы распределения генеральных совокупностей, из которых извлечены выборки.

Нулевая и альтернативная гипотезы.

Задача проверки гипотез. Уровень значимости

Познакомимся с терминологией, применяемой при проверке гипотез.

Н 0 - нулевая гипотеза (гипотеза скептика) - это гипотеза об отсутствии различий между сравниваемыми выборками. Скептик считает, что различия между выборочными оценками, полученными по результатам исследований, - случайны;

Н 1 - альтернативная гипотеза (гипотеза оптимиста) - это гипотеза о наличии различий между сравниваемыми выборками. Оптимист считает, что различия между выборочными оценками вызваны объективными причинами и соответствуют различиям генеральных совокупностей.

Проверка статистических гипотез осуществима только тогда, когда из элементов сравниваемых выборок можно составить некоторую величину (критерий), закон распределения которой в случае справедливости Н 0 известен. Тогда для этой величины можно указать доверительный интервал, в который с заданной вероятностью Р д попадает ее значение. Этот интервал называют критической областью. Если значение критерия попадает в критическую область, то принимается гипотеза Н 0 . В противном случае принимается гипотеза Н 1 .

В медицинских исследованиях используют Р д = 0,95 или Р д = 0,99. Этим значениям соответствуют уровни значимости α = 0,05 или α = 0,01.

При проверке статистических гипотез уровнем значимости (α) называется вероятность отклонения нулевой гипотезы, когда она верна.

Обратите внимание на то, что по своей сути процедура проверки гипотез направлена на обнаружение различий, а не на подтверждение их отсутствия. При выходе значения критерия за пределы критической области мы можем с чистым сердцем сказать «скептику» - ну что, Вы еще хотите?! Если бы различия отсутствовали, то с вероятностью 95% (или 99%) расчетное значение было бы в указанных пределах. Так ведь нет!..

Ну а если значение критерия попадает в критическую область, то нет никаких оснований считать что гипотеза Н 0 верна. Это, скорее всего, указывает на одну из двух возможных причин.

1. Объемы выборок недостаточно велики, чтобы обнаружить имеющиеся различия. Вполне вероятно, что продолжение экспериментов принесет успех.

2. Различия есть. Но они настолько малы, что не имеют практического значения. В этом случае продолжение экспериментов не имеет смысла.

Перейдем к рассмотрению некоторых статистических гипотез, используемых в медицинских исследованиях.

3.6. ПРОВЕРКА ГИПОТЕЗ О РАВЕНСТВЕ ДИСПЕРСИЙ, F-КРИТЕРИЙ ФИШЕРА

В некоторых клинических исследованиях о положительном эффекте свидетельствует не столько величина исследуемого параметра, сколько его стабилизация, уменьшение его колебаний. В этом случае возникает вопрос о сравнении двух генеральных дисперсий по результатам выборочного обследования. Эта задача может быть решена с помощью критерия Фишера.

Постановка задачи

нормальным законом распределения. Объемы выборок -

n 1 и n 2 , а выборочные дисперсии равны s 1 и s 2 2 генеральные дисперсии.

Проверяемые гипотезы:

Н 0 - генеральные дисперсии одинаковы;

Н 1 - генеральные дисперсии различны.

Показано, если выборки извлечены из генеральных совокупностей с нормальным законом распределения, то при справедливости гипотезы Н 0 отношение выборочных дисперсий подчиняется распределению Фишера. Поэтому в качестве критерия для проверки справедливости Н 0 берется величина F, вычисляемая по формуле:

где s 1 и s 2 - выборочные дисперсии.

Это отношение подчиняется распределению Фишера с числом степеней свободы числителя ν 1 = n 1 - 1 и числом степеней свободы знаменателя ν 2 = n 2 - 1. Границы критической области находятся по таблицам распределения Фишера или с помощью компьютерной функции БРАСПОБР.

Для примера, представленного в табл. 3.4, получим: ν 1 = ν 2 = 20 - 1 = 19; F = 2,16/4,05 = 0,53. При α = 0,05 границы критической области равны соответственно: = 0,40, = 2,53.

Значение критерия попало в критическую область, поэтому принимается гипотеза Н 0: генеральные дисперсии выборок одинаковы.

3.7. ПРОВЕРКА ГИПОТЕЗ ОТНОСИТЕЛЬНО РАВЕНСТВА СРЕДНИХ, t-КРИТЕРИЙ СТЬЮДЕНТА

Задача сравнения средних двух генеральных совокупностей возникает, когда практическое значение имеет именно величина исследуемого признака. Например, когда сравниваются сроки лечения двумя различными методами или количества осложнений, возникающих при их применении. В этом случае можно использовать t-критерий Стьюдента.

Постановка задачи

Получены две выборки {Х 1 } и {Х 2 }, извлеченные из генеральных совокупностей с нормальным законом распределения и одинаковыми дисперсиями. Объемы выборок - n 1 и n 2 , выборочные средние равны Х 1 и Х 2, а выборочные дисперсии - s 1 2 и s 2 2 соответственно. Требуется сравнить между собой генеральные средние.

Проверяемые гипотезы:

Н 0 - генеральные средние одинаковы;

Н 1 - генеральные средние различны.

Показано, что в случае справедливости гипотезы Н 0 величина t, вычисляемая по формуле:

распределена по закону Стьюдента с числом степеней свободы ν = ν 1 + + ν2 - 2.

Здесь где ν 1 = n 1 - 1 - число степеней свободы для первой выборки; ν 2 = n 2 - 1 - число степеней свободы для второй выборки.

Границы критической области находят по таблицам t-распределения или с помощью компьютерной функции СТЬЮДРАСПОБР. Распределение Стьюдента симметрично относительно нуля, поэтому левая и правая границы критической области одинаковы по модулю и противоположны по знаку: -и

Для примера, представленного в табл. 3.4, получим:

ν 1 = ν 2 = 20 - 1 = 19; ν = 38, t = -2,51. При α = 0,05 = 2,02.

Значения критерия выходит за левую границу критической области, поэтому принимаем гипотезу Н 1: генеральные средние различны. При этом среднее генеральной совокупности первой выборки МЕНЬШЕ.

Применимость t-критерия Стьюдента

Критерий Стьюдента применим только к выборкам из нормальных совокупностей с одинаковыми генеральными дисперсиями. Если хотя бы одно из условий нарушено, то применимость критерия сомнительна. Требование нормальности генеральной совокупности обычно игнорируют, ссылаясь на центральную предельную теорему. Действительно, разность выборочных средних, стоящая в числителе (3.10), может считаться нормально распределенной при ν > 30. Но вопрос о равенстве дисперсий проверке не подлежит, и ссылки на то, что критерий Фишера не обнаружил различий, принимать во внимание нельзя. Тем не менее t-критерий достаточно широко применяется для обнаружения различий в средних значениях генеральных совокупностей, хотя и без достаточных оснований.

Ниже рассматривается непараметрический критерий, который с успехом используют для этих же целей и который не требует ни нормальности, ни равенства дисперсий.

3.8. НЕПАРАМЕТРИЧЕСКОЕ СРАВНЕНИЕ ДВУХ ВЫБОРОК: КРИТЕРИЙ МАННА-УИТНИ

Непараметрические критерии предназначены для обнаружения различий в законах распределения двух генеральных совокупностей. Критерии, которые чувствительны к различиям генеральных средних, называют критериями сдвига. Критерии, которые чувствительны к различиям генеральных дисперсий, называют критериями масштаба. Критерий Манна-Уитни относится к критериям сдвига и используется для обнаружения различий в средних значениях двух генеральных совокупностей, выборки из которых представлены в ранговой шкале. Измеренные признаки распологаются на этой шкале в порядке возрастания, а затем нумеруются целыми числами 1, 2... Эти числа и называются рангами. Равным величинам присваивают одинаковые ранги. Значение имеет не сама величина признака, а лишь порядковое место, который она занимает среди других величин.

В табл. 3.5. первая группа из таблицы 3.4 представлена в развернутом виде (строка 1), подвергнута ранжированию (стока 2), а затем ранги одинаковых величин заменены среднеарифметическими значениями. Например, элементы 4 и 4, стоящие в первой строке, получили ранги 2 и 3, которые затем заменены на одинаковые значения 2,5.

Таблица 3.5

Постановка задачи

Независимые выборки {Х 1 } и {Х 2 } извлечены из генеральных совокупностей с неизвестными законами распределения. Объемы выборок n 1 и n 2 соответственно. Значения элементов выборок представлены в ранговой шкале. Требуется проверить, различаются ли эти генеральные совокупности между собой?

Проверяемые гипотезы:

Н 0 - выборки принадлежат к одной генеральной совокупности; Н 1 - выборки принадлежат к различным генеральным совокупностям.

Для проверки таких гипотез применяется {/-критерий Манна-Уитни.

Сначала из двух выборок составляется объединенная выборка {X}, элементы которой ранжируются. Затем находится сумма рангов, соответствующих элементам первой выборки. Эта сумма и является критерием для проверки гипотез.

U = Сумме рангов первой выборки. (3.11)

Для независимых выборок, объемы которых больше 20, величина U подчиняется нормальному распределению, математическое ожидание и СКО которого равны:

Поэтому границы критической области находятся по таблицам нормального распределения.

Для примера, представленного в табл. 3.4, получим: ν 1 = ν 2 = 20 - 1 = 19, U = 339, μ = 410, σ = 37. Для α = 0,05 получим: и лев = 338, и прав = 482.

Значение критерия выходит за левую границу критической области, поэтому принимается гипотеза Н 1: генеральные совокупности имеют различные законы распределения. При этом среднее генеральной совокупности первой выборки МЕНЬШЕ.

Статистический ряд распределения - упорядоченное распределение единиц совокупности на группы по определенному признаку. Он характеризует состав (структуру) изучаемого явления, позволяет судить об однородности совокупности, закономерности распределения и границах варьирования единиц совокупности.

Ряды распределения, построенные по атрибутивным (качественным) признакам, называются атрибутивными (распределение населения по полу, занятости, национальности, профессии и т.д.).

Ряды распределения, построенные по количественному признаку, называются вариационными (распределение населения по возрасту, рабочих – по стажу работы, зарплате и т.д.). Вариационные ряды распределения состоят из двух элементов: вариантов и частот. Варианты – отдельные значения признака, которые он принимает в ряду. Частоты – это численность отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности и определяет число элементов всей совокупности. Частости – это частоты, выраженные в долях единиц или в % к итогу.

Вариационные ряды в зависимости от характера вариации подразделяются на дискретные и интервальные. Дискретные вариационные ряды основаны на дискретных (прерывных) признаках, имеющих только целые значения, на дискретных признаках, представленных в виде интервалов. Интервальные вариационные ряды основаны на непрерывных признаках (имеющих любые значения, даже дробные).

7. Табличное и графическое представление статистических данных.

Результаты сводки и группировки излагаются в виде таблиц. Таблица – рациональная, наглядная и компактная форма стат.материала.

Статистическая таблица – таблица, содержащая результаты подсчета практических данных и является итогом сводки первоначальной информации.

Таблица характеризует совокупность по одному или нескольким признакам, взаимосвязанным логикой.

Статистическая таблица имеет свое подлежащее и сказуемое. Подлежащее – объект, характеризующийся цифрами. Сказуемое таблицы - система показателей.

Таблицы бывают простые и сложные. В простой таблице дается простой перечень объектов. Сложная таблица содержит группировку единиц совокупности одновременно по 2-м и более признакам. Таблица д/б компактной, заголовки краткими, информация в столбцах и графах должна завершаться итоговой строкой. Графы и строки должны иметь единицы измерения, затем необходимо провести четную и логическую проверку таблицы.

Статистический график – чертеж, на котором стат.совокупности, характеризуемые определенными показателями описываются с помощью условных геометрических образов или знаков. При построении графика необходимо соблюдать требования: наглядность, выразительность, понятность. Поле графика – часть плоскости, где расположены графические образы. Виды графиков: линейные, столбиковые, полосовые, круговые, секторные, фигурные, точечные, объемные, применяются диаграммы и стат.карты. Картограмма – схематическая географическая карта, на которой выделены отрасли промышленности или структура состава населения.

Предположим, что в результате измерений параметров исследуемых объектов имеется статистическая совокупность, представляющая собой множество значений СВ Х, полученное в результате измерений(наблюдений).

Построение гистограммы осуществляется в следующем порядке.

1. Весь диапазон измерений СВ () делится на интервалы и подсчитывается количество значений , приходящееся на каждый -й интервал. Это число делится на общее количество измерений (изделий) и определяется частота, соответствующая данному интервалу.

Сумма частот всех разрядов очевидно должна быть равна единице.

2. Строится таблица 1.1 , в которой приведены интервалы в порядке их расположения вдоль оси абсцисс и соответствующие частоты. Эта таблица называется статистическим рядом .

Таблица 1.1

Статистический ряд значений СВ

Интервал,
Количество значений
Частота,

Здесь -обозначение i-го интервала; - его границы; k- число интервалов.

При группировке наблюденных значений СВ по интервалам может возникнуть ситуация, при которой значение попадает на границу интервала. В этом случае встает вопрос о том, к какому разряду отнести это значение. Рекомендуется считать данное значение принадлежащим в равной мере обоим интервалам и прибавлять к числам того и другого интервала по 0,5.

3. Определение числа интервалов.

Число интервалов, на которые следует группировать статистический ряд, не должно быть слишком большим, поскольку в этом случае ряд распределения становится невыразительным, и частоты в нем обнаруживают незакономерные колебания. С другой стороны оно не должно быть слишком малым, так как при малом числе интервалов свойства распределения описываются статистическим рядом слишком грубо.

Практика показывает, что в большинстве случаев рационально выбирать число интервалов в пределах 10¸20. Чем больше и однороднее статистический материал, тем большее количество интервалов можно выбирать при составлении статистического ряда.

Для определения количества интервалов можно также использовать эмпирические формулы, предлагаемые различными авторами. В работе в качестве таких формул предлагается использовать следующие выражения

Эти выражения получены для наиболее часто встречающихся на практике распределений с эксцессом, находящимся в пределах от 1,8 до 6, то есть от равномерного до распределения Лапласа.

Длины интервалов могут быть как одинаковыми, так и различными. Очевидно, что проще их брать одинаковыми. Однако, при оформлении данных о СВ, распределенных слишком неравномерно, иногда бывает удобно выбирать в области наибольшей плотности распределения интервалы более узкие, чем в области малой плотности.

4. Оформление гистограммы графически.

Статистический ряд оформляется графически в виде так называемой гистограммы (рис.1.1). Она строится следующим образом. По оси абсцисс откладываются интервалы, а на каждом из интервалов как основании строится прямоугольник, площадь которого равна частоте данного интервала. Для построения гистограммы нужно частоту каждого интервала разделить на его длину и полученное число взять в качестве высоты прямоугольника. В случае равных по длине интервалов высоты прямоугольников пропорциональны соответствующим частотам. Из способа построения гистограммы следует, что полная площадь ее равна единице.

Очевидно, что при увеличении числа опытов можно выбирать все более мелкие интервалы, и при этом верх гистограммы будет все более приближаться к кривой, ограничивающей площадь, равную единице. Эта кривая представляет собой график функции плотности распределения вероятности f(x) (дифференциальная функция распределения для непрерывных СВ).

5. Статистическая функция распределения.

Пользуясь данными статистического ряда, можно построить и статистическую(эмпирическую) функцию распределения СВ Х. Для этого из ряда берутся точки x i границ интервалов и соответствующие им суммы частот p i , приходящиеся на прямоугольники гистограммы, лежащие левее этих точек. Эти частоты и их суммы обозначают как F(x i). Тогда получим систему выражений, определяющих точки статистической функции распределения. Соединяя их ломаной линией или плавной кривой, получим приближенный график статистической функции распределения (интегральной функции распределения для непрерывных СВ) F(x) (рис.1.2).

Важнейшим этапом исследования социально-экономических явлений и процессов является систематизация первичных данных и получение на этой основе сводной характеристики всего объекта при помощи обобщающих показателей, что достигается путем сводки и группировки первичного статистического материала.

Статистическая сводка - это комплекс последовательных операций по обобщению конкретных единичных фактов, образующих совокупность, для выявления типичных черт и закономерностей, присущих изучаемому явлению в целом. Проведение статистической сводки включает следующие этапы :

  • выбор группировочного признака;
  • определение порядка формирования групп;
  • разработка системы статистических показателей для характеристики групп и объекта в целом;
  • разработка макетов статистических таблиц для представления результатов сводки.

Статистической группировкой называется расчленение единиц изучаемой совокупности на однородные группы по определенным существенным для них признакам. Группировки являются важнейшим статистическим методом обобщения статистических данных, основой для правильного исчисления статистических показателей.

Различают следующие виды группировок: типологические, структурные, аналитические. Все эти группировки объединяет то, что единицы объекта разделены на группы по какому-либо признаку.

Группировочным признаком называется признак, по которому проводится разбиение единиц совокупности на отдельные группы. От правильного выбора группировочного признака зависят выводы статистического исследования. В качестве основания группировки необходимо использовать существенные, теоретически обоснованные признаки (количественные или качественные).

Количественные признаки группировки имеют числовое выражение (объем торгов, возраст человека, доход семьи и т. д.), а качественные признаки группировки отражают состояние единицы совокупности (пол, семейное положение, отраслевая принадлежность предприятия, его форма собственности и т. д.).

После того, как определено основание группировки следует решить вопрос о количестве групп, на которые надо разбить исследуемую совокупность. Число групп зависит от задач исследования и вида показателя, положенного в основание группировки, объема совокупности, степени вариации признака.

Например, группировка предприятий по формам собственности учитывает муниципальную, федеральную и собственность субъектов федерации. Если группировка производится по количественному признаку, то тогда необходимо обратить особое внимание на число единиц исследуемого объекта и степень колеблемости группировочного признака.

Когда определено число групп, то следует определить интервалы группировки. Интервал - это значения варьирующего признака, лежащие в определенных границах. Каждый интервал имеет свою величину, верхнюю и нижнюю границы или хотя бы одну из них.

Нижней границей интервала называется наименьшее значение признака в интервале, а верхней границей - наибольшее значение признака в интервале. Величина интервала представляет собой разность между верхней и нижней границами.

Интервалы группировки в зависимости от их величины бывают: равные и неравные. Если вариация признака проявляется в сравнительно узких границах и распределение носит равномерный характер, то строят группировку с равными интервалами. Величина равного интервала определяется по следующей формуле :

где Хmax, Хmin - максимальное и минимальное значения признака в совокупности; n - число групп.

Простейшая группировка, в которой каждая выделенная группа характеризуется одним показателем представляет собой ряд распределения.

Статистический ряд распределения - это упорядоченное распределение единиц совокупности на группы по определенному признаку. В зависимости от признака, положенного в основу образования ряда распределения, различают атрибутивные и вариационные ряды распределения.

Атрибутивными называют ряды распределения, построенные по качественным признакам, то есть признакам, не имеющим числового выражения (распределение по видам труда, по полу, по профессии и т.д.). Атрибутивные ряды распределения характеризуют состав совокупности по тем или иным существенным признакам. Взятые за несколько периодов, эти данные позволяют исследовать изменение структуры.

Вариационными рядами называют ряды распределения, построенные по количественному признаку. Любой вариационный ряд состоит из двух элементов: вариантов и частот. Вариантами называются отдельные значения признака, которые он принимает в вариационном ряду, то есть конкретное значение варьирующего признака.

Частотами называются численности отдельных вариант или каждой группы вариационного ряда, то есть это числа, которые показывают, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность всей совокупности, ее объем. Частостями называются частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частостей равна 1 или 100%.

В зависимости от характера вариации признака различают три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.

Ранжированный вариационный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.

Дискретный вариационный ряд характеризует распределение единиц совокупности по дискретному признаку, принимающему только целые значения. Например, тарифный разряд, количество детей в семье, число работников на предприятии и др.

Если признак имеет непрерывное изменение, которые в определенных границах могут принимать любые значения («от - до»), то для этого признака нужно строить интервальный вариационный ряд . Например, размер дохода, стаж работы, стоимость основных фондов предприятия и др.

Примеры решения задач по теме «Статистическая сводка и группировка»

Задача 1 . Имеется информация о количестве книг, полученных студентами по абонементу за прошедший учебный год.

Построить ранжированный и дискретный вариационные ряды распределения, обозначив элементы ряда.

Решение

Данная совокупность представляет собой множество вариантов количества получаемых студентами книг. Подсчитаем число таких вариантов и упорядочим в виде вариационного ранжированного и вариационного дискретного рядов распределения.

Задача 2 . Имеются данные о стоимости основных фондов у 50 предприятий, тыс. руб.

Построить ряд распределения, выделив 5 групп предприятий (с равными интервалами).

Решение

Для решения выберем наибольшее и наименьшее значения стоимости основных фондов предприятий. Это 30,0 и 10,2 тыс. руб.

Найдем размер интервала: h = (30,0-10,2):5= 3,96 тыс. руб.

Тогда в первую группу будут входить предприятия, размер основных фондов которых составляет от 10,2 тыс. руб. до 10,2+3,96=14,16 тыс. руб. Таких предприятий будет 9. Во вторую группу войдут предприятия, размер основных фондов которых составит от 14,16 тыс. руб. до 14,16+3,96=18,12 тыс. руб. Таких предприятий будет 16. Аналогично найдем число предприятий, входящих в третью, четвертую и пятую группы.

Полученный ряд распределения поместим в таблицу.

Задача 3 . По ряду предприятий легкой промышленности получены следующие данные:

Произведите группировку предприятий по числу рабочих, образуя 6 групп с равными интервалами. Подсчитайте по каждой группе:

1. число предприятий
2. число рабочих
3. объем произведенной продукции за год
4. среднюю фактическую выработку одного рабочего
5. объем основных средств
6. средний размер основных средств одного предприятия
7. среднюю величину произведенной продукции одним предприятием

Результаты расчета оформите в таблицы. Сделайте выводы.

Решение

Для решения выберем наибольшее и наименьшее значения среднесписочного числа рабочих на предприятии. Это 43 и 256.

Найдем размер интервала: h = (256-43):6 = 35,5

Тогда в первую группу будут входить предприятия, среднесписочное число рабочих на которых составляет от 43 до 43+35,5=78,5 человек. Таких предприятий будет 5. Во вторую группу войдут предприятия, среднесписочное число рабочих на которых составит от 78,5 до 78,5+35,5=114 человек. Таких предприятий будет 12. Аналогично найдем число предприятий, входящих в третью, четвертую, пятую и шестую группы.

Полученный ряд распределения поместим в таблицу и вычислим необходимые показатели по каждой группе:

Вывод : Как видно из таблицы, вторая группа предприятий является самой многочисленной. В нее входят 12 предприятий. Самыми малочисленными являются пятая и шестая группы (по два предприятия). Это самые крупные предприятия (по числу рабочих).

Поскольку вторая группа самая многочисленная, объем произведенной продукции за год предприятиями этой группы и объем основных средств значительно выше других. Вместе с тем средняя фактическая выработка одного рабочего на предприятиях этой группы наибольшей не является. Здесь лидируют предприятия четвертой группы. На эту группу приходится и довольно большой объем основных средств.

В заключении отметим, что средний размер основных средств и средняя величина произведенной продукции одного предприятия прямо пропорциональны размерам предприятия (по числу рабочих).

При большом числе наблюдений (порядка сотен) простая статистическая совокупность перестает быть удобной формой записи статистического материала - она становится слишком громоздкой и мало наглядной. Для придания ему большей компактности и наглядности статистический материал должен быть подвергнут дополнительной обработке - строится так называемый «статистический ряд».

Предположим, что в нашем распоряжении результаты наблюдений над непрерывной случайной величиной , оформленные в виде простой статистической совокупности. Разделим весь диапазон наблюденных значений на интервалы или «разряды» и подсчитаем количество значений , приходящееся на каждый -й разряд. Это число разделим на общее число наблюдений и найдем частоту, соответствующую данному разряду:

Сумма частот всех разрядов, очевидно, должна быть равна единице.

Построим таблицу, в которой приведены разряды в порядке их расположения вдоль оси абсцисс и соответствующие частоты. Эта таблица называется статистическим рядом:

Здесь -обозначение -го разряда - его границы; - соответствующая частота; - число разрядов.

Пример 1. Произведено 500 измерений боковой ошибки наводки при стрельбе с самолета по наземной цели. Результаты измерений (в тысячных долях радиана) сведены в статистический ряд:

Здесь обозначены интервалы значений ошибки наводки; - число наблюдений в данном интервале, - соответствующие частоты.

При группировке наблюденных значений случайной величины по разрядам возникает вопрос о том, к какому разряду отнести значение, находящееся в точности на границе двух разрядов. В этих случаях можно рекомендовать (чисто условно) считать данное значение принадлежащим в равной мере к обоим разрядам и прибавлять к числам , того и другого разряда по .

Число разрядов, на которые, следует группировать статистический материал, не должно быть слишком большим (тогда ряд распределения становится невыразительным, и частоты в нем обнаруживают незакономерные колебания); с другой стороны, оно не должно быть слишком малым (при малом числе разрядов свойства распределения описываются статистическим рядом слишком грубо). Практика показывает, что в большинстве случаев рационально выбирать число разрядов порядка 10 – 20. Чем богаче и однороднее статистический материал, тем большее число разрядов можно выбирать при составлении статистического ряда. Длины разрядов могут быть как одинаковыми, так и различными. Проще, разумеется, брать их одинаковыми. Однако при оформлении данных о случайных величинах, распределенных крайне неравномерно, иногда бывает удобно выбирать в области наибольшей плотности распределения разряды более узкие, чем в области малой плотности.

Статистический ряд часто оформляется графически в виде так называемой гистограммы. Гистограмма строится следующим образом. По оси абсцисс откладываются разряды, и на каждом из разрядов как их основании строится прямоугольник, площадь которого равна частоте данного разряда. Для построения гистограммы нужно частоту каждого разряда разделить на его длину и полученное число взять в качестве высоты прямоугольника. В случае равных по длине разрядов высоты прямоугольников пропорциональны соответствующим частотам. Из способа построения гистограммы следует, что полная площадь ее равна единице.

В качестве примера можно привести гистограмму для ошибки наводки, построенную по данным статистического ряда, рассмотренного в примере 1 (рис. 7.3.1).

Очевидно, при увеличении числа опытов можно выбирать все более и более мелкие разряды; при этом гистограмма будет все более приближаться к некоторой кривой, ограничивающей площадь, равную единице. Нетрудно убедиться, что эта кривая представляет собой график плотности распределения величины .

Пользуясь данными статистического ряда, можно приближенно построить и статистическую функцию распределения величины . Построение точной статистической функции распределения с несколькими сотнями скачков во всех наблюденных значениях слишком трудоемко и себя не оправдывает. Для практики обычно достаточно построить статистическую функцию распределения по нескольким точкам. В качестве этих точек удобно взять границы разрядов, которые фигурируют в статистическом ряде. Тогда, очевидно,

(7.3.2)

Соединяя полученные точки ломанной линией или плавной кривой, получим приближенный график статистической функции распределения.

Пример 2. Построить приближенно статистическую функцию распределения ошибки наводки по данным статистического ряда примера 1.