Что такое касательная к окружности? Свойства касательной к окружности. Общая касательная к двум окружностям

  • 13.10.2019

Понятие касательной к окружности

Окружность имеет три возможных взаимных расположений относительно прямой:

    Если расстояние от центра окружности до прямой меньше радиуса, то прямая имеет две точки пересечения с окружностью.

    Если расстояние от центра окружности до прямой равно радиусу, то прямая имеет две точки пересечения с окружностью.

    Если расстояние от центра окружности до прямой больше радиуса, то прямая имеет две точки пересечения с окружностью.

Введем теперь понятие касательной прямой к окружности.

Определение 1

Касательной к окружности называется прямая, которая имеет с ней одну точку пересечения.

Общая точка окружности и касательной называется точкой касания (рис 1).

Рисунок 1. Касательная к окружности

Теоремы, связанные с понятием касательной к окружности

Теорема 1

Теорема о свойстве касательной : касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Доказательство.

Рассмотрим окружность с центром $O$. Проведем в точке $A$ касательную $a$. $OA=r$ (Рис. 2).

Докажем, что $a\bot r$

Будем доказывать теорему методом «от противного». Предположим, что касательная $a$ не перпендикулярна радиусу окружности.

Рисунок 2. Иллюстрация теоремы 1

То есть $OA$ - наклонная к касательной. Так как перпендикуляр к прямой $a$ всегда меньше наклонной к этой же прямой, то расстояние от центра окружности до прямой меньше радиуса. Как нам известно, в этом случае прямая имеет две точки пересечения с окружностью. Что противоречит определению касательной.

Следовательно, касательная перпендикулярна к радиусу окружности.

Теорема доказана.

Теорема 2

Обратная теореме о свойстве касательной : Если прямая, проходящая через конец радиуса какой-либо окружности перпендикулярна радиусу, то данная прямая является касательной к этой окружности.

Доказательство.

По условию задачи мы имеем, что радиус -- перпендикуляр, проведенный из центра окружности к данной прямой. Следовательно, расстояние от центра окружности до прямой равняется длине радиуса. Как мы знаем, в этом случае окружность имеет только одну точку пересечения с этой прямой. По определению 1 и получаем, что данная прямая -- касательная к окружности.

Теорема доказана.

Теорема 3

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Доказательство.

Пусть дана окружность с центром в точке $O$. Из точки $A$ (лежащей все окружности) проведены две различные касательные. Из точки касания соответственно $B$ и $C$ (Рис. 3).

Докажем, что $\angle BAO=\angle CAO$ и что $AB=AC$.

Рисунок 3. Иллюстрация теоремы 3

По теореме 1, имеем:

Следовательно, треугольники $ABO$ и $ACO$ -- прямоугольные. Так как$OB=OC=r$, а гипотенуза $OA$ -- общая, то эти треугольники равны по гипотенузе и катету.

Отсюда и получаем, что $\angle BAO=\angle CAO$ и $AB=AC$.

Теорема доказана.

Пример задачи на понятие касательной к окружности

Пример 1

Дана окружность с центром в точке $O$ и радиусом $r=3\ см$. Касательная $AC$ имеет точку касания $C$. $AO=4\ см$. Найти $AC$.

Решение.

Изобразим вначале все на рисунке (Рис. 4).

Рисунок 4.

Так как $AC$ касательная, а $OC$ радиус, то по теореме 1, получаем, что$\angle ACO={90}^{{}^\circ }$. Получили, что треугольник $ACO$ -- прямоугольный, значит, по теореме Пифагора, имеем:

\[{AC}^2={AO}^2+r^2\] \[{AC}^2=16+9\] \[{AC}^2=25\] \

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Определение. Касательная к окружности — это прямая на плоскости, имеющая ровно одну общую точку с окружностью.

Вот парочка примеров:

Окружность с центром O касается прямой l в точке A Из любой точки M за пределами окружности можно провести ровно две касательных Различие между касательной l , секущей BC и прямой m , не имеющей общих точек с окружностью

На этом можно было бы закончить, однако практика показывает, что недостаточно просто зазубрить определение — нужно научиться видеть касательные на чертежах, знать их свойства и вдобавок как следует попрактиковаться в применении этих свойств, решая реальные задачи. Всем этим всем мы сегодня и займёмся.

Основные свойства касательных

Для того, чтобы решать любые задачи, нужно знать четыре ключевых свойства. Два из них описаны в любом справочнике / учебнике, а вот последние два — про них как-то забывают, а зря.

1. Отрезки касательных, проведённых из одной точки, равны

Чуть выше мы уже говорили про две касательных, проведённых из одной точки M. Так вот:

Отрезки касательных к окружности, проведённых из одной точки, равны.

Отрезки AM и BM равны

2. Касательная перпендикулярна радиусу, проведённому в точку касания

Ещё раз посмотрим на картинку, представленную выше. Проведём радиусы OA и OB , после чего обнаружим, что углы OAM и OBM — прямые.

Радиус, проведённый в точку касания, перпендикулярен касательной.

Этот факт можно использовать без доказательства в любой задаче:

Радиусы, проведённые в точку касания, перпендикулярны касательным

Кстати, заметьте: если провести отрезок OM , то мы получим два равных треугольника: OAM и OBM .

3. Соотношение между касательной и секущей

А вот это уже факт посерьёзнее, и большинство школьников его не знают. Рассмотрим касательную и секущую, которые проходят через одну и ту же общую точку M . Естественно, секущая даст нам два отрезка: внутри окружности (отрезок BC — его ещё называют хордой) и снаружи (его так и называют — внешняя часть MC ).

Произведение всей секущей на её внешнюю часть равно квадрату отрезка касательной

Соотношение между секущей и касательной

4. Угол между касательной и хордой

Ещё более продвинутый факт, который часто используется для решения сложных задач. Очень рекомендую взять на вооружение.

Угол между касательной и хордой равен вписанному углу, опирающемуся на эту хорду.

Откуда берётся точка B ? В реальных задачах она обычно «всплывает» где-то в условии. Поэтому важно научиться распознавать данную конфигурацию на чертежах.


Иногда всё-таки касается:)

1. Две касательные из одной точки.

Пусть к окружности с центром в точке $$O$$ проведены две касательные $$AM$$ и $$AN$$, точки $$M$$ и $$N$$ лежат на окружности (рис. 1).

По определению касательной $$OM \perp AM$$ и $$ON \perp AN$$. В прямоугольных треугольниках $$AOM$$ и $$AON$$ гипотенуза $$AO$$ общая, катеты $$OM$$ и $$ON$$ равны, значит, $$\Delta AOM = \Delta AON$$. Из равенства этих треугольников следует $$AM=AN$$ и $$\angle MAO = \angle NAO$$. Таким образом, если из точки к окружности проведены две касательные, то:

1.1$${\!}^{\circ}$$. отрезки касательных от этой точки до точек касания равны;

1.2$${\!}^{\circ}$$. прямая, проходящая через центр окружности и заданную точку, делит угол между касательными пополам.

Используя свойство 1.1$${\!}^{\circ}$$, легко решим следующие две задачи. (В решении используется тот факт, что в каждый треугольник можно вписать окружность).

На основании $$AC$$ равнобедренного треугольника $$ABC$$ расположена точка $$D$$, при этом $$DA = a$$, $$DC = b$$ (рис. 2). Окружности, вписанные в треугольники $$ABD$$ и $$DBC$$ , касаются прямой $$BD$$ в точках $$M$$ и $$N$$ соответственно. Найти отрезок $$MN$$.

.

$$\triangle$$ Пусть $$a > b $$. Обозначим $$x = MN$$, $$y = ND$$, $$z = BM$$.

По свойству касательных $$DE = y$$, $$KD = x + y $$, $$AK = AP = a - (x + y)$$, $$CE = CF = b - y$$, $$BP = z$$, и $$BF = z + x$$. Выразим боковые стороны (рис. 2а): $$AB = z+a-x-y$$, $$BC=z+x-b-y$$. По условию $$AB=BC$$, поэтому $$z+a-x -y = z+x+b-y$$. Отсюда находим $$x=\frac{(a-b)}{2}$$, т. е. $$MN=\frac{(a-b)}{2}$$. Если $$a \lt b$$, то $$MN=\frac{(b-a)}{2}$$. Итак, $$MN=\frac{1}{2}|a-b|$$. $$\blacktriangle$$

ОТВЕТ

$$\frac{|a-b|} {2}$$

Доказать, что в прямоугольном треугольнике сумма катетов равна удвоенной сумме радиусов вписанной и описанной окружностей, т. е. $$a+b=2R+2r$$.

$$\triangle$$ Пусть $$M$$, $$N$$ и $$K$$ - точки касания окружностью сторон прямоугольного треугольника $$ABC$$ (рис. 3), $$AC=b$$, $$BC=a$$, $$r$$ - радиус вписанной окружности, $$R$$ - радиус описанной окружности. Вспомним, что гипотенуза есть диаметр описанной окружности: $$AB=2R$$. Далее, $$OM \perp AC$$, $$BC \perp AC$$, значит, $$OM \parallel BC$$, аналогично $$ON \perp BC$$, $$AC \perp BC$$, значит, $$ON \parallel AC$$. Четырёхугольник $$MONC$$ по определению есть квадрат, все его стороны равны $$r$$, поэтому $$AM = b - r$$ и $$BN = a - r $$.

По свойству касательных $$AK=AM$$ и $$BK=BN$$, поэтому $$AB = AK + KB = a+b-2r$$, а т. к. $$AB=2R$$ , то получаем $$a+b=2R+2r$$. $$\blacktriangle$$

Свойство 1.2$${\!}^{\circ}$$ сформулируем по другому: центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Около окружности с центром в точке $$O$$ описана трапеция $$ABCD$$ с основаниями $$AD$$ и $$BC$$ (рис. 4а).

а) Доказать, что $$\angle AOB = \angle COD = $$90$${\!}^{\circ}$$ .

б) Найти радиус окружности, если $$BO = \sqrt{5}$$ и $$AO = 2 \sqrt{5}$$. (рис. 4б)

$$\triangle$$ а) Окружность вписана в угол $$BAD$$, по свойству 1.2$${\!}^{\circ}$$ $$AO$$ - биссектриса угла $$A$$, $$\angle 1 = \angle 2 = \frac{1}{2} \angle A$$; $$BO$$ - биссектриса угла $$B$$, $$\angle 3 = \angle 4 = \frac{1}{2} \angle B$$. Из параллельности прямых $$AD$$ и $$BC$$ следует, что $$\angle A + \angle B = 180^{\circ}$$,поэтому в треугольнике $$AOB$$ из $$\angle 1 + \angle 3 = \frac{1}{2} (\angle A + \angle B) = 90^{\circ}$$ следует $$\angle AOB = 90^{\circ}$$.

Аналогично $$CO$$ и $$DO$$ биссектрисы углов $$C$$ и $$D$$ трапеции, $$\angle COD = 180^{\circ} - \frac{1}{2}(\angle C + \angle D) = 90^{\circ}$$.

б) Треугольник $$AOB$$ прямоугольный с катетами $$AO = 2 \sqrt{5}$$ и $$BO = \sqrt{5}$$. Находим гипотенузу $$AB=\sqrt{20+5} = 5$$. Если окружность касается стороны $$AB$$ в точке $$K$$, то $$OK \perp AB$$ и $$OK$$ - радиус окружности. По свойству прямоугольного треугольника $$AB \cdot OK = AO \cdot BO$$, откуда $$OK = \frac{2\sqrt{5}\cdot \sqrt{5}}{5} = 2$$. $$\blacktriangle$$

ОТВЕТ

2. Угол между касательной и хордой с общей точкой на окружности.

Напомним, что градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Теорема 1. Мера угла между касательной и хордой, имеющими общую точку на окружности, равна половине градусной меры дуги, заключённой между его сторонами.

$$\square$$ Пусть $$O$$ - центр окружности, $$AN$$ - касательная (рис. 5). Угол между касательной $$AN$$ и хордой $$AB$$ обозначим $$\alpha$$. Соединим точки $$A$$ и $$B$$ с центром окружности.

Таким образом, градусная мера угла между касательной и хордой равна половине градусной меры дуги $$AnB$$, которая заключена между его сторонами, и, значит, угол $$BAN$$ равен любому вписанному углу, опирающемуся на дугу $$AnB$$. (Аналогичные рассуждения можно провести и для угла $$MAB$$). $$\blacksquare$$

Точка $$C$$ лежит на окружности и отстоит от касательных, проведённых из точки $$M$$ к окружности, на расстоянии $$CS = a$$ и $$CP = b$$ (рис. 6). Доказать, что $$CK = \sqrt{ab}$$.

$$\triangle$$ Проведём хорды $$CA$$ и $$CB$$. Угол $$SAC$$ между касательной $$SA$$ и хордой $$AC$$ равен вписанному углу $$ABC$$. А угол $$PBC$$ между касательной $$PB$$ и хордой $$BC$$ равен вписанному углу $$BAC$$. Получили две пары подобных прямоугольных треугольников $$\Delta ASC \sim\Delta BKC$$ и $$\Delta BPC \sim \Delta AKC$$. Из подобия имеем $$\dfrac{a}{AC}=\dfrac{x}{BC}$$ и $$\dfrac{b}{BC}=\dfrac{x}{AC}$$, откуда следует $$ab=x^2$$, $$x=\sqrt{ab}$$. (Если проекция точки $$C$$ на прямую $$AB$$ лежит вне отрезка $$AB$$, доказательство изменяется не сильно). (Ч. т. д.) $$\blacktriangle$$

Приём , применённый в решении, - проведение «недостающих» хорд - часто помогает в задачах и теоремах с окружностью и касательной, как, например, в доказательстве следующей теоремы «о касательной и секущей» .

Теорема 2. Если из одной точки $$M$$ к окружности проведены касательная $$MA$$ и секущая $$MB$$, пересекающая окружность в точке $$C$$ (рис. 7), то справедливо равенство $$MA^2 = MB \cdot MC$$, т. е. если из точки $$M$$ к окружности проведены касательная и секущая, то квадрат отрезка касательной от точки $$M$$ до точки касания равен произведению длин отрезков секущей от точки $$M$$ до точек её пересечения с окружностью.

$$\square$$ Проведём хорды $$AC$$ и $$AB$$. Угол $$MAC$$ между касательной и хордой равен вписанному углу $$ABC$$, оба измеряются половиной градусной меры дуги $$AnC$$. В треугольниках $$MAC$$ и $$MBA$$ равны углы $$MAC$$ и $$MBA$$, а угол при вершине $$M$$ общий. Эти треугольники по-
добны, из подобия имеем $$MA/MB = MC/MA$$, откуда следует $$MA^2 = MB \cdot MC$$. $$\blacksquare$$

Радиус окружности равен $$R$$. Из точки $$M$$ проведены касательная $$MA$$ и секущая $$MB$$, проходящая через центр $$O$$ окружности (рис. 8). Найти расстояние между точкой $$M$$ и центром окружности, если $$MB = 2MA$$.

$$\triangle$$ Обозначим искомое расстояние $$x: \: x=MO$$, тогда $$MB = x+R$$, $$MC=x-R$$ и по условию $$MA=MB/2=(x+R)/2$$. По теореме о касательной и секущей $$(x+R)^2/4=(x+R)(x-R)$$, откуда, сокращая на $$(x+R)$$, получаем $$(x+R)/4=x-R$$. Легко находим $$x = \dfrac{5}{3}R$$. $$\blacktriangle$$

ОТВЕТ

$$\dfrac{5}{3}R$$

3. Свойство хорд окружности.

Полезно доказать эти свойства самостоятельно (лучше закрепляется), можете разобрать доказательства по учебнику.

1.3$${\!}^{\circ}$$. Диаметр, перпендикулярный хорде, делит её пополам. Обратно: диаметр, проходящей через середину хорды (не являющуюся диаметром) перпендикулярен ей.

1.4$${\!}^{\circ}$$. Равные хорды окружности находятся на равном расстоянии от центра окружности. Обратно: на равном расстоянии от центра окружности находятся равные хорды.

1.5$${\!}^{\circ}$$. Дуги окружности, заключённые между параллельными хордами, равны (рис. 9 подскажет путь доказательства).

1.6$${\!}^{\circ}$$. Если две хорды $$AB$$ и $$CD$$ пересекаются в точке $$M$$, то $$AM \cdot MB = CM \cdot MD$$, т. е. произведение длин отрезков одной хорды равно произведению длин отрезков другой хорды (на рис. 10 $$\Delta AMC \sim \Delta DMB$$).

Следующее утверждение докажем.

1.7$${\!}^{\circ}$$. Если в окружности радиуса $$R$$ вписанный угол, опирающийся на хорду длины $$a$$, равен $$\alpha$$,то $$a = 2R\textrm{sin}\alpha$$.

$$\blacksquare$$ Пусть в окружности радиуса $$R$$ хорда $$BC = a$$, вписанный угол $$BAC$$ опирается на хорду $$a$$, $$\angle BAC = \alpha$$ (рис. 11 а,б).

Проведём диаметр $$BA^{"}$$ и рассмотрим прямоугольный треугольник $$BA^{"}C$$ ($$\angle BCA^{"}= 90^{\circ}$$, опирается на диаметр).

Если угол $$A$$ острый (рис. 11а), то центр $$O$$ и вершина $$A$$ лежат по одну сторону от прямой $$BC$$, $$\angle A^{"} = \angle A$$ и $$BC = BA^{"} \cdot \textrm{sin}A^{"}$$, т. е. $$a=2R\textrm{sin}A^{"}$$ .

Если угол $$A$$ тупой, центр $$O$$ и вершина $$A$$ лежат по разные стороны от прямой $$BC$$ (рис. 11б), тогда $$\angle A^{"} = 180^{\circ} - \angle A$$ и $$BC = BA^{"} \cdot \textrm{sin}A^{"}$$, т. е. $$a=2R\textrm{sin}(180-A^{"})=2R\textrm{sin}A^{"}$$.

Если $$\alpha = 90^{\circ}$$, то $$BC$$ - диаметр, $$BC = 2R = 2R\textrm{sin}90^{\circ}$$.

Во всех случаях справедливо равенство $$a=2R\textrm{sin}A^{"}$$ . $$\blacktriangle$$

Итак, $$\boxed{a = 2R\textrm{sin}\alpha}$$ или $$\boxed{R = \dfrac{a}{2\textrm{sin}\alpha}}$$. (*)

Найти радиус окружности, описанной около треугольника $$ABC$$, в котором $$AB = 3\sqrt{3}$$, $$BC = 2$$ и угол $$ABC = 150^{\circ}$$.

$$\triangle$$ В описанной около треугольника $$ABC$$ окружности известен угол $$B$$ , опирающийся на хорду $$AC$$. Из доказанной формулы следует $$R = \dfrac{AC}{2\textrm{sin}B}$$.

Применим теорему косинусов к треугольнику $$ABC$$ (рис. 12) при этом учтём, что

$$\textrm{cos}150^{\circ} = \textrm{cos}(180^{\circ}-30^{\circ}) = -\textrm{cos}30^{\circ} = -\dfrac{\sqrt{3}}{2}$$, получим

$$AC^2 = 27+4+2\cdot 3\sqrt{3} \cdot 2 \cdot \dfrac{\sqrt{3}}{2} = 49,\: AC=7$$.

Находим $$R = \dfrac{AC}{2\textrm{sin}150^{\circ}} = \dfrac{7}{2\textrm{sin}30^{\circ}} = 7$$. $$\blacktriangle$$

ОТВЕТ

Используем свойство пересекающихся хорд для доказательства следующей теоремы.

Теорема 3. Пусть $$AD$$ - биссектриса треугольника $$ABC$$, тогда

$$AD^2 = AB\cdot AC - BD\cdot CD$$, т.е. если $$AB=c,\: AC=b,\: BD=x,\:DC=y$$, то $$AD^2 = bc-xy$$ (рис. 13а).

$$\square$$ Опишем около треугольника $$ABC$$ окружность (рис. 13б) и точку пересечения продолжения биссектрисы $$AD$$ с окружностью обозначим $$B_1$$. Обозначим $$AD = l $$ и $$DB_1 = z $$. Вписанные углы $$ABC$$ и $$AB_1C$$ равны, $$AD$$ - биссектриса угла $$A$$, поэтому $$\Delta ABD \sim \Delta AB_1C$$ (по двум углам). Из подобия имеем $$\dfrac{AD}{AC} = \dfrac{AB}{AB_1}$$, т. е. $$\dfrac{l}{b} = \dfrac{c}{l+z}$$, откуда $$l^2=bc-lz$$. По свойству пересекающихся хорд $$BD\cdot DC = AD \cdot DB_1$$, т. е. $$xy=lz$$, поэтому получаем $$l^2=bc-xy$$ . $$\blacksquare$$

4. Две касающиеся окружности

В заключении параграфа рассмотрим задачи с двумя касающимися окружностями. Две окружности, имеющие общую точку и общую касательную в этой точке, называются касающимися . Если окружности расположены по одну сторону от общей касательной, они называются касающимися внутренне (рис. 14а), а если расположены по разные стороны от касательной, то они называются касающимися внешне (рис. 14б).

Если $$O_1$$ и $$O_2$$ - центры окружностей, то по определению касательной $$AO_1 \perp l$$, $$AO_2 \perp l$$, следовательно, в обоих случаях общая точка касания лежит на линии центров.

Две окружности радиусов $$R_1$$ и $$R_2$$ ($$R_1 > R_2$$) внутренне касаются в точке $$A$$. Через точку $$B$$, лежащую на большей окружности, проведена прямая, касающаяся меньшей окружности в точке $$C$$ (рис. 15). Найти $$AB$$, если $$BC = a$$.

$$\triangle$$ Пусть $$O_1$$ и $$O_2$$ - центры большей и меньшей окружностей, $$D$$ - точка пересечения хорды $$AB$$ с меньшей окружностью. Если $$O_1N \perp AB$$ и $$O_2M \perp AB$$, то $$AN=AB/2$$ и $$AM=AD/2$$ (т. к. радиус, перпендикулярный хорде, делит её пополам). Из подобия треугольников $$AO_2M$$ и $$AO_1N$$ следует $$AN:AM = AO_1:AO_2$$ и, значит, $$AB:AD = R_1:R_2$$.

По теореме о касательной и секущей имеем:

$$BC^2 = AB\cdot BD = AB (AB-AD) = AB^2(1 - \dfrac{AD}{AB})$$,

т. е. $$a^2 = AB^2(1-\dfrac{R_2}{R_1})$$.

Итак, $$AB = a \sqrt{\dfrac{R_1}{R_1-R_2}}$$. $$\blacktriangle$$

Две окружности радиусов $$R_1$$ и $$R_2$$ внешне касаются в точке $$A$$ (рис. 16). Их общая внешняя касательная касается большей окружности в точке $$B$$ и меньшей - в точке $$C$$. Найти радиус окружности, описанной около треугольника $$ABC$$.

$$\triangle$$ Соединим центры $$O_1$$ и $$O_2$$ с точками $$B$$ и $$C$$. По определению касательной, $$O_1B \perp BC$$ и $$O_2C \perp BC$$. Следовательно, $$O_1B \parallel O_2C$$ и $$\angle BO_1O_2 + \angle CO_2O_1 = 180^{\circ}$$. Так как $$\angle ABC = \dfrac{1}{2} \angle BO_1A$$ и $$\angle ACB = \dfrac{1}{2} \angle CO_2A$$, то $$\angle ABC + \angle ACB = 90^{\circ}$$. Отсюда следует, что $$\angle BAC = 90^{\circ}$$ , и поэтому радиус окружности, описанной около прямоугольного треугольника $$ABC$$ , равен половине гипотенузы $$BC$$.

Найдём $$BC$$. Пусть $$O_2K \perp O_1B$$, тогда $$KO_2 = BC,\: O_1K = R_1-R_2,\: O_1O_2 = R_1+R_2$$. По теореме Пифагора находим:

$$KO_2 = \sqrt{O_1O_2^2 - O_1K^2}= 2\sqrt{R_1R_2}, \: \underline{BC = 2\sqrt{R_1R_2} }$$.

Итак, радиус окружности, описанной около треугольника $$ABC$$ равен $$\sqrt{R_1R_2}$$. В решении $$R_1 > R_2$$, при $$R_1

ОТВЕТ

$$\sqrt{R_1R_2}$$