Электрическое поле и его характеристики. Графическое изображение электрического поля

  • 30.09.2019

Зная вектор напряженности электростатического поля в каждой его точке, можно представить это поле наглядно с помощью силовых линий напряженности (линий вектора E →). Силовые линии напряженности проводят так, чтобы касательная к ним в каждой точке совпадала с направлением вектора напряженности E → (рис. 4, а).

Число линий, пронизывающих единичную площадку dS, перпендикулярную к ним, проводят пропорционально модулю вектора E → (рис. 4, б). Силовым линиям приписывают направление, совпадающее с направлением вектора E → . Полученная картина распределения линий напряженности позволяет судить о конфигурации данного электрического поля в разных его точках. Силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных зарядах. На рис. 5 приведены линии напряженности точечных зарядов (рис. 5, а, б); системы двух разноименных зарядов (рис. 5, а б Рис. 4 Рис. 5 в) − пример неоднородного электростатического поля и двух параллельных разноименно заряженных плоскостей (рис. 5, г) − пример однородного электрического поля.

Теорема Остроградского–Гаусса и её применение.

Введем новую физическую величину, характеризующую электрическое поле – поток вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка , в пределах которой напряженность , т. е. электростатическое поле однородно. Произведение модуля вектора на площадь и на косинус угла между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку (рис. 10.7):

где - проекция поля на направление нормали .

Рассмотрим теперь некоторую произвольную замкнутую поверхность . В случае замкнутой поверхности всегда выбирается внешняя нормаль к поверхности, т. е. нормаль, направленная наружу области.

Если разбить эту поверхность на малые площадки, определить элементарные потоки поля через эти площадки, а затем их просуммировать, то в результате мы получим поток вектора напряженности через замкнутую поверхность (рис. 10.8):

. (10.9)

Рис. 10.7
Рис. 10.8

Теорема Остроградского-Гаусса утверждает: поток вектора напряженности электростатического поля через произвольную замкнутую поверхность прямо пропорционален алгебраической сумме свободных зарядов, расположенных внутри этой поверхности:

, (10.10)

где - алгебраическая сумма свободных зарядов, находящихся внутри поверхности , - объемная плотность свободных зарядов, занимающих объем .

Из теоремы Остроградского-Гаусса (10.10), (10.12) следует, что поток не зависит от формы замкнутой поверхности (сфера, цилиндр, куб и т.п.), а определяется только суммарным зарядом внутри этой поверхности.

Используя теорему Остроградского-Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией.

Пример использования теоремы Остроградского-Гаусса . Рассмотрим задачу о вычислении поля тонкостенного пологооднородно заряженного длинного цилиндра радиуса (тонкой бесконечной заряженной нити). Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Выберем замкнутую поверхность в виде цилиндра произвольного радиуса и длины , закрытого с обоих торцов (рис. 10.9)

Изображение электростатического поля с помощью векторов напряженности в различ­ных точках поля является очень не­удобным, так как картина получается весьма за­путанной. Фарадей предложил более простой и нагляд­ный метод изображения электростати­ческого поля с помощьюлиний напряженнос­тей или силовых линий . Силовыми линиями называ­ются кривые, касательные к которым в каждой точке совпадают с направлением векто­ра напря­женности поля (рис.1.2). Направление силовой линии совпадает с направле­нием . Си­ловые линии начинаются на положительных зарядах и оканчиваются на отрицатель­ных. Силовые линии не пересекаются, так как в каждой точке поля век­торимеет лишь одно направление. Электростатическое поле считается однородным, если напряженность во всех его точках одинакова по величине и направлению. Силовыми линиями такого поля являются прямые, параллельные вектору напряженности.

Силовые линии поля точечных зарядов - ради­альные прямые, выходящие из заряда и уходящие в бесконечность, если он положителен (рис.1.3а). Если за­ряд отрицателен, направление силовых линий ока­зы­вается обратным: они начинаются в бесконечности и оканчиваются на заряде -q (рис.1.3б). Поле точечных зарядов обладает центральной симметрией.

Рис.1.3. Линии напряженности точечных зарядов: а - поло­жительного, б - отрицатель­ного.

На рис.1.3 изображены плоские сечения электро­статических полей системы двух одинаковых по ве­ли­чине зарядов: а) заряды, одинаковые по знаку, б) заряды, разные по знаку.

1. 5. Принцип суперпозиции электростатических полей.

Основной задачей электростатики является определение величины и направ­ле­ния вектора напряженности в каждой точке поля, создаваемого либо системой неподвижных точечных зарядов, либо заряженными поверхностями произвольной формы. Рассмотрим первый случай, когда поле создано системой зарядовq 1 , q 2 ,..., q n . Если в какую-либо точку этого поля поместить пробный заряд q 0 , то на него со стороны зарядов q 1 , q 2 ,..., q n будут действовать кулоновские силы . Со­гласно принципу независимости действия сил, рассмотренного в механике, равно­дей­ствующая силаравна их векторной сумме

.

Используя формулу напряженности электростатического поля, левую часть ра­венства можно записать: , где- напряженность результирующего поля, создаваемого всей системой зарядов в точке, где расположен пробный зарядq 0 . Пра­вую часть равенства соответственно можно записать, где- напря­женность поля, создаваемая одним зарядомq i . Равенство примет вид . Сокращая наq 0 , получим .

Напряженность электростатического поля системы точечных зарядов равна векторной сумме напряженностей полей, создаваемых каждым из этих зарядов в отдельности. В этом заключается принцип независимости действия электростатических полей или принцип суперпозиции (наложения) полей .

Обозначим через радиус-вектор, проведенный из точечного зарядаq i в ис­следуемую точку поля. Напряженность поля в ней от заряда q i равна . Тогда результирующая напряженность, создаваемая всей системой зарядов равна. Полученная формула применима и для расчета электростатических полей за­ря­женных тел произвольной формы так как любое тело можно разделить на очень малые части, каж­дую из которых можно считать точечным зарядомq i . Тогда расчет в любой точке пространства будет аналогичен выше приведенному.

Графическое изображение поля с помощью векторов напряженности в различных точках поля очень неудобно. Вектора напряженности накладываются друг на друга, и получается очень запутанная картина. Более нагляден метод изображения электрических полей с помощью силовых линий, предложенный Фарадеем.

Линии напряженности (силовые линии) – это линии, проведенные в поле так, что касательные к ним в каждой точке совпадает по направлению с вектором напряженности поля в данной точке (Рис.8).

Линии напряженности не пересекаются, т.к. в каждой точке поля вектор напряженности имеет только одно направление. На Рис.9 изображены электростатические поля точечных зарядов и диполя и бесконечно большой плоскости.

Пусть заряд q перемещается вдоль равномерно заряженной бесконечной плоскости из точки 1 в точку 2. Силовые линии электростатического поля и вектор напряженности этого поля направлены перпендикулярно плоскости (Рис.9). Рассчитаем работу электрических сил при перемещении заряда.

, т.к.

Но эту же работу можно было бы определить и по уравнению . И поскольку она равна нулю, то потенциалы поля в точках 1 и 2 равны. Следовательно, поверхности равного потенциала, т.е. эквипотенциальные и поверхности, расположены вдоль плоскости и нормальны к линиям напряженности. Это справедливо и для поля точечного заряда, поля шара, заряженного либо по поверхности, либо по объему и др. полей.

Таким образом, линии напряженности всегда нормальны к эквипотенциальным поверхностям, т.е. поверхностям равного потенциала.

На Рис.9 видно, что поля точечных зарядов обладают центральной симметрией. Линии напряженности – прямые линии, они выходят из заряда, если он положительный и входящие в заряд, если он отрицательный. Следовательно, положительный заряд можно считать началом линий напряженности, а отрицательный – местом их окончания. Касательные к силовым линиям совпадают с самими линиями и направлены в каждой точке поля в том же направлении, что и напряженность.

В случае диполя эти линии искривлены. Стоит отметить, что во всех этих случаях электростатические поля неоднородны – в каждой точке поля напряженность отличается как по величине, так и по направлению. Очевидно, что линиями однородного поля являются прямые параллельные вектору напряженности.

Число проводимых в пространстве силовых линий ничем не ограничено. Линии напряженности, характеризуя направление напряженности, не характеризуют величину напряженности. Однако можно ввести условие, которое связывает величину напряженности с числом проводимых силовых линий. Там, где напряженность больше, линии проводят гуще, а там, где она меньше – менее густо. Принято, что число линий, проходящих через единицу поверхности, которая расположена перпендикулярно к силовым линиям, равно численному значению напряженности.



Общее число линий напряженности, пронизывающих некоторую поверхность, назовем потоком напряженности через эту поверхность.

Получим уравнение для расчета потока напряженности – N E . Сначала определим поток напряженности через элементарную площадку, расположенную под некоторым углом к вектору напряженности (Рис.10).

Силовые линии напряженности электрического поля - линии, касательные к которым в каждой точке совпадают с вектором Е По их направлению можно судить, где расположены положительные (+) и отрицательные (–) заряды, создающие электрическое поле. Густота линий (количество линий, пронизывающих единичную площадку поверхности, перпендикулярную к ним) численно равно модулю вектора Е.




Силовые линии напряженности электрического поля Силовые линии напряженности электрического поля не замкнуты, имеют начало и конец. Можно говорить, что электрическое поле имеет «источники» и «стоки» силовых линий. Силовые линии начинаются на положительных (+) зарядах (Рис. а), заканчиваются на отрицательных (–) зарядах (Рис. б). Силовые линии не пересекаются.






Поток вектора напряженности электрического поля Произвольная площадка dS. Поток вектора напряженности электрического поля через площадку dS: - псевдовектор, модуль которого равен dS, а направление совпадает с направление вектора n к площадке dS. Е = constdФ Е = N - числу линий вектора напряженности электрического поля Е, пронизывающих площадку dS.




Поток вектора напряженности электрического поля Если поверхность не плоская, а поле неоднородное, то выделяют малый элемент dS, который считать плоским, а поле – однородным. Поток вектора напряженности электрического поля: Знак потока совпадает со знаком заряда.


Закон (теорема) Гаусса в интегральной форме. Телесный угол – часть пространства, ограниченная конической поверхностью. Мера телесного угла – отношение площади S сферы, вырезаемой на поверхности сферы конической поверхностью к квадрату радиуса R сферы. 1 стерадиан – телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу этой сферы.


Теорема Гаусса в интегральной форме Электрическое поле создается точечным зарядом +q в вакууме. Поток d Ф Е, создаваемого этим зарядом, через бесконечно малую площадку dS, радиус вектор которой r. dS n – проекция площадки dS на плоскость перпендикулярную в ектору r. n – единичный вектор положительной нормали к площадке dS.










Если произвольная поверхность окружает k– зарядов, то согласно принципу суперпозиции: Теорема Гаусса: для электрического поля в вакууме поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленных на ε 0.






Методика применения теоремы Гаусса для расчета электрических полей – второй способ определения напряженности электрического поля Е Теорема Гаусса применяется для нахождения полей, созданных телами, обладающими геометрической симметрией. Тогда векторное уравнение сводится к скалярному.


Методика применения теоремы Гаусса для расчета электрических полей – второй способ определения напряженности электрического поля Е 1) Находится поток Ф Е вектора Е по определению потока. 2) Находится поток Ф Е по теореме Гаусса. 3) Из условия равенства потоков находится вектор Е.


Примеры применения теоремы Гаусса 1. Поле бесконечной однородно заряженной нити (цилиндра) с линейной плотностью τ (τ = dq/dl, Кл/м). Поле симметричное, направлено перпендикулярно нити и из соображений симметрии на одинаковом расстоянии от оси симметрии цилиндра (нити) имеет одинаковое значение.






2.Поле равномерно заряженной сферы радиуса R. Поле симметричное, линии напряженности Е электрического поля направлены в радиальном направлении, и на одинаковом расстоянии от точки О поле имеет одно и то же значение. Вектор единичной нормали n к сфере радиуса r совпадает с вектором напряженности Е. Охватим заряженную (+q) сферу вспомогательной сферической поверхностью радиуса r.




2.Поле равномерно заряженной сферы При поле сферы находится как поле точечного заряда. При r


(σ = dq/dS, Кл/м 2). Поле симметричное, вектор Е перпендикулярен плоскости с поверхностной плотностью заряда +σ и на одинаковом расстоянии от плоскости имеет одинаковое значение. 3. Поле равномерно заряженной бесконечной плоскости с поверхностной плотностью заряда + σ В качестве замкнутой поверхности возьмем цилиндр, основания которого параллельны плоскости, и который делится заряженной плоскостью на две равные половины.


Теорема Ирншоу Система неподвижных электрических зарядов не может находиться в устойчивом равновесии. Заряд + q будет находиться в равновесии, если при его перемещении на расстояние dr со стороны всех остальных зарядов системы, расположенных вне поверхности S, будет действовать сила F, возвращающая его в исходное положение. Имеется система зарядов q 1, q 2, … q n. Один из зарядов q системы охватим замкнутой поверхностью S. n – единичный вектор нормали к поверхности S.


Теорема Ирншоу Сила F обусловлена полем Е, созданным всеми остальными зарядами. Поле всех внешних зарядов Е должно быть направлено противоположно направлению вектора перемещения dr, то есть от поверхности S к центру. Согласно теореме Гаусса, если заряды не охватываются замкнутой поверхностью, то Ф Е = 0. Противоречие доказывает теорему Ирншоу.




0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 33 Закон Гаусса в дифференциальной форме Дивергенция вектора – число силовых линий, приходящихся на единицу объема, или плотность потока силовых линий. Пример: из объема вытекает и втекает вода. Ф > 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф 0 вытекает больше, чем втекает. Ф title="Закон Гаусса в дифференциальной форме Дивергенция вектора – число силовых линий, приходящихся на единицу объема, или плотность потока силовых линий. Пример: из объема вытекает и втекает вода. Ф > 0 вытекает больше, чем втекает. Ф





а б

Зная вектор напряженности электростатического поля в каждой его точке, можно представить это поле наглядно с помощью силовых линий напряженности (линий вектора ). Силовые линии напряженности проводят так, чтобы касательная к ним в каждой точке совпадала с направлением вектора напряженности(рис. 1.4,а ).

Число линий, пронизывающих единичную площадку dS, перпендикулярную к ним, проводят пропорционально модулю вектора (рис. 1.4,б ).

Силовым линиям приписывают направление, совпадающее с направлением вектора . Полученная картина распределения линий напряженности позволяет судить о конфигурации данного электрического поля в разных его точках. Силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных зарядах. На рис. 1.5 приведены линии напряженности точечных зарядов (рис. 1.5, а , б ); системы двух разноименных зарядов (рис. 1.5, в )  пример неоднородного электростатического поля и двух параллельных разноименно заряженных плоскостей (рис. 1.5, г )  пример однородного электрического поля.

1.5. Распределение зарядов

В некоторых случаях для упрощения математических расчетов истинное распределение точечных дискретных зарядов удобно заменить фиктивным непрерывным распределением. При переходе к непрерывному распределению зарядов используют понятие о плотности зарядов  линейной , поверхностной  и объемной , т. е.

(1.12)

где dq  заряд, распределенный соответственно по элементу длины
, элементу поверхностиdS и элементу объема dV.

С учетом этих распределений формула (1.11) может быть записана в другой форме. Например, если заряд распределен по объему, то вместо q i нужно использовать dq = dV, а символ суммы заменить интегралом, тогда

. (1.13)

1.6. Электрический диполь

Для объяснения явлений, связанных с зарядами в физике используется понятие электрического диполя .

Систему двух равных по величине разноименных точечных зарядов, расстояние между которыми много меньше расстояния до исследуемых точек пространства, называют электрическим диполем. Согласно определению диполя +q=q= q.

Прямую, соединяющую разноименные заряды (полюса), называют осью диполя; точку 0  центром диполя (рис. 1.6). Электрический диполь характеризуется плечом диполя : вектором , направленным от отрицательного заряда к положительному. Основной характеристикой диполя являетсяэлектрический дипольный момент = q. (1.14)

По абсолютной величине

р = q. (1.15)

В СИ электрический дипольный момент измеряется в кулонах умноженных на метр (Кл м).

Рассчитаем потенциал и напряженность электрического поля диполя, считая его точечным, если  r.

Потенциал электрического поля, созданного системой точечных зарядов в произвольной точке, характеризуемой радиусвектором , запишем в виде:

где r 1 r 2  r 2 , r 1  r 2  r =
, так как  r;   угол между радиус-векторами и (рис. 1.6). С учетом этого получим

. (1.16)

Используя формулу, связывающую градиент потенциала с напряженностью, найдем напряженность, создаваемую электрическим полем диполя. Разложим вектор электрического поля диполя на две взаимно перпендикулярные составляющие, т. е.
(рис. 1. 6).

Первая их них определяется движением точки, характеризуемой радиусвектором (при фиксированном значении угла), т. е. значение Е  найдем дифференцированием (1.81) по r, т. е.

. (1.17)

Вторая составляющая определяется движением точки, связанным с изменением угла  (при фиксированном r), т. е. Е  найдем дифференцированием (1.16) по :
, (1.18)

где
,d= rd.

Результирующая напряженность Е 2 = Е  2 + Е  2 или после подстановки
. (1.19)

Замечание : При  = 90 о
, (1.20)

т. е. напряженность в точке на прямой проходящей через центр диполя (т. О) и перпендикулярно оси диполя.

При  = 0 о
, (1.21)

т. е. в точке на продолжении прямой, совпадающей с осью диполя.

Анализ формул (1.19), (1.20), (1.21) показывает, что напряженность электрического поля диполя убывает с расстоянием обратно пропорционально r 3 , т. е. быстрее, чем для точечного заряда (обратно пропорционально r 2).