Распределение зарядов в проводнике. Распределение зарядов в проводниках

  • 30.09.2019

В случае равновесного распределения заряды проводника распределяются в тонком поверхностном слое. Так, например, если проводнику сообщить отрицательный заряд, то из-за наличия сил отталкивания элементов этого заряда они рассредоточатся по всей поверхности проводника.

Исследование при помощи пробной пластинки

Для того чтобы на опыте исследовать, как распределяются заряды на внешней поверхности проводника используют так называемую пробную пластинку. Эта пластинка настолько мала, что при соприкосновении с проводником ее можно рассматривать как часть поверхности проводника. Если эту пластинку приложить к заряженному проводнику, то часть заряда ($\triangle q$) перейдет на нее и величина этого заряда будет равна заряду, который находился на поверхности проводника по площади равной площади пластинки ($\triangle S$).

Тогда величина равная:

\[\sigma=\frac{\triangle q}{\triangle S}(1)\]

называется поверхностной плотностью распределения заряда в данной точке.

Разряжая пробную пластинку через электрометр можно судить о величине поверхностной плотности заряда. Так, например, если зарядить проводящий шар, то можно увидеть, с помощью вышеприведенного метода, что в состоянии равновесия поверхностная плотность заряда на шаре одна и та же во всех его точках. То есть заряд по поверхности шара распределяется равномерно. Для проводников более сложной формы распределение заряда сложнее.

Поверхностная плотность проводника

Поверхность любого проводника является эквипотенциальной, но в общем случае плотность распределения заряда может очень сильно отличаться в разных точках. Поверхностная плотность распределения заряда зависит от кривизны поверхности. В разделе, который был посвящен описанию состояния проводников в электростатическом поле, мы установили, что напряженность поля около поверхности проводника перпендикулярна поверхности проводника в любой его точке и равна по модулю:

где ${\varepsilon }_0$ -- электрическая постоянная, $\varepsilon $ -- диэлектрическая проницаемость среды. Следовательно,

\[\sigma=E\varepsilon {\varepsilon }_0\ \left(3\right).\]

Чем больше кривизна поверхности тем, тем больше напряженность поля. Следовательно, на выступах плотность заряда особенно велика. Вблизи углублений в проводнике эквипотенциальные поверхности расположены реже. Следовательно, напряженность поля и плотность зарядов в этих местах меньше. Плотность зарядов при заданном потенциале проводника определяется кривизной поверхности. Она растет с увеличением выпуклости и убывает с увеличением вогнутости. Особенно большая плотность заряда на остриях проводников. Так, напряженность поля на острие может быть настолько велика, что может возникать ионизация молекул газа, который окружает проводник. Ионы газа противоположного знака заряда (относительно заряда проводника) притягиваются к проводнику, нейтрализуют его заряд. Ионы того же знака отталкиваются от проводника, «тянут» за собой нейтральные молекулы газа. Такое явление называют электрическим ветром. Заряд проводника уменьшается в результате процесса нейтрализации, он как бы стекает с острия. Такое явление называют истечением заряда с острия.

Мы уже говорили, что когда мы вносим проводник в электрическое поле, происходит разделение положительных зарядов (ядер) и отрицательных (электронов). Такое явление носит название электростатической индукции. Заряды, которые появляются в результате, называют индуцированными. Индуцированные заряды создают дополнительное электрическое поле.

Поле индуцированных зарядов направлено в сторону противоположную направлению внешнего поля. Поэтому заряды, которые накапливаются на проводнике, ослабляют внешнее поле.

Перераспределение зарядов идет, пока не выполнены условия равновесия зарядов для проводников. Такие как: равенство нулю напряженности поля везде внутри проводника и перпендикулярность вектора напряженности заряженной поверхности проводника. Если в проводнике есть полость, то при равновесном распределении индуцированного заряда поле внутри полости равно нулю. На этом явлении основана электростатическая защита. Если какой-либо прибор хотят защитить от воздействия внешних полей, его окружают проводящим экраном. В таком случае внешнее поле компенсируется внутри экрана возникающими на его поверхности индуцированными зарядами. Такой может быть не обязательно сплошным, но и в виде густой сетки.

Задание: Бесконечно длинная нить, заряженная с линейной плотностью $\tau $, расположена перпендикулярно бесконечно большой проводящей плоскости. Расстояние от нити до плоскости $l$. Если продолжить нить до пересечения с плоскостью, то в месте пересечения получим некоторую точку А. Составьте формулу зависимости поверхностной плотности $\sigma \left(r\right)\ $индуцированных зарядов на плоскости от расстояния до точки А.

Рассмотрим некоторую точку В на плоскости. Бесконечно длинная заряженная нить в точке В создает электростатическое поле, в поле находится проводящая плоскость, на плоскости образуются индуцированные заряды, которые в свою очередь создают поле, которое ослабляет внешнее поле нити. Нормальная составляющая поля плоскости (индуцированных зарядов) в точке В будет равна нормальной составляющей поля нити в этой же точке, если система находится в равновесии. Выделим на нити элементарный заряд ($dq=\tau dx,\ где\ dx-элементарный\ кусочек\ нити\ $), найдем в точке В напряжённость, создаваемую этим зарядом ($dE$):

Найдем нормальную составляющую элемента напряженности поля нити в точке В:

где $cos\alpha $ выразим как:

Выразим расстояние $a$ по теореме Пифагора как:

Подставим (1.3) и (1.4) в (1.2), получим:

Найдем интеграл от (1.5) где пределы интегрирования от $l\ (расстояние\ до\ ближайшего\ конца\ нити\ от\ плоскости)\ до\ \infty $:

С другой стороны, мы знаем, что поле равномерно заряженной плоскости равно:

Приравняем (1.6) и (1.7), выразим поверхностную плотность заряда:

\[\frac{1}{2}\cdot \frac{\sigma}{\varepsilon {\varepsilon }_0}=\frac{\tau }{4\pi {\varepsilon }_0\varepsilon }\cdot \frac{1}{{\left(r^2+x^2\right)}^{{1}/{2}}}\to \sigma=\frac{\tau }{2\cdot \pi {\left(r^2+x^2\right)}^{{1}/{2}}}.\]

Ответ: $\sigma=\frac{\tau }{2\cdot \pi {\left(r^2+x^2\right)}^{{1}/{2}}}.$

Пример 2

Задание: Рассчитайте поверхностную плотность заряда, который создается около поверхности Земли, если напряженность поля Земли равна 200$\ \frac{В}{м}$.

Будем считать, что диэлектрическая проводимость воздуха $\varepsilon =1$ как у вакуума. За основу решения задачи примем формулу для расчёта напряженности заряженного проводника:

Выразим поверхностную плотность заряда, получим:

\[\sigma=E{\varepsilon }_0\varepsilon \ \left(2.2\right),\]

где электрическая постоянная нам известна и равна в СИ ${\varepsilon }_0=8,85\cdot {10}^{-12}\frac{Ф}{м}.$

Проведем вычисления:

\[\sigma=200\cdot 8,85\cdot {10}^{-12}=1,77\cdot {10}^{-9}\frac{Кл}{м^2}.\]

Ответ: Поверхностная плотность распределения заряда поверхности Земли равна $1,77\cdot {10}^{-9}\frac{Кл}{м^2}$.

Идеальной физической моделью заряда в электростатике является точечный заряд.

Точечным зарядом называется заряд, сосредоточенный на теле, размерами которого можно пренебречь по сравнению с расстоянием до других тел или до рассматриваемой точки поля. Иными словами, точечный заряд - это материальная точка, которая имеет электрический заряд.

Если заряженное тело настолько велико, что его нельзя рассматривать как точечный заряд, то в этом случае необходимо знать распределение зарядов внутри тела.

Выделим внутри заряженного тела малый объем и обозначим через электрический заряд, находящийся в этом объеме. Предел отношения , когда объем неограниченно уменьшается, называют объемной плотностью электрического заряда в данной точке . Обозначают ее буквой :

Единицей объемной плотности заряда в СИ является кулон на кубический метр (Кл/м 3).

В случае неравномерно заряженного тела плотность различна в разных точках. Распределение заряда в объеме тела задано, если известно как функция координат.

В металлических телах заряды распределяются только внутри тонкого слоя, прилегающего к поверхности. В этом случае удобно пользоваться поверхностной плотностью заряда , которая представляет собой предел отношения заряда к площади поверхности, по которой распределен этот заряд:

где - заряд, находящийся на участке поверхности площадью .

Следовательно, поверхностная плотность заряда измеряется зарядом, приходящимся на единицу поверхности тела. Распределение зарядов по поверхности описывается зависимостью поверхностной плотности (x, y, z) от координат точек поверхности.

Единицей поверхностной плотности заряда в СИ является кулон на квадратный метр (Кл/м 2).

В том случае, если заряженное тело по форме представляет собой нить (диаметр поперечного сечения тела много меньше его длины , удобно использовать линейную плотность заряда

где - заряд, находящийся на длине тела.

Единицей линейной плотности заряда в СИ является кулон на метр (Кл/м).

Если известно распределение зарядов внутри тела, то можно вычислить напряженность электростатического поля, создаваемого этим телом. Для этого заряженное тело мысленно разбивают на бесконечно малые части и, рассматривая их как точечные заряды, вычисляют напряженность поля, создаваемую отдельными частями тела. Суммарную напряженность поля находят затем суммированием полей, создаваемых отдельными частями тела, т.е.

Все вещества в соответствии с их способностью проводить электрический ток подразделяются на проводники, диэлектрики и полупроводники. Проводниками называют вещества, в которых электрически заряженные частицы - носители заряда - способны свободно перемещаться по всему объему вещества. К проводникам относятся металлы, растворы солей, кислот и щелочей, расплавленные соли, ионизированные газы.

Ограничим рассмотрение твердыми металлическими проводниками, имеющими кристаллическую структуру. Эксперименты показывают, что при очень малой разности потенциалов, приложенной к проводнику, содержащиеся в нем электроны проводимости, приходят в движение и перемещаются по объему металлов практически свободно.

В отсутствие внешнего электростатического поля электрические поля положительных ионов и электронов проводимости взаимно скомпенсированы, так что напряженность внутреннего результирующего поля равна нулю.

При внесении металлического проводника во внешнее электростатическое поле с напряженностью Е 0 на ионы и свободные электроны начинают действовать кулоновские силы, направленные в противоположные стороны. Эти силы вызывают смещение заряженных частиц внутри металла, причем в основном смещаются свободные электроны, а положительные ионы, находящиеся в узлах кристаллической решетки, практически не меняют своего положения. В результате внутри проводника возникает электрическое поле с напряженностью Е " .

Смещение заряженных частиц внутри проводника прекращается тогда, когда суммарная напряженность поля Е в проводнике, равная сумме напряженностей внешнего и внутреннего полей, станет равной нулю:

Представим выражение, связывающее напряженность и потенциал электростатического поля, в следующем виде:

где Е - напряженность результирующего поля внутри проводника; n - внутренняя нормаль к поверхности проводника. Из равенства нулю результирующей напряженности Е следует, что в пределах объема проводника потенциал имеет одно и то же значение:

Полученные результаты позволяют сделать три важных вывода:

  • 1. Во всех точках внутри проводника напряженность поля, т. е. весь объем проводника эквипотенциален.
  • 2. При статическом распределении зарядов по проводнику вектор напряженности Ена его поверхности должен быть направлен по нормали к поверхности

3. Поверхность проводника также эквипотенциальна, так как для любой точки поверхности

3. Проводники во внешнем электростатическом поле

Если проводнику сообщить избыточный заряд, то этот заряд распределится по поверхности проводника. Действительно, если внутри проводника выделить произвольную замкнутую поверхность S, то поток вектора напряженности электрического поля через эту поверхность должен быть равен нулю. В противном случае внутри проводника будет существовать электрическое поле, что приведет к перемещению зарядов. Следовательно, для того, чтобы выполнялось условие

суммарный электрический заряд внутри этой произвольной поверхности должен равняться нулю.

Напряженность электрического поля вблизи поверхности заряженного проводника можно определить, используя теорему Гаусса. Для этого выделим на поверхности проводника малую произвольную площадку dS и, считая ее за основание, построим на ней цилиндр с образующей dl (рис. 3.1). На поверхности проводника вектор Е направлен по нормали к этой поверхности. Поэтому поток вектора Е через боковую поверхность цилиндра из-за малости dl равен нулю. Поток этого вектора через нижнее основание цилиндра, находящееся внутри проводника, также равен нулю, так как внутри проводника электрическое поле отсутствует. Следовательно, поток вектора Е через всю поверхность цилиндра равен потоку через его верхнее основание dS " :

где Е n - проекция вектора напряженности электрического поля на внешнюю нормаль n к площадке dS.

По теореме Гаусса, этот поток равен алгебраической сумме электрических зарядов, охватываемых поверхностью цилиндра, отнесенной к произведению электрической постоянной и относительной диэлектрической проницаемости среды, окружающей проводник. Внутри цилиндра находится заряд

где - поверхностная плотность зарядов. Следовательно

т. е. напряженность электрического поля вблизи поверхности заряженного проводника прямо пропорциональна поверхностной плотности электрических зарядов, находящихся на этой поверхности.

Экспериментальные исследования распределения избыточных зарядов на проводниках различной формы показали, что распределение зарядов на внешней поверхности проводника зависит только от формы поверхности: чем больше кривизна поверхности (чем меньше радиус кривизны), тем больше поверхностная плотность заряда.

Вблизи участков с малыми радиусами кривизны, особенно около острия, из-за высоких значений напряженности происходит ионизация газа, например, воздуха. В результате одноименные с зарядом проводника ионы движутся в направлении от поверхности проводника, а ионы противоположного знака к поверхности проводника, что приводит к уменьшению заряда проводника. Это явление получило название стекания заряда. электрический ток проводник статический

На внутренних поверхностях замкнутых полых проводников избыточные заряды отсутствуют.

Если заряженный проводник привести в соприкосновение с внешней поверхностью незаряженного проводника, то заряд будет перераспределяться между проводниками до тех пор, пока их потенциалы не станут равными.

Если же тот же заряженный проводник касается внутренней поверхности полого проводника, то заряд передается полому проводнику полностью.

Эта особенность полых проводников была использована американским физиком Робертом Ван-де-Граафом для создания в 1931г. электростатического генератора, в котором высокое постоянное напряжение создается посредством механического переноса электрических зарядов. Наиболее совершенные электростатические генераторы позволяют получать напряжение величиной до 15-20 МВ.

В заключение отметим еще одно явление, присущее только проводникам. Если незаряженный проводник поместить во внешнее электрическое поле, то его противоположные части в направлении поля будут иметь заряды противоположных знаков. Если, не снимая внешнего поля, проводник разделить, то разделенные части будут иметь разноименные заряды. Это явление получило название электростатической индукции.

1. Электростатика -- это раздел физики, где изучаются свойства и взаимодействия неподвижных относительно инерциальной системы отсчета электрически заряженных тел или частиц, которые имеют электрический заряд.

Основание электростатики положили работы Кулона, хотя за десять лет до него такие же результаты, даже с ещё большей точностью, получил Кавендиш. Самую существенную часть электростатики составляет теория потенциала, созданная Грином и Гауссом.

2. Все вещества в соответствии с их способностью проводить электрический ток подразделяются на проводники, диэлектрики и полупроводники. Проводниками называют вещества, в которых электрически заряженные частицы - носители заряда - способны свободно перемещаться по всему объему вещества. К проводникам относятся металлы, растворы солей, кислот и щелочей, расплавленные соли, ионизированные газы.

Во всех точках внутри проводника напряженность поля, т. е. весь объем проводника эквипотенциален.

При статическом распределении зарядов по проводнику вектор напряженности Ена его поверхности должен быть направлен по нормали к поверхности

в противном случае под действием касательной к поверхности проводника компоненты напряженности заряды должны перемещаться по проводнику.

Поверхность проводника также эквипотенциальна, так как для любой точки поверхности

Проводники это тела, в которых электрические заряды способны перемещаться под действием как угодно слабого электростатического поля.

Вследствие этого сообщенный проводнику заряд будет перераспределяться до тех пор, пока в любой точке внутри проводника напряженность электрического поля не станет равной нулю.

Таким образом, напряженность электрического поля внутри проводника должна быть равной нулю.

Так как , то , φ=const

Потенциал внутри проводника должен быть постоянен.

2.) На поверхности заряженного проводника вектор напряженности Е должен быть направлен по нормали к этой поверхности, иначе под действием составляющей, касательной к поверхности (Е t). заряды перемещались бы по поверхности проводника.

Таким образом, при условии статического распределения зарядов напряженность на поверхности

где E n -нормальная составляющая напряженности.

Отсюда следует, что при равновесии зарядов поверхность проводника является эквипотенциальной.

3. В заряженном проводнике некомпенсированные заряды располагаются только на поверхности проводника.

Проведём внутри проводника произвольную замкнутую поверхность S, ограничивающую некоторый внутренний объём проводника. Согласно теореме Гаусса, суммарный заряд этого объёма равен:

Таким образом, в состоянии равновесия внутри проводника избыточных зарядов нет. Поэтому если мы удалим вещество из некоторого объёма, взятого внутри проводника, то это никак не отразится на равновесном расположении зарядов. Таким образом, избыточный заряд распределяется на полом проводнике так же, как и на сплошном, т.е. по его наружной поверхности. На внутренней поверхности избыточные заряды располагаться не могут. Это следует также из того, что одноимённые заряды отталкиваются и, следовательно, стремятся расположиться на наибольшем расстоянии друг от друга.

Исследуя величину напряжённости электрического поля вблизи поверхности заряженных тел различной формы можно судить и о распределении зарядов по поверхности.

Исследования показали, что плотность зарядов при данном потенциале проводника определяется кривизной поверхности – она растёт с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости).Особенно велика бывает плотность на остриях. Напряженность поля вблизи остриёв может быть настолько большой, что происходит ионизация молекул окружающего газа. При этом заряд проводника уменьшается, он как бы стекает с острия.

Если поместить на внутреннюю поверхность полого проводника электрический заряд, то этот заряд перейдёт на наружную поверхность проводника, повышая потенциал последнего. Многократно повторяя передачу полому проводнику можно значительно повысить его потенциал до величины, ограничиваемой явлением стекания зарядов с проводника. Этот принцип был использован Ван-дер-Граафом для построения электростатического генератора. В этом устройстве заряд от электростатической машины передаётся бесконечной непроводящей ленте, переносящий его внутрь большой металлической сферы. Там заряд снимается и переходит на наружную поверхность проводника, таким образом, удаётся постепенно сообщить сфере очень большой заряд и достигнуть разности потенциалов в несколько миллионов вольт.

Проводники во внешнем электрическом поле.

В проводниках могут свободно перемещаться не только заряды, принесённые извне, но и заряды, из которых состоят атомы и молекулы проводника (электроны и ионы). Поэтому при помещении незаряженного проводника во внешнее электрическое поле свободные заряды будут перемещаться к его поверхности, положительные по полю, а отрицательные против поля. В результате у концов проводника возникают заряды противоположного знака, называемые индуцированными зарядами. Это явление, состоящее в электризации незаряженного проводника во внешнем электростатическом поле путём разделения на этом проводнике уже имеющихся в нём в равных количествах положительных и отрицательных электрических зарядов называется электризацией через влияние или электростатической индукцией .


Перемещение зарядов в проводнике помещённом во внешнее электрическое поле Е 0 будет происходить до тех пор, пока создаваемое индукционными зарядами дополнительное поле Е доп не скомпенсирует внешнее поле Е 0 во всех точках внутри проводника и результирующее поле Е внутри проводника станет равным нулю.

Суммарное поле Е вблизи проводника будет заметно отличаться от своего первоначального значения Е 0 . Линии Е будут перпендикулярны к поверхности проводника и будут частично кончаться на индуцированных отрицательных зарядах и вновь начинаться на индуцированных положительных зарядах.

Индуцированные на проводнике заряды исчезают, когда проводник удаляют из электрического поля. Если предварительно отвести индуцированные заряды одного знака на другой проводник (например в землю) и отключить последний, то первый проводник останется заряженным электричеством противоположного знака.

Отсутствие поля внутри проводника, помещённого в электрическое поле, широко применяется в технике для электростатической защиты от внешних электрических полей (экранировки) разных электрических приборов и проводов. Когда какой-то прибор хотят защитить от воздействия внешних полей, его окружают проводящим футляром (экраном). Подобный экран действует хорошо и в том случае, если его сделать не сплошным, а в виде густой сетки.

    Он будет находиться в пол-ной безопасности внутри металличес-кой кабины, если не будет пытаться из нее выйти, пока внешняя ее часть не будет разряжена или не обесточе-на сеть. Пассажиры самолета нахо-дятся в безопасности, когда в него ударяет молния, потому что заряд проводится вокруг внешней части фю-зеляжа в низлежащую атмосферу. Были проделаны опыты, в ходе ко-торых к крыше автомобиля, проез-жающего мимо высоковольтного ге-нератора, прилагался потенциал 1 млн. В. Несмотря на громадный заряд между генератором и автомобилем, водитель мог повторно продемонстрировать опыт без какого-либо ущерба и для себя, и для автомобиля. Эти экспе-рименты показывают, что заряд рас-полагается на внешней поверхности проводника.


    Примечание.

    Это относится в рав-ной степени и к полым, и к монолит-ным проводникам, и, конечно, к изо-ляторам.

    Если некоторый отрицательный за-ряд помещен на металлическую сфе-ру, находящуюся на изолирующей подставке, как на рисунке 1, а, то отрицательные заряды взаимооттал- киваются и перемещаются через ме-талл. Электроны распределяются, по-ка каждая точка на сфере не под-нимается до одинакового отрицатель-ного потенциала; перераспределение заряда затем прекращается. Все точ-ки заряженной сферы должны иметь одинаковый потенциал, поскольку ес-ли бы этого не произошло, то между различными точками на проводнике должна была бы существовать раз-ность потенциалов. Это бы вызывало движение зарядов, до тех пор покуда потенциалы не уравнялись бы. Заря-женный проводник вне зависимости от его формы должен, таким образом, иметь одинаковый потенциал во всех точках как на, так и внутри его по-верхности. Проводник цилиндричес-кой формы на рисунке 1, б имеет постоянный положительный потенци-ал во всех точках его поверхности. Точно так же отрицательно заря-женный проводник грушевидной фор-мы на рисунке 1, в имеет постоянный отрицательный потенциал но всей его поверхности. Итак, заряд распре-деляется таким образом, что потен-циал является однородным по всему проводнику. На телах правильной формы, такой, как сфера, распреде-ление заряда будет равномерным или однородным. На телах же неправильной формы, таких, какие показаны на рисунке 1, б и в, нет рав-номерного распределения заряда по их поверхности. Заряд, который на-капливается в любой данной точке на поверхности, зависит от кривизны поверхности в этой точке. Чем боль-ше кривизна, т. е. чем меньше ради-ус, тем больше заряд. Таким обра-зом, большая концентрация заряда присутствует на «заостренном» конце грушеобразного проводника, чтобы поддерживать во всех точках по-верхности одинаковый потенциал.


    Подобные же эксперименты могут быть проведены для проверки распре-деления заряда по поверхностям проводников различной формы. Вы долж-ны обнаружить, что заряженная сфе-ра имеет однородное распределение заряда по своей поверхности.

    Если вы присоедините тонко за-остренный проводник к высоковольт-ной электропередаче, т. е. вставите его в свод генератора Ван-де-Граафа, то вы сможете ощутить «электричес-кий ветер», держа руку в нескольких сантиметрах от заостренного конца проводника, как на рисунке 2, а. Высокая концентрация положитель-ного заряда на острие проводника бу-дет притягивать отрицательные заря-ды (электроны) до тех пор, пока за-ряд не нейтрализуется. В то же время положительные ионы в воздухе оттал-киваются положительным зарядом на острие. Среди молекул воздуха в ком-нате всегда присутствуют положи-тельные ионы (молекулы газов, из ко-торых состоит воздух, потерявшие один-два электрона) и некоторое чис-ло отрицательных ионов («потерян-ные» электроны). На рисунке 2, б показано движение заряда в воздухе, т. е. положительно заряженные ионы, отталкиваемые от положительно за-ряженного острого проводника, и от-рицательно заряженные ионы, притя-гиваемые к нему. Притяжение отрицательных зарядов (электронов) к по-ложительно заряженному острию ней-трализует положительные заряды на острие и, следовательно, понижает его положительный потенциал. Та-ким образом, заряженный проводник разряжается путем, известным как разряд — стекание заряда с острия. Положительные заряды, которые устремляются прочь от точечного проводника,— это положительные ио-ны (почти молекулы воздуха), и имен-но это создает движение воздуха, или «ветер».

    Примечание.

    Этот процесс непре-рывен, потому что к куполу генера-тора Ван-де-Граафа постоянно до-бавляется заряд от генератора. Это объяснение показывает, что заострен-ный проводник очень хорошо подхо-дит для собирания заряда, так же как и для поддержания большой кон-центрации заряда.

    Громоотвод

    Важным применением стекания заряда с острия является громоотвод. Движение облаков в атмосфере может образовывать на облаке громадный статический заряд. Это возрастание заряда может быть столь велико, что разность потенциалов между облаком и землей (нулевым потенциалом) ста-новится достаточно большой для то-го, чтобы преодолеть изолирующие свойства воздуха. Когда это проис-ходит, то воздух становится проводя-щим и заряд течет к земле в виде вспышки молнии, ударяя в ближай-шие или наиболее высокие здания или же в присутствующие объекты, т. е. заряд выбирает кратчайший путь к земле. Никогда не укрывайтесь под деревьями во время грозы: молния может ударить в дерево и ранить или убить вас, когда она устремляется вниз по дереву к земле. Лучше всего стать на колени на открытом месте, как можно ниже опустив голову и положив руки на колени, направив их пальцами к земле. Если молния и уда-рит в вас, то она должна ударить в ваши плечи, пройти вниз по вашим рукам и из ваших пальцев в землю. Таким образом, это положение защи-щает вашу голову и жизненно важ-ные органы, такие, как сердце.

    Если вспышка молнии ударила бы в здание, то мог бы быть нанесен большой ущерб. Громоотвод же мо-жет предохранить здание от этого. Громоотвод состоит из некоторого числа заостренных проводников, ук-репленных на высокой точке здания и соединенных с толстой медной про-волокой, которая проходит по одной из стен вниз и оканчивается на ме-таллической пластине, закопанной в земле. Когда положительно заряжен-ное облако проходит над зданием, происходит разделение равных и про-тивоположных по знаку зарядов в медной проволоке при высокой кон-центрации отрицательных зарядов на остриях проводников и положитель-ном заряде, который стремится акку-мулироваться на металлической плас-тине. Земля, однако, имеет громадный запас отрицательного заряда, и поэ-тому, как только образуется положи-тельный заряд на пластине, он немедленно нейтрализуется отрицательны-ми зарядами (электронами), исходя-щими из земли. Электроны также при-тягиваются из земли вверх к за-остренным концам проводника под воздействием положительного потен-циала на облаке. На остриях может сконцентрироваться очень высокий электрический заряд, и это способ-ствует уменьшению положительного потенциала облака, тем самым умень-шая для него возможность преодо-леть изолирующие свойства воздуха. Заряженные ионы воздуха также дви-жутся в «электрическом ветре»; от-рицательные заряды (электроны) от-талкиваются остриями и притягиваются облаком, также помогая пони-зить положительный его потенциал, т. е. разрядить облако. Положитель-ные ионы воздуха притягиваются по-ложительно заряженными заострен-ными проводниками, но громадные запасы отрицательного заряда в зем-ле могут предоставить неограничен-ный отрицательный заряд остриям, чтобы нейтрализовать их. Если мол-ния и ударит в проводник, то она пошлет свой электрический заряд че-рез проводник и «безопасно» в землю.