Как найти радиус атома по таблице менделеева. Атомные радиусы

  • 24.09.2019

Чтобы разобраться в вопросе, что в современной науке называется радиусом атома, вспомним, что из себя представляет сам атом. По классическим представлениям в центре атома находится ядро, состоящее из протонов и нейтронов, а вокруг ядра каждый на своей орбите вращаются электроны.

Поскольку в данной модели строения атома электроны являются пространственно ограниченными частицами, т. е. корпускулами, логично считать атомным радиусом (а. р.) расстояние от его ядра до самой дальней, или внешней, орбиты, по которой вращаются так называемые валентные электроны.

Однако по современным, квантовомеханическим представлениям , определить данный параметр нельзя так однозначно, как это делается в классической модели. Здесь электроны уже не представляются в виде частиц-корпускул, а получают свойства волн, т. е. пространственно-неограниченных объектов. В такой модели точно определить положение электрона просто невозможно. Здесь эта частица уже представляется в виде электронной орбитали, плотность которой меняется, в зависимости от расстояния до ядра атома.

Итак, в современной модели строения атома его радиус нельзя определить однозначно. Поэтому в квантовой физике, общей химии, физике твердого тела и других смежных науках эту величину сегодня определяют как радиус сферы, в центре которой находится ядро, внутри которой сосредоточено 90-98% плотности электронного облака. Фактически это расстояние и определяет границы атома.

Если рассмотреть Периодическую таблицу химических элементов (таблицу Менделеева), в которой приведены атомные радиусы, можно увидеть определенные закономерности, которые выражаются в том, что в пределах периода эти числа уменьшаются слева направо, а в пределах группы они увеличиваются сверху вниз. Такие закономерности объясняются тем, что внутри периода при движении слева направо заряд атома возрастает, что увеличивает силу притяжения им электронов, а при движении внутри группы сверху вниз все больше заполняется электронных оболочек.

Атомный радиус в химии и кристаллографии

Какие бывают виды

Данная характеристика сильно варьируется, в зависимости от того, в какой химической связи состоит атом. Поскольку все вещества в природе в подавляющем своем большинстве состоят из молекул, понятие а. р. используют для определения межатомных расстояний в молекуле. А данная характеристика зависит от свойств входящих в молекулу атомов, т. е. их положения в Периодической системе химических элементов. Обладая разными физическими и химическими свойствами, молекулы образуют все огромное разнообразие веществ.

По сути, эта величина очерчивает сферу действия силы электрического притяжения ядра атома и его внешних электронных оболочек. За пределами этой сферы в действие вступает сила электрического притяжения соседнего атома. Существует несколько типов химической связи атомов в молекуле:

  • ковалентная;
  • ионная;
  • металлическая;
  • ван-дер-ваальсова.

Соответственно этим связям таким же будет и атомный радиус .

Как зависит от типа химической связи

При ковалентной связи АР определяется как половина расстояния между соседними атомами в одинарной химической связи Х-Х, причем Х - это неметалл, ибо данная связь свойственна неметаллам. Например, для галогенов ковалентный радиус будет равен половине межъядерного расстояния Х-Х в молекуле Х2, для молекул селена Se и серы S - половине расстояния Х-Х в молекуле Х8, для углерода С он будет равен половине кратчайшего расстояния С-С в кристалле алмаза.

Данная химическая связь обладает свойством аддитивности , т. е. суммирования, что позволяет определять межъядерные расстояния в многоатомных молекулах. Если связь в молекуле двойная или тройная, то ковалентный АР уменьшается, т. к. длины кратных связей меньше одинарных.

При ионной связи, образующейся в ионных кристаллах, используют значения ионного АР для определения расстояния между ближайшими анионом и катионом, находящимися в узлах кристаллической решетки. Такое расстояние определяется как сумма радиусов этих ионов.

Существует несколько способов определения ионных радиусов , при которых отличаются значения у индивидуальных ионов. Но в результате эти способы дают примерно одинаковые значения межъядерных расстояний. Эти способы или системы были названы в честь ученых, проводивших в этой области соответствующие исследования:

  • Гольдшмидта;
  • Полинга;
  • Белова и Бокия;
  • других ученых.

При металлической связи, возникающей в кристаллах металлов, АР принимаются равными половине кратчайшего расстояния между ними. Металлический радиус зависит от координационного числа К. При К=12 его значение условно принимается за единицу. Для координационных чисел 4, 6 и 8 металлические радиусы одного и того же элемента соответственно будут равны 0.88, 0.96 и 0.98.

Если взять два разных металла и сравнить металлические радиусы их элементов, то близость этих значений друг к другу будет означать необходимое, но недостаточное условие взаимной растворимости этих металлов по типу замещения. Например, жидкие калий К и литий Li в обычных условиях не смешиваются и образуют два жидких слоя, потому что их металлические радиусы сильно различаются (0.236 нм и 0.155 нм соответственно), а калий К с цезием Cs образуют твердый раствор благодаря близости их радиусов (0.236 нм и 0.268 нм).

Ван-дер-ваальсовы АР используют для определения эффективных размеров атомов благородных газов, а также расстояний между ближайшими одноименными атомами, принадлежащими разным молекулам и не связанными химической связью (пример - молекулярные кристаллы). Если такие атомы сблизятся на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, между ними возникнет сильное межатомное отталкивание. Эти радиусы определяют минимально допустимые границы контакта двух атомов, принадлежащих соседним молекулам.

Кроме того, данные АР используют для определения формы молекул, их конформаций и упаковки в молекулярных кристаллах. Известен принцип «плотной упаковки», когда молекулы, образующие кристалл , входят друг в друга своими «выступами» и «впадинами». На основе этого принципа интерпретируются данные кристаллографии и предсказываются структуры молекулярных кристаллов.

Видео

Это полезное видео поможет вам понять, что такое радиус атома.

Не получили ответ на свой вопрос? Предложите авторам тему.

Рассмотрим взаимосвязь между положением элементов в периодической системе и такими свойствами химических элементов, как атомный радиус и электроотрицательность.

Атомный радиус является величиной, которая показывает размер электронной оболочки атома. Это очень важная величина, от которой зависят свойства атомов химических элементов. В главных подгруппах с увеличением заряда ядра атома происходит увеличение числа электронных уровней, поэтому атомный радиус с увеличением порядкового номера в главных подгруппах увеличивается.

В периодах происходит увеличение заряда ядра атома химического элемента, что приводит к усилению притяжения внешних электронов к ядру. Кроме того, с увеличением заряда ядра увеличивается число электронов на внешнем уровне, однако число электронных уровней не увеличивается. Указанные закономерности приводят к сжатию электронной оболочки вокруг ядра. Поэтому атомный радиус с увеличением порядкового номера в периодах уменьшается.

Например , расположим химические элементы O, C, Li, F, N в порядке убывания атомных радиусов. Приведены химические элементы находятся во втором периоде. В периоде атомные радиусы с увеличением порядкового номера уменьшаются. Следовательно, указанные химические элементы надо записать в порядке возрастания их порядковых номеров: Li, C, N, O, F.

Свойства элементов и образуемых ими веществ зависят от числа валентных электронов, равную номеру группы в периодической таблице.

Завершены энергетические уровни, а также внешние уровне, содержащих восемь электронов, имеют повышенную устойчивость. Именно этим объясняется химическая инертность гелия, неона и аргона: они вообще не вступают в химические реакции. Атомы всех других химических элементов стремятся отдать или присоединить электроны, чтобы их электронная оболочка оказалась устойчивой, при этом они превращаются в заряженные частицы.

Электроотрицательность — это способность атома в соединениях притягивать к себе валентные электроны, то есть электроны, посредством которых образуются химические связи между атомами. Это свойство обусловлено тем, что атомы стремятся завершить внешний электронный слой и получить энергетически выгодное конфигурацию инертного газа — 8 электронов.

Электроотрицательность зависит от способности атомного ядра притягивать электроны внешнего энергетического уровня. Чем сильнее это притяжение, тем электроотрицательность больше. Сила притяжения электронов внешнего энергетического уровня тем больше, чем меньше атомный радиус. Следовательно, изменение электроотрицательности в периодах и главных подгруппах будет противоположная изменении атомных радиусов. Поэтому, в главных подгруппах электроотрицательность с увеличением порядкового номера уменьшается. В периодах с увеличением порядкового номера электроотрицательность увеличивается.

Например , расположим химические элементы Br, F, I, Cl в порядке увеличения электроотрицательности. Приведены химические элементы находятся в главной подгруппе седьмой группы. В главных подгруппах электроотрицательность с увеличением порядкового номера уменьшается. Следовательно, указанные химические элементы надо записать в порядке уменьшения их порядковых номеров: I, Br, Cl, F.

У s- и p-элементов изменение радиусов как в периодах, так и в подгруппах более ярко, чем у d- и f-элементов, поскольку d- и f-электроны внутренние. Размеры атомов и ионов (радиусы атомов и ионов). Под ковалентными радиусами элементов с ковалентной связью понимают половину межатомного расстояния между ближайшими атомами, соединенными единичной ковалентной связью.


Поэтому атому приписывают некоторый определённый радиус, полагая, что в сфере этого радиуса заключена подавляющая часть электронной плотности (порядка 90 процентов). Радиус атома — границы электронного облака. Изменение атомных радиусов в периодической системе носит периодический характер, так как определяется свойствами электронных оболочек. Радиусы атомов, связанных между собой, называют эффективными. Эффективные радиусы определяют при изучении строения молекул и кристаллов.

Под радиусоматома понимается расстояние между ядром данного атома и его самой дальней электронной орбитой. На сегодняшний день общепринятой единицей измерения атомного радиуса является пикометр(пм).

В строении планеты Земля выделяют ядро, мантию и кору. Ядро – центральная часть, расположенная наиболее далеко от поверхности. Кроме того, в строении ядра Земли выделяют твердое внутреннее ядро, имеющее радиус около 1300 километров, и жидкое внешнее радиусом около 2200 километров. Чтобы оценить радиус планеты, используют косвенные геохимические и геофизические методы.

Зависимость массы ядра от радиуса не является линейной. Связано это с тем, что электроны, подобно планетам Солнечной системы, движутся вокруг Солнца — ядра атома. Орбиты движения электронов постоянны.

Это создавало трудности в строительстве колеи и создавало неимоверный шум. Далее… АТОМНЫЙ РАДИУС — характеристика атома, позволяющая приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. T. к. атомы не имеют чётких границ, при введении понятия «А. р.» подразумевают, что 90-98% электронной плотности атома заключено в сфере этого радиуса.

Ионные радиусы используют для приближённых оценок межъядерных расстояний в ионных кристаллах. При этом считают, что расстояние между ближайшими катионом и анионом равно сумме их ионных радиусов. А. р. катионов и к заниженным значениям А. р. анионов. При сближении атомов на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, возникает сильное межатомное отталкивание.

6.6. Особенности электронного строения атомов хрома, меди и некоторых других элементов

Знание ван-дер-ваальсовых А. р. позволяет определять форму молекул, конформации молекул и их упаковку в молекулярных кристаллах. Пользуясь этим принципом, можно интерпретировать имеющиеся кристаллографические данные, а в ряде случаев и предсказывать структуру молекулярных кристаллов.

2.6. Периодичность атомных характеристик

Мы знаем (стр. 31, 150), что даже при температуре абсолютного нуля происходят колебания ядер в молекулах и кристаллах. Молибден и вольфрам вследствие лантаноидного сжатия имеют близкие радиусы атомов и ионов Э +. Это объясняет большее сходство в свойствах Мо и Ш между собой, чем между каждым из них и хромом.

Изменение свойств элементов по диагонали

Как показано в табл. 14, радиусы атомов и ионов РЗЭ закономерно уменьшаются от La к Lu. Это явление известно под названием лантаноидного сжатия. Причина сжатия - экранирование одного электрона другим в той же оболочке.

До сих пор вторичную периодичность отмечали главным образом для элементов главных подгрупп рис. 62 свидетельствует о том, что она существует для s-электронов и в дополнительных подгруппах. Понятие о координационном чнсле применяют не только ири рассмотрении окружения атомов в кристаллах, но и в свободных молекулах (в газах) и в многоатомных ионах, существующих в растворах.

Последовательность элементов в Периодической системе Менделеева соответствует последовательности заполнения электронных оболочек. Эффективный радиус иона зависит от заполненности электронных оболочек, но он не равен радиусу наружной орбиты.

Принцип тождественности частиц

Атомные и ионные радиусы определены экспериментально по рентгеновским измерениям межатомных расстояний и вычислены теоретически на основе квантово-механических представлений. 2. Для одного и того же элемента ионный радиус возрастает с увеличением отрицательного заряда и уменьшается с увеличением положительного заряда. Атомный радиус химического элемента зависит от координационного числа. Увеличение координационного числа всегда сопровождается увеличением межатомных расстояний.

В случае твердых растворов металлические атомные радиусы меняются сложным образом. Особенностью ковалентных радиусов является их постоянство в разных ковалентных структурах с одинаковыми координационными числами. Ионные радиусы в веществах с ионной связью не могут быть определены как полусумма расстояний между ближайшими ионами.

Сродство к электрону известно не для всех атомов. Во многих случаях кратчайшее расстояние между двумя атомами действительно примерно равно сумме соответствующих атомных радиусов. За радиус свободного атома принимают положение главного максимума плотности внешних электронных оболочек. Радиусы атомов и ионов зависят от к. ч. Значение радиуса Га или ri при другом к.ч. можно найти умножением г при данном к.ч. на определенный коэффициент.

В конце статьи, вы будете в состоянии описать- Определение радиуса атома, периодическая таблица тенденция, Самый большой атомный радиус, Атомный радиус диаграммы. Давайте начнем обсуждать один за другим.

Атомный радиус Определение

Общая картина атома в нашем сознании, что из сферы. Если это считается правильным, то это определение:

Однако, нет уверенности о точном положении электронов в любой момент времени. Теоретически, электрон, некогда, может быть очень близко к ядру, в то время как в другое время он может быть далеко от ядра. Также, Это невозможно измерить точное значение атомного радиуса атома элемента, так как атом очень много меньше в размерах.

Почему нет возможности точного определения?
A . Это не представляется возможным выделить один атом.
В. Это невозможно измерить точное расстояние атома не имеет четко определенную форму или границу и вероятность электрона равна нулю уровня, даже на большом расстоянии от ядра.
C.It может измениться из-за влияния окружающей среды и многие другие причины.

Однако, мы можем выразить различные формы атома в зависимости от характера связи атомов . Несмотря на указанные выше ограничения, Есть три оперативные концепции:


Ковалентная Радиус

В гомоатомных молекулах (содержащие один и тот же тип атомов) ковалентный радиус определяется как

Ван-дер-Ваальса радиус

На самом деле, ван-дер-Ваальса слабые силы их магнитуда(мощность) притяжения меньше, в газообразном, так и в жидком состоянии вещества. Поэтому радиус определяется в твердом состоянии, когда величина силы, как ожидается, до максимума.

  • Значение Ван-дер-Ваал больше, чем радиус ковалентной.
  • пример, Ван-дер-Ваал сила хлора 180 м, а радиус ковалентной является 99 вечера(пикометра).

Металлический радиус

поскольку металлическая связь слабее ковалентной связи межъядерное молекулярное расстояние между двумя атомами в металлической связи составляет более ковалентной связи.

  • Металлическая связь более чем ковалентная связь.

Периодическая Атомный радиус Таблица Trend

В ходе исследования, Ученые обнаружили самую маленькую частицу материи и назвали его в качестве атома. Различные атомы различных элементов показывают различные химические и физические свойства. Это можно увидеть, когда атомные изменения радиуса в периодической таблице тенденции. Изменение атомных радиусов имеет большое влияние на поведение атомов в процессе химической реакции. Это происходит потому, что она влияет на энергию ионизации, химическая реактивность, и многие другие факторы,.

Следует отметить, что атомный радиус последнего элемента в каждый период, который является довольно большой. Потому что благородные газы считаются ван-дер-радиус Ваала, который всегда имеет более высокую ценность, чем радиус ковалентной. Когда мы сравним три атомных радиусов порядок сил

  • Ван-дер-Ваал >Металлический радиус>Ковалентная

Атомный радиус Trend

В период, количество снарядов остается неизменным, но увеличивается ядерный заряд. Это следствие, увеличение силы притяжения к ядру, который вызывает сокращение размера.

  • Ядерный аттракцион α 1 / Атомные радиусы.
  • Основное квантовое число( N) α Атомные радиусы.
  • Скрининг эффект α Атомные радиусы.
  • Количество облигаций α 1 / Атомные радиусы.

Заметка: Атомный Радий это множественное число от радиуса атома.


В группе, по мере перехода от верхней части к нижней части в группе атомных радиусов возрастает с увеличением атомного номера, это связано с тем, что количество энергии оболочек возрастает.

Самый большой атомный радиус

  • Размер водорода является наименьшим.
  • Франций, имеющий атомный номер 87 имеет больший радиус ковалентные и Вандер-Ваальса, чем цезий.
  • Так как Франций является чрезвычайно нестабильным элементом. Так, Цезий имеет самый большой атомный номер.

Это все об основах Определение радиуса атома, периодическая таблица тенденция, Самый большой атомный радиус, Атомный радиус диаграммы.

Атомы не имеют четких границ, но вероятность найти электрон , связанный с ядром данного атома , на определенном расстоянии от этого ядра быстро убывает с увеличением расстояния. Поэтому атому приписывают некоторый определённый радиус, полагая, что в сфере этого радиуса заключена подавляющая часть электронной плотности (порядка 90 процентов).

Характерной оценкой радиуса атома является 1 ангстрем (1 Å), равный 10 -10 м.

Радиус атома и межъядерные расстояния

Во многих случаях кратчайшее расстояние между двумя атомами действительно примерно равно сумме соответствующих атомных радиусов. В зависимости от типа связи между атомами различают металлические , ионные , ковалентные и некоторые другие атомные радиусы.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Радиус атома" в других словарях:

    радиус атома

    Раздел физики, изучающий внутреннее устройство атомов. Атомы, первоначально считавшиеся неделимыми, представляют собой сложные системы. Они имеют массивное ядро, состоящее из протонов и нейтронов, вокруг которого в пустом пространстве движутся… … Энциклопедия Кольера

    Боровский радиус (Радиус Бора) , радиус ближайшей к ядру орбиты электрона атома водорода в модели атома, предложенной Нильсом Бором в 1913 г. и явившейся предвестницей квантовой механики. В модели электроны движутся по круговым орбитам… … Википедия

    Ван дер ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Кроме того, ван дер ваальсовыми радиусами считают половину межъядерного расстояния между ближайшими одноимёнными атомами, не связанными между собой химической… … Википедия

    атомный радиус - atomo spindulys statusas T sritis fizika atitikmenys: angl. atomic radius vok. Atomradius, m rus. атомный радиус, m; радиус атома, m pranc. rayon atomique, m; rayon de l’atome, m … Fizikos terminų žodynas

    Радиус а 0 первой (ближайшей к ядру) орбиты электрона в атоме водорода, согласно теории атома Н. Бора (1913); а 0= 5,2917706(44)*10 11 м. В квантовомех. теории атома Б. р. соответствует расстояние от ядра, на к ром с Наиб. вероятностью можно… … Химическая энциклопедия

    Радиус первой (ближайшей к ядру) орбиты электрона в атоме водорода, согласно теории атома Н. Бора; обозначается символом a0 или a. Б. р. равен (5,29167±0,00007)×10 9см = 0,529 Å; выражается через универсальные постоянные: а0 = ћ2/me2, где … Большая советская энциклопедия

    Радиус ао первой (ближайшей к ядру) орбиты электрона в атоме водорода, согласно теории строения атома Н. Бора (1913); а0 = 0,529 х 10 10 м = 0,529 А … Естествознание. Энциклопедический словарь

    Боровская модель водородоподобного атома (Z заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро … Википедия

Книги

  • Квантовая механика в общей теории относительности , А. К. Горбацевич. В монографии показано, что общековариантное уравнение Дирака можно рассматривать как специальное координатное представление (с неортонормированными базисными векторами в гильбертовом…