Законы электролиза. Законы Фарадея в химии и физике — краткое объяснение простыми словами

  • 30.09.2019

В 1836 году Майкл Фарадей опубликовал выведенные математически количественные характеристики электролиза. Обнаруженные взаимосвязи между количеством прошедшего через электролит электричества и количеством выделившегося при этом вещества впоследствии были названы законами Фарадея для электролиза.

Первый закон

Если пропускать через раствор медного купороса электрический ток в течение определённого количества времени, то на катоде выделяется небольшое количество меди. Однако если пустить ток большей силы, за такое же количество времени на катоде образуется большее количество меди. При увеличении времени и одинаковой силе тока также увеличивается количество меди.

Фарадей установил взаимосвязь массы вещества, силы тока и времени. Математически эта взаимосвязь выражается следующим образом:

  • m - масса вещества;
  • k - электрохимический эквивалент;
  • I - сила тока;
  • t - время.

Электрохимический эквивалент - это масса вещества, образованная при прохождении через электролит тока в 1 А за одну секунду. Выражается как соотношение массы вещества к количеству электричества или г/Кл.

Произведение силы тока и времени выражает количество электричества: q = It. Это электрический заряд, измеряемый в кулонах (один ампер к одной секунде). Электрический заряд отражает способность тела быть источником электромагнитного поля и принимать участие в электромагнитном взаимодействии.

Соответственно, уравнение Фарадея приобретает вид:

Рис. 2. Первый закон Фарадея.

Первый закон электролиза Фарадея: масса вещества, выделившегося при электролизе, прямо пропорциональна количеству электрического тока, пропущенного через электролит.

Второй закон

Фарадей, пропуская электрический ток одинаковой силы через различные электролиты, заметил, что массы веществ на электродах неодинаковы. Взвесив выделившиеся вещества, Фарадей сделал вывод, что вес зависит от химической природы вещества. Например, на каждый грамм выделенного водорода приходилось 107,9 г серебра, 31,8 г меди, 29,35 г никеля.

На основе полученных данных Фарадей вывел второй закон электролиза: для определённого количества электричества масса химического элемента, образовавшегося на электроде, прямо пропорциональна эквивалентной массе элемента. Она равна массе одного эквивалента - количеству вещества, реагирующему или замещающему 1 моль атомов водорода в химических реакциях:

  • μ - молярная масса вещества;
  • z - число электронов на один ион (валентное число ионов).

Для выделения одного моля эквивалента затрачивается одинаковое количество электричества - 96485 Кл/моль. Это число называется числом Фарадея и обозначается буквой F.

Согласно второму закону, электрохимический эквивалент прямо пропорционален эквивалентной массе вещества:

k = (1/F) μ eq или k = (1/zF)μ.

Рис. 3. Второй закон Фарадея.

Два закона Фарадея можно привести к общей формуле: m = (q / F) ∙ (μ/z).

Что мы узнали?

Фарадей, проводя реакцию электролиза разных веществ, вывел два закона. Согласно первому закону, масса вещества, осевшего на электрод, прямо пропорциональная количеству электричества, пропущенного через электролит: m = kq. Второй закон отражает взаимосвязь электрохимического эквивалента и эквивалентной массы вещества: k = (1/F) μ eq . Электрохимический эквивалент - количество выделившегося вещества при прохождении единицы электричества. Эквивалентная масса - количество вещества, реагирующее с 1 молем водорода.

Электролит всегда имеет определённое количество ионов со знаками "плюс" и "минус", получившихся в результате взаимодействия молекул растворённого вещества с растворителем. Когда в нем возникает электрическое поле, ионы начинают двигаться к электродам, положительные устремляются к катоду, отрицательные - к аноду. Дойдя до электродов, ионы отдают им свои заряды, превращаются в нейтральные атомы и отлагаются на электродах. Чем больше ионов подойдёт к электродам, тем больше будет отложено на них вещества.

К этому заключению мы можем прийти и опытным путём. Пропустим ток через водный раствор и будем наблюдать за выделением меди на угольном катоде. Мы обнаружим, что вначале он покроется едва заметным слоем меди, затем по мере пропускания тока он будет увеличиваться, а при долговременном пропускании тока можно получить на значительной толщины слой меди, к которому легко припаять, например, медный провод.

Явление выделения вещества на электродах во время прохождения тока сквозь электролит называется электролизом.

Пропуская через разные электролизы различные токи и тщательно измеряя массу вещества, выделяющегося на электродах из каждого электролита, английский в 1833 - 1834 гг. открыл два закона для электролиза.

Первый закон Фарадея устанавливает зависимость между массой выделившегося вещества при электролизе и величиной заряда, который прошел через электролит.

Закон этот формулируется следующим образом: масса вещества, которая выделилась при электролизе, на каждом электроде прямо пропорциональна величине заряда, который прошел сквозь электролит:

где m - масса вещества, которое выделилось, q - заряд.

Величина k - электрохимическимй эквивалент вещества. Она характерна для каждого вещества, выделяющегося при электролите.

Если в формуле принять q = 1 кулону, тогда k = m, т.е. электрохимический эквивалент вещества будет численно равняться массе вещества, выделенного из электролита при прохождении заряда в один кулон.

Выражая в формуле заряд через ток I и время t, получим:

Первый закон Фарадея проверяется на опыте следующим образом. Пропустим ток через электролиты А, В и С. Если все они одинаковые, то массы выделенного вещества в А, В и С будут относиться как токи I, I1, I2. При этом количество вещества, выделенного в А, будет равно сумме объемов, выделенных в В и С, так как ток I= I1+ I2.

Второй закон Фарадея устанавливает зависимость электрохимического эквивалента от атомного веса вещества и его валентности и формулируется следующим образом: электрохимический эквивалент вещества будет пропорционален их атомному весу, а также обратно пропорционален его валентности.

Отношение атомного веса вещества к его валентности называется химическим эквивалентом вещества. Введя эту величину, второй закон Фарадея сформулировать можно иначе: электрохимические эквиваленты вещества пропорциональны их собственным химическим эквивалентам.

Пусть электрохимические эквиваленты разных веществ соответственно равны k1 и k2, k3, …, kn, химические же эквиваленты тех же веществ x1 и x2, x23, …, xn, тогда k1 /k2 = x1 /x2, или k1/x1 = k2/x2 = k3/ x3 = … = kn/ xn.

Иначе говоря, отношение величины электрохимического эквивалента вещества к величине того же вещества есть величина постоянная, имеющая для всех веществ одно и то же значение:

Отсюда следует, что отношение k/x является постоянным для всех веществ:

k/x=c = 0, 01036 (мг-экв)/к.

Величина с показывает, сколько миллиграмм-эквивалентов вещества выделяется на электродах во время прохождения через электролит равно 1 кулону. Второй закон Фарадея представлен формулой:

Подставляя полученное выражение для k в первый закон Фарадея, оба можно объединить в одном выражении:

где с - универсальная постоянная, равная 0, 00001036 (г-экв)/к.

Эта формула показывает, что, пропуская одинаковые токи в течение одного и того же промежутка времени через два различных электролита, мы выделим из обоих электролитов количества веществ, относящихся как химические эквиваленты таковых.

Так как x=A/n, то можно написать:

т.е., масса вещества, выделенного на электродах при электролизе, будет прямо пропорциональна его току, времени и обратно пропорциональна валентности.

Второй закон Фарадея для электролиза, так же, как и первый, непосредственно вытекает из ионного характера тока в растворе.

Закон Фарадея, Ленца, а также многих других выдающихся физиков сыграл огромную роль в истории становления и развития физики.

    Батарейки используются в системе сигнализации, фонарях, часах, калькуляторах, аудиосистемах, игрушках, радио, автооборудовании, пультах дистанционного управления.

    Аккумуляторы используются для запуска двигателей машин, возможно так же и применение в качестве временных источников электроэнергии в местах, удаленных от населенных пунктов.

    Топливные элементы применяются в производстве электрической энергии (на электрических станциях), аварийных источниках энергии, автономном электроснабжении, транспорте, бортовом питании, мобильных устройствах.

Электролиз

Электро́лиз - физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор, либо расплав электролита .

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами - проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом - отрицательный . Положительные ионы - катионы - (ионы металлов, водородные ионы, ионы аммония и др.) - движутся к катоду, отрицательные ионы - анионы - (ионы кислотных остатков и гидроксильной группы) - движутся к аноду.

Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений [ источник не указан 1854 дня ] , диоксида марганца , пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция, электрорафинирование). Также, электролиз является основным процессом, благодаря которому функционирует химический источник тока.

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации). Применяется для получения многих веществ (металлов, водорода, хлора и др.), при нанесении металлических покрытий (гальваностегия), воспроизведении формы предметов (гальванопластика).

Первый закон Фарадея

В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит: если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональностиназываетсяэлектрохимическим эквивалентом вещества . Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Второй закон Фарадея

Электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты .

Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент

где F - постоянная Фарадея .

Второй закон Фарадея записывается в следующем виде

где М(г/моль) - молярная масса данного вещества, образовавшегося в результате электролиза; I(A) - сила тока, пропущенного через вещество или смесь веществ; дельта t(c)- время, в течение которого проводился электролиз; F (Кл·моль −1) - постоянная Фарадея; n - число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного).

Когда ионы электролита доходят до электродов, соединенных с полюсами источника постоянного тока, то положительные ионы получают недостающие электроны от отрицательного электрода и в процессе реакции восстановления превращаются в нейтральные атомы (молекулы); отрицательные ионы отдают электроны положительному электроду и в процессе реакции окисления превращаются в нейтральные атомы. Явление выделения вещества на электродах в процессе окислительно-восстановительной реакции при прохождении тока через электролит называется электролизом. Впервые электролиз наблюдал в 1803 г. в Петербурге - В. П. Петров. В 1833-1834 гг. английский физик М. Фарадей открыл законы электролиза, которые устанавливают, от чего и как зависит масса выделившегося при электролизе вещества.

Пропуская в течение одинаковых промежутков времени ток одной и той же силы через разные электролиты, Фарадей установил, что при этом на электродах выделяются различные количества вещества. Так, ток в 1 а за 1 сек из раствора азотнокислого серебра выделяет 1,118 мг серебра, из раствора медного купороса - 0,328 мг меди. Значит, масса выделяемого вещества при электролизе зависит от вещества. Скалярная величина, измеряемая массой вещества, выделившегося при электролизе током в 1 а за 1 сек , называется электрохимическим эквивалентом (обозначается k ). Электрохимический эквивалент имеет наименование кг / а*сек, или кг / к.

Если пропустить в течение времени t через раствор медного купороса небольшой ток, то катод слабо покрывается медью, а если ток большей силы - то за то же время на катоде выделится большее количество меди. Оставим силу тока той же, но увеличим теперь время. Замечаем, что меди выделяется еще больше. Пропуская через разные электролиты различные токи и тщательно измеряя массу вещества, выделяющегося на электродах из каждого электролита, Фарадей открыл первый закон электролиза: масса вещества, выделившегося при электролизе на электродах, прямо пропорциональна произведению силы тока и времени его прохождения через электролит.

Ток в 1 а за 1 сек при электролизе выделяет на электроде к кг вещества, а ток силой I а за время t сек - в It раз больше:

m = klt, или m = kq .

Это формулы первого закона Фарадея для электролиза.

Каждый ион несет с собой и определенную массу вещества и величину заряда, поэтому чем больше ионов подходит к электроду, т. е. чем сильнее ток в электролите, тем больше на электроде выделяется вещества.

Фарадей, пропуская один и тот же ток последовательно через несколько различных электролитов, заметил, что масса выделившегося на электродах вещества неодинакова, хотя сила тока и время его прохождения через различные электролиты были одними и теми же (рис. 109). Точно взвесив выделившиеся вещества, Фарадей заметил, что вес их не случаен, а зависит от химической природы вещества. На каждый грамм выделенного водорода всегда получалось 107,9 г серебра; 31,8 г меди; 29,35 г никеля. После введения химического эквивалента - отношения атомной массы (веса) к валентности - оказалось, что эти числа являются химическими эквивалентами данных веществ. Так как атомная масса А и валентность n - числа отвлеченные, то и отношение число отвлеченное.

Разделив электрохимические эквиваленты веществ на их химические эквиваленты, (k / M) , получим:

т. е. одно и то же число 1036*10 -11 кг / а*сек или 1036*10 -11 кг / к. Обозначив это постоянное число буквой С, запишем: C = 1036*10 -11 кг / а*сек . Следовательно, Отсюда электрохимический эквивалент

k = СМ.

Это формула второго закона Фарадея для электролиза, который читается так: электрохимические эквиваленты веществ прямо пропорциональны их химическим эквивалентам.

Заменив электрохимический эквивалент в формуле первого закона Фарадея, получим формулу обобщенного закона Фарадея для электролиза:



Массы выделившихся при электролизе веществ прямо пропорциональны их атомным весам и заряду, прошедшему через электролит, и обратно пропорциональны валентности вещества.

Законы Фарадея являются следствием ионной проводимости тока в электролите. Поясним это на таких примерах. Допустим, что производился электролиз одновалентных веществ, например растворов NaCl и AgNO 3 . Величины зарядов ионов Na и Ag одинаковы. Когда ионы переносят равные по величине заряды, как в том, так и в другом растворе к соответствующим электродам подойдет одинаковое количество ионов. Но при равном числе подошедших ионов массы отложившихся веществ Na и Ag будут не одинаковы, так как различны массы самих атомов Na и Ag. У натрия атомная масса 22,997; у серебра - 107,88; поэтому серебра выделится почти в пять раз больше. Значит, количество вещества, выделившегося при электролизе, прямо пропорционально его атомной массе, что и утверждается законом Фарадея.

В случае, когда в электролизе участвуют ионы разной валентности, например Аl, имеющий валентность, равную 3, и Na с валентностью, равной 1, количество ионов Аl и Na, переносящих один и тот же заряд, будет различно. Чем больше валентность иона, т. е. чем больше его заряд, тем меньшее количество ионов потребуется для переноса данного заряда (например, ионов Аl надо в три раза меньше, чем ионов Na). Такой зависимостью между валентностью и зарядом иона и объясняется то, что масса выделившегося при электролизе вещества обратно пропорциональна его валентности.

Благодаря простоте, дешевизне и большой чистоте полученных продуктов электролиз получил широкое применение в промышленности для добывания алюминия из бокситовых руд, очистки металлов (например, меди, цинка, золота, серебра) от примесей, покрытия металлических предметов слоем другого металла с целью предохранения их от ржавчины, придания твердости их поверхности (никелирование, хромирование), для изготовления украшений (серебрение, золочение), получения металлических копий с рельефных предметов (например, при изготовлении патефонных пластинок, матриц, клише).

Задача 30. Свинец высокой чистоты, применяемый в атомной энергетике, получают электрорафинированием. Вычислить массу свинца, выделенную за 1 ч током плотностью 0,02 а / см 2 и напряжением 0,5 в. Выход по току 95%. Каков расход электроэнергии на выделение 1 кг свинца? Площадь общего сечения катодов, на которых отлагается свинец, 10 м 2 .


При к п. д. электролитической ванны 100% за счет всей израсходованной электроэнергии A = UIt выделилось бы свинца m = klt , поэтому на выделение 1 кг свинца израсходовано энергии или

Вычислим

Отв.: М≈7,5 кг; А 1 ≈ 470 кдж / кг.

Основы > Задачи и ответы

Электролиз. Законы Фарадея


1 Найти электрохимический эквивалент натрия. Молярная масса натрия m = 0,023 кг/моль, его валентность z=1. Постоянная Фарадея

Решение:

2 Цинковый анод массы m = 5 г поставлен в электролитическую ванну, через которую проходит ток I =2 А. Через какое время t анод полностью израсходуется на покрытие металлических изделий? Электрохимический эквивалент цинка

Решение:

3 Найти постоянную Фарадея, если при прохож-дении через электролитическую ванну заряда q = 7348 Кл на катоде выделилась масса золота m = 5 г. Химический эквивалент золота А = 0,066 кг/моль.

Решение:
Согласно объединенному закону Фарадея

отсюда

4 Найти элементарный электрический заряд е, если масса вещества, численно равная химическому эквиваленту, содержит N o =N A /z атомов или молекул.

Решение:
Ионы в растворе электролита несут на себе число элементарных зарядов, равное валентности z. При выделении массы вещества, численно равной его химическому эквиваленту, через раствор проходит заряд, численно равный постоянной Фарадея, т. е.

Следовательно, элементарный заряд

5 Молярная масса серебра m 1 =0,108 кг/моль, его валентность z 1 = 1 и электрохимический эквивалент . Найти электрохимический эквивалент золота к2, если молярная масса золота m 2 = 0,197 кг/моль, его валентность z 2 = 3.

Решение:
По второму закону Фарадея имеем

отсюда электрохимический эквивалент золота

6 Найти массы веществ, выделившихся за время t =10ч на катодах трех электролитических ванн, вклю-ченных последовательно в сеть постоянного тока. Аноды в ваннах - медный, никелевый и серебряный - опущены соответственно в растворы CuS O 4, NiS0 4 и AgN0 3 . Плотность тока при электролизе j =40 А/м2, площадь катода в каждой ванне S = 500 см. Электрохимические эквиваленты меди, никеля и серебра

Решение:
Ток в ваннах I=jS. По первому закону Фарадея массы выделившихся при электролизе веществ

7 При никелировании изделий в течение времени t = 2 ч отложился слой никеля толщины l =0,03 мм.
Найти плотность тока при электролизе. Электрохимический эквивалент никеля
, его плотность

Решение:

8 Амперметр, включенный последовательно с электролитической ванной, показывает ток Io =1,5А. Какую поправку надо внести в показание амперметра, если за время t =10мин на катоде отложилась масса меди m = 0,316 г? Электрохимический эквивалент меди .

Решение:
По первому закону Фарадея m = kI
t , где I-ток в цепи; отсюда I = m /k t =1,6 А, т.е. в показание амперметра надо внести поправку

9 Желая проверить правильность показаний вольтметра, его подключили параллельно резистору с известным сопротивлением R = 30 Ом. Последовательно в общую цепь включили электролитическую ванну, в которой ведется электролиз серебра. За время t =5 мин в этой ванне выделилась масса серебра m = 55,6 мг. Вольтметр показывал напряжение Vo = 6 В. Найти разность между показанием вольтметра и точным значением падения напряжения на резисторе. Электрохимический эквивалент серебра .

Решение:
По первому закону Фарадея m = kl
t , где I-ток в цепи. Точное значение падения напряжения на сопротивлении V=IR = mR/k t = 4,91 В. Разность между показанием вольтметра и точным значением падения напряжения

10 Для серебрения ложек через раствор соли серебра в течение времени t =5 ч пропускается ток I =1,8 А. Катодом служат n =12 ложек, каждая из которых имеет площадь поверхности S =50 см2. Какой толщины слой серебра отложится на ложках? Молярная масса серебра m = 0,108 кг/моль, его валентность z= 1 и плотность .

Решение:
Толщина слоя

11 Две электролитические ванны включены последовательно. В первой ванне находится раствор хлористого железа (FeCl 2 ), во второй - раствор хлорного железа (FeCl 3 ). Найти массы выделившегося железа на катодах и хлора на анодах в каждой ванне при прохождении через ванну заряда . Молярные массы железа и хлора .

Решение:
В первой ванне железо двухвалентно (z1=2), во второй - трехвалентно (z2 = 3). Поэтому при прохождении через растворы одинаковых зарядов выделяются различные массы железа на катодах: в первой ванне

во второй ванне

Так как валентность атомов хлора z=1, то на аноде каждой ванны выделяется масса хлора

12 При электролизе раствора серной кислоты (CuS O 4 ) расходуется мощность N=37 Вт. Найти со-противление электролита, если за время t = 50 мин выделяется масса водорода m = 0,3 г. Молярная масса водорода m = 0,001 кг/моль, его валентность z= 1 .

Решение:

13 При электролитическом способе получения никеля на единицу массы расходуется W m = 10 кВт Ч ч/кг электроэнергии. Электрохимический эквивалент никеля . При каком напряжении производится электролиз?

Решение:

14 Найти массу выделившейся меди, если для ее получения электролитическим способом затрачено W= 5 кВт Ч ч электроэнергии. Электролиз проводится при напряжении V =10 В, к.п.д. установки h =75%. Электрохимический эквивалент меди .

Решение:
К.п.д. установки

где q-заряд, прошедший через ванну. Масса выделившейся меди m=kq; отсюда

15 Какой заряд проходит через раствор серной кислоты (CuS O 4 ) за время t =10с, если ток за это время равномерно возрастает от I 1 =0 до I 2 = 4А? Какая масса меди выделяется при этом на катоде? Электрохимический эквивалент меди .

Решение:
Средний ток

Заряд, протекший через раствор,

Нахождение заряда графическим путем показано на рис. 369. На графике зависимости тока от времени заштрихованная площадь численно равна заряду. Масса меди, выделившейся на катоде,

16 При рафинировании меди с помощью электролиза к последовательно включенным электролитическим ваннам, имеющим общее сопротивление R = 0,5 Ом, подведено напряжение V=10 В. Найти массу чистой меди, выделившейся на катодах ванны за время t =10ч. Э.д.с. поляризации e = 6 В. Электрохимический эквивалент меди .

Решение:

17 При электролизе воды через электролитическую ванну в течение времени t = 25 мин шел ток I =20 А. Какова температура t выделившегося кислорода, если он находится в объеме V= 1 л под давлением р = 0,2 МПа? Молярная масса воды m =0,018 кг/моль. Электрохимический эквивалент кислорода .

Решение:

где R= 8,31 Дж/(молъ К)-газовая постоянная.

18 При электролитическом способе получения алюминия на единицу массы расходуется W 1 m = 50 кВт Ч ч/кг электроэнергии. Электролиз проводится при напряжении V1 = 1 6,2 В. Каким будет расход электроэнергии W 2m на единицу массы при напряжении V2 = 8, 1 В?
Решение: