A b 2 как раскрыть. Куб разности и разность кубов: правила применения формул сокращенного умножения

  • 23.09.2019

Формулы или правила сокращенного умножения используются в арифметике, а точнее - в алгебре, для более быстрого процесса вычисления больших алгебраических выражений. Сами же формулы получены из существующих в алгебре правил для умножения нескольких многочленов.

Использование данных формул обеспечивает достаточно оперативное решение различных математических задач, а также помогает осуществлять упрощение выражений. Правила алгебраических преобразований позволяют выполнять некоторые манипуляции с выражениями, следуя которым можно получить в левой части равенства выражение, стоящее в правой части, или преобразовать правую часть равенства (чтобы получить выражение, стоящее в левой части после знака равенства).

Удобно знать формулы, применяемые для сокращенного умножения, на память, так как они нередко используются при решении задач и уравнений. Ниже перечислены основные формулы, входящие в данный список, и их наименование.

Квадрат суммы

Чтобы вычислить квадрат суммы, необходимо найти сумму, состоящую из квадрата первого слагаемого, удвоенного произведения первого слагаемого на второе и квадрата второго. В виде выражения данное правило записывается следующим образом: (а + с)² = a² + 2ас + с².

Квадрат разности

Чтобы вычислить квадрат разности, необходимо вычислить сумму, состоящую из квадрата первого числа, удвоенного произведения первого числа на второе (взятое с противоположным знаком) и квадрата второго числа. В виде выражения данное правило выглядит следующим образом: (а - с)² = а² - 2ас + с².

Разность квадратов

Формула разности двух чисел, возведенных в квадрат, равна произведению суммы этих чисел на их разность. В виде выражения данное правило выглядит следующим образом: a² - с² = (a + с)·(a - с).

Куб суммы

Чтобы вычислить куб суммы двух слагаемых, необходимо вычислить сумму, состоящую из куба первого слагаемого, утроенного произведения квадрата первого слагаемого и второго, утроенного произведения первого слагаемого и второго в квадрате, а также куба второго слагаемого. В виде выражения данное правило выглядит следующим образом: (а + с)³ = а³ + 3а²с + 3ас² + с³.

Сумма кубов

Согласно формуле, приравнивается к произведению суммы данных слагаемых на их неполный квадрат разности. В виде выражения данное правило выглядит следующим образом: а³ + с³ = (а + с)·(а² - ас + с²).

Пример. Необходимо вычислить объем фигуры, которая образована сложением двух кубов. Известны лишь величины их сторон.

Если значения сторон небольшие, то выполнить вычисления просто.

Если же длины сторон выражаются в громоздких числах, то в этом случае проще применить формулу "Сумма кубов", которая значительно упростит вычисления.

Куб разности

Выражение для кубической разности звучит так: как сумма третьей степени первого члена, утроенного отрицательного произведения квадрата первого члена на второй, утроенного произведения первого члена на квадрат второго и отрицательного куба второго члена. В виде математического выражения куб разности выглядит следующим образом: (а - с)³ = а³ - 3а²с + 3ас² - с³.

Разность кубов

Формула разности кубов отличается от суммы кубов лишь одним знаком. Таким образом, разность кубов - формула, равная произведению разности данных чисел на их неполный квадрат суммы. В виде математического выражения разность кубов выглядит следующим образом: а 3 - с 3 = (а - с)(а 2 + ас + с 2).

Пример. Необходимо вычислить объем фигуры, которая останется после вычитания из объема синего куба объемной фигуры желтого цвета, которая также является кубом. Известна лишь величина стороны маленького и большого куба.

Если значения сторон небольшие, то вычисления довольно просты. А если длины сторон выражаются в значительных числах, то стоит применить формулу, озаглавленную "Разность кубов" (или "Куб разности"), которае значительно упростит вычисления.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Формулы сокращенного умножения (ФСУ) применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.

В данной статье мы перечислим основные формулы сокращенного умножения, сгруппируем их в таблицу, рассмотрим примеры использования этих формул, а также остановимся на принципах доказательств формул сокращенного умножения.

Yandex.RTB R-A-339285-1

Впервые тема ФСУ рассматривается в рамках курса "Алгебра" за 7 класс. Приведем ниже 7 основных формул.

Формулы сокращенного умножения

  1. формула квадрата суммы: a + b 2 = a 2 + 2 a b + b 2
  2. формула квадрата разности: a - b 2 = a 2 - 2 a b + b 2
  3. формула куба суммы: a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3
  4. формула куба разности: a - b 3 = a 3 - 3 a 2 b + 3 a b 2 - b 3
  5. формула разности квадратов: a 2 - b 2 = a - b a + b
  6. формула суммы кубов: a 3 + b 3 = a + b a 2 - a b + b 2
  7. формула разности кубов: a 3 - b 3 = a - b a 2 + a b + b 2

Буквами a, b, c в данных выражениях могут быть любые числа, переменные или выражения. Для удобства использования лучше выучить семь основных формул наизусть. Сведем их в таблицу и приведем ниже, обведя рамкой.

Первые четыре формулы позволяют вычислять соответственно квадрат или куб суммы или разности двух выражений.

Пятая формула вычисляет разность квадратов выражений путем произведения их суммы и разности.

Шестая и седьмая формулы - соответственно умножение суммы и разности выражений на неполный квадрат разности и неполный квадрат суммы.

Формула сокращенного умножения иногда еще называют тождествами сокращенного умножения. В этом нет ничего удивительного, так как каждое равенство представляет собой тождество.

При решении практических примеров часто используют формулы сокращенного умножения с переставленными местами левыми и правыми частями. Это особенно удобно, когда имеет место разложение многочлена на множители.

Дополнительные формулы сокращенного умножения

Не будем ограничиваться курсом 7 класса по алгебре и добавим в нашу таблицу ФСУ еще несколько формул.

Во-первых, рассмотрим формулу бинома Ньютона.

a + b n = C n 0 · a n + C n 1 · a n - 1 · b + C n 2 · a n - 2 · b 2 + . . + C n n - 1 · a · b n - 1 + C n n · b n

Здесь C n k - биномиальные коэффициенты, которые стоят в строке под номером n в треугольнике паскаля. Биномиальные коэффициенты вычисляются по формуле:

C n k = n ! k ! · (n - k) ! = n (n - 1) (n - 2) . . (n - (k - 1)) k !

Как видим, ФСУ для квадрата и куба разности и суммы - это частный случай формулы бинома Ньютона при n=2 и n=3соответственно.

Но что, если слагаемых в сумме, которую нужно возвести в степень, больше, чем два? Полезной будет формула квадрата суммы трех, четырех и более слагаемых.

a 1 + a 2 + . . + a n 2 = a 1 2 + a 2 2 + . . + a n 2 + 2 a 1 a 2 + 2 a 1 a 3 + . . + 2 a 1 a n + 2 a 2 a 3 + 2 a 2 a 4 + . . + 2 a 2 a n + 2 a n - 1 a n

Еще одна формула, которая может пригодится - формула формула разности n-ых степеней двух слагаемых.

a n - b n = a - b a n - 1 + a n - 2 b + a n - 3 b 2 + . . + a 2 b n - 2 + b n - 1

Эту формулу обычно разделяют на две формулы - соответственно для четных и нечетных степеней.

Для четных показателей 2m:

a 2 m - b 2 m = a 2 - b 2 a 2 m - 2 + a 2 m - 4 b 2 + a 2 m - 6 b 4 + . . + b 2 m - 2

Для нечетных показателей 2m+1:

a 2 m + 1 - b 2 m + 1 = a 2 - b 2 a 2 m + a 2 m - 1 b + a 2 m - 2 b 2 + . . + b 2 m

Формулы разности квадратов и разности кубов, как вы догадались, являются частными случаями этой формулы при n = 2 и n = 3 соответственно. Для разности кубов b также заменяется на - b .

Как читать формулы сокращенного умножения?

Дадим соответствующие формулировки для каждой формулы, но сначала разберемся с принципом чтения формул. Удобнее всего делать это на примере. Возьмем самую первую формулу квадрата суммы двух чисел.

a + b 2 = a 2 + 2 a b + b 2 .

Говорят: квадрат суммы двух выражений a и b равен сумме квадрата первого выражения, удвоенного произведения выражений и квадрата второго выражения.

Все остальные формулы читаются аналогично. Для квадрата разности a - b 2 = a 2 - 2 a b + b 2 запишем:

квадрат разности двух выражений a и b равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражения.

Прочитаем формулу a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 . Куб суммы двух выражений a и b равен сумме кубов этих выражений, утроенного произведения квадрата первого выражения на второе и утроенного произведения квадрата второго выражения на первое выражение.

Переходим к чтению формулы для разности кубов a - b 3 = a 3 - 3 a 2 b + 3 a b 2 - b 3 . Куб разности двух выражений a и b равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе, плюс утроенное произведение квадрата второго выражения на первое выражение, минус куб второго выражения.

Пятая формула a 2 - b 2 = a - b a + b (разность квадратов) читается так: разность квадратов двух выражений равна произведению разности и суммы двух выражений.

Выражения типа a 2 + a b + b 2 и a 2 - a b + b 2 для удобства называют соответственно неполным квадратом суммы и неполным квадратом разности.

С учетом этого, формулы суммы и разности кубов прочитаются так:

Сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.

Разность кубов двух выражений равна произведению разности этих выражений на неполный квадрат их суммы.

Доказательство ФСУ

Доказать ФСУ довольно просто. Основываясь на свойствах умножения, проведем умножение частей формул в скобках.

Для примера рассмотрим формулу квадрата разности.

a - b 2 = a 2 - 2 a b + b 2 .

Чтобы возвести выражение во вторую степень нужно это выражение умножить само на себя.

a - b 2 = a - b a - b .

Раскроем скобки:

a - b a - b = a 2 - a b - b a + b 2 = a 2 - 2 a b + b 2 .

Формула доказана. Остальные ФСУ доказываются аналогично.

Примеры применения ФСУ

Цель использования формул сокращенного умножения - быстрое и краткое умножение и возведение выражений в степень. Однако, это не вся сфера применения ФСУ. Они широко используются при сокращении выражений, сокращении дробей, разложении многочленов на множители. Приведем примеры.

Пример 1. ФСУ

Упростим выражение 9 y - (1 + 3 y) 2 .

Применим формулу суммы квадратов и получим:

9 y - (1 + 3 y) 2 = 9 y - (1 + 6 y + 9 y 2) = 9 y - 1 - 6 y - 9 y 2 = 3 y - 1 - 9 y 2

Пример 2. ФСУ

Сократим дробь 8 x 3 - z 6 4 x 2 - z 4 .

Замечаем, что выражение в числителе - разность кубов, а в знаменателе - разность квадратов.

8 x 3 - z 6 4 x 2 - z 4 = 2 x - z (4 x 2 + 2 x z + z 4) 2 x - z 2 x + z .

Сокращаем и получаем:

8 x 3 - z 6 4 x 2 - z 4 = (4 x 2 + 2 x z + z 4) 2 x + z

Также ФСУ помогают вычислять значения выражений. Главное - уметь заметить, где применить формулу. Покажем это на примере.

Возведем в квадрат число 79 . Вместо громоздких вычислений, запишем:

79 = 80 - 1 ; 79 2 = 80 - 1 2 = 6400 - 160 + 1 = 6241 .

Казалось бы, сложное вычисление проведено быстро всего лишь с использованием формул сокращенного умножения и таблицы умножения.

Еще один важный момент - выделение квадрата двучлена. Выражение 4 x 2 + 4 x - 3 можно преобразовать в вид 2 x 2 + 2 · 2 · x · 1 + 1 2 - 4 = 2 x + 1 2 - 4 . Такие преобразования широко используются в интегрировании.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

>>Математика: Формулы сокращенного умножения

Формулы сокращенного умножения

Имеется несколько случаев, когда умножение одного многочлена на другой приводит к компактному, легко запоминающемуся результату. В этих случаях предпочтительнее не умножать каждый раз один многочлен на другой, а пользоваться готовым результатом. Рассмотрим эти случаи.

1. Квадрат суммы и квадрат разности:

Пример 1. Раскрыть скобки в выражении:

а) (Зх + 2) 2 ;

б) (5а 2 - 4b 3) 2

а) Воспользуемся формулой (1), учтя, что в роли а выступает Зх, а в роли b - число 2.
Получим:

(Зх + 2) 2 = (Зх) 2 + 2 Зх 2 + 2 2 = 9x 2 + 12x + 4.

б) Воспользуемся формулой (2) , учтя, что в роли а выступает5а 2 , а в ролиb выступает 4b 3 . Получим:

(5а 2 -4b 3) 2 = (5а 2) 2 - 2- 5a 2 4b 3 + (4b 3) 2 = 25a 4 -40a 2 b 3 + 16b 6 .

При использовании формул квадрата суммы или квадрата разности учитывайте, что
(- a - b) 2 = (а + b) 2 ;
(b-a) 2 = (a-b) 2 .

Это следует из того, что (- а) 2 = а 2 .

Отметим, что на формулах (1) и (2) основаны некоторые математические фокусы, позволяющие производить вычисления в уме.

Например, можно практически устно возводить в квадрат числа, оканчивающиеся на 1 и 9. В самом деле

71 2 = (70 + 1) 2 = 70 2 + 2 70 1 + 1 2 = 4900 + 140 + 1 = 5041;
91 2 = (90 + I) 2 = 90 2 + 2 90 1 + 1 2 = 8100 + 180 + 1 = 8281;
69 2 = (70 - I) 2 = 70 2 - 2 70 1 + 1 2 = 4900 - 140 + 1 = 4761.

Иногда можно быстро возвести в квадрат и число, оканчивающееся цифрой 2 или цифрой 8. Например,

102 2 = (100 + 2) 2 = 100 2 + 2 100 2 + 2 2 = 10 000 + 400 + 4 = 10 404;

48 2 = (50 - 2) 2 = 50 2 - 2 50 2 + 2 2 = 2500 - 200 + 4 = 2304.

Но самый элегантный фокус связан с возведением в квадрат чисел, оканчивающихся цифрой 5.
Проведем соответствующие рассуждения для 85 2 .

Имеем:

85 2 = (80 + 5) 2 = 80 2 + 2 80 5 + 5 2 =-80 (80+ 10)+ 25 = 80 90 + 25 = 7200 + 25 = 7225.

Замечаем, что для вычисления 85 2 достаточно было умножить 8 на 9 и к полученному результату приписать справа 25. Аналогично можно поступать и в других случаях. Например, 35 2 = 1225 (3 4 = 12 и к полученному числу приписали справа 25);

65 2 = 4225; 1252 = 15625 (12 18 = 156 и к полученному числу приписали справа 25).

Раз уж мы с вами заговорили о различных любопытных обстоятельствах, связанных со скучными (на первый взгляд) формулами (1) и (2), то дополним этот разговор следующим геометрическим рассуждением. Пусть а и b - положительные числа. Рассмотрим квадрат со стороной а + b и вырежем в двух его углах квадраты со сторонами, соответственно равными а и b (рис. 4).


Площадь квадрата со стороной а + b равна (а + b) 2 . Но этот квадрат мы разрезали на четыре части: квадрат со стороной а (его площадь равна а 2), квадрат со стороной b (его площадь равна b 2), два прямоугольника со сторонами а и b (площадь каждого такого прямоугольника равна ab). Значит, (а + b) 2 = а 2 + b 2 + 2аb, т. е. получили формулу (1).

Умножим двучлен а + b на двучлен а - b. Получим:
(а + b) (а - b) = а 2 - аb + bа - b 2 = а 2 - b 2 .
Итак

Любое равенство в математике употребляется как слева направо (т.е. левая часть равенства заменяется его правой частью), так и справа налево (т.е. правая часть равенства заменяется его левой частью). Если формулу C) использовать слева направо, то она позволяет заменить произведение (а + b) (а - b) готовым результатом а 2 - b 2 . Эту же формулу можно использовать справа налево, тогда она позволяет заменить разность квадратов а 2 - b 2 произведением (а + b) (а - b). Формуле (3) в математике дано специальное название - разность квадратов.

Замечание. Не путайте термины «разность квадратов» к и «квадрат разности». Разность квадратов - это а 2 - b 2 , значит, речь идет о формуле (3); квадрат разности - это (a- b) 2 , значит речь идет о формуле (2). На обычном языке формулу (3) читают «справа налево» так:

разность квадратов двух чисел (выражений) равна произведению суммы этих чисел (выражений) на их разность,

Пример 2. Выполнить умножение

(3x- 2y)(3x+ 2y)
Решение. Имеем:
(Зх - 2у) (Зх + 2у)= (Зx) 2 - (2у) 2 = 9x 2 - 4y 2 .

Пример 3. Представить двучлен 16x 4 - 9 в виде произведения двучленов.

Решение. Имеем: 16x 4 =(4x 2) 2 , 9 = З 2 , значит, заданный двучлен есть разность квадратов, т.е. к нему можно применить формулу (3), прочитанную справа налево. Тогда получим:

16x 4 - 9 = (4x 2) 2 - З 2 = (4x 2 + 3)(4x 2 - 3)

Формула (3), как и формулы (1) и (2), используется для математических фокусов. Смотрите:

79 81 = (80 - 1) (80 + 1) - 802 - I2 = 6400 - 1 = 6399;
42 38 = D0 + 2) D0 - 2) = 402 - 22 = 1600 - 4 = 1596.

Завершим разговор о формуле разности квадратов любопытным геометрическим рассуждением. Пусть а и b - положительные числа, причем а > b. Рассмотрим прямоугольник со сторонами а + b и а - b (рис. 5). Его площадь равна (а + b) (а - b). Отрежем прямоугольник со сторонами b и а - b и подклеим его к оставшейся части так, как показано на рисунке 6. Ясно, что полученная фигура имеет ту же площадь, т. е. (а + b) (а - b). Но эту фигуру можно
построить так: из квадрата со стороной а вырезать квадрат со стороной b (это хорошо видно на рис. 6). Значит, площадь новой фигуры равна а 2 - b 2 . Итак, (а + b) (а - b) = а 2 - b 2 , т. е. получили формулу (3).

3. Разность кубов и сумма кубов

Умножим двучлен а - b на трехчлен а 2 + ab + b 2 .
Получим:
(a - b) (а 2 + ab + b 2) = а а 2 + а ab + а b 2 - b а 2 - b аb -b b 2 = а 3 + а 2 b + аb 2 -а 2 b-аb 2 -b 3 = а 3 -b 3 .

Аналогично

(а + b) (а 2 - аb + b 2) = а 3 + b 3

(проверьте это сами). Итак,

Формулу (4) обычно называют разностью кубов , формулу(5) - суммой кубов. Попробуем перевести формулы (4) и (5) на обычный язык. Прежде чем это сделать, заметим, что выражение a 2 + ab + b 2 похоже на выражение а 2 + 2ab + b 2 , которое фигурировало в формуле (1) и давало (а + b) 2 ; выражение а 2 - ab + b 2 похоже на выражение а 2 - 2ab + b 2 , которое фигурировало в формуле (2) и давало (а - b) 2 .

Чтобы отличить (в языке) эти пары выражений друг от друга, каждое из выражений а 2 + 2ab + b 2 и а 2 - 2ab + b 2 называют полным квадратом (суммы или разности), а каждое из выражений а 2 + ab + b 2 и а 2 - ab + b 2 называют неполным квадратом (суммы или разности). Тогда получается следующий перевод формул (4) и (5) (прочитанных «справа налево») на обычный язык:

разность кубов двух чисел (выражений) равна произведению разности этих чисел (выражений) на неполный квадрат их суммы; сумма кубов двух чисел (выражений) равна произведению суммы этих чисел (выражений) на неполный квадрат их разности.

Замечание. Все полученные в этом параграфе формулы (1)-(5) используются как слева направо, так и справа налево, только в первом случае (слева направо) говорят, что (1)-(5) - формулы сокращенного умножения, а во втором случае (справа налево) говорят, что (1)-(5) - формулы разложения на множители.

Пример 4. Выполнить умножение (2х- 1)(4x 2 + 2х +1).

Решение. Так как первый множитель есть разность одночленов 2х и 1, а второй множитель - неполный квадрат их суммы, то можно воспользоваться формулой (4). Получим:

(2х - 1)(4x 2 + 2х + 1) = (2x) 3 - I 3 = 8x 3 - 1.

Пример 5. Представить двучлен 27а 6 + 8b 3 в виде произведения многочленов.

Решение. Имеем: 27а 6 = (За 2) 3 , 8b 3 =(2b) 3 . Значит, заданный двучлен есть сумма кубов, т. е. к нему можно применить формулу 95), прочитанную справа налево. Тогда получим:

27а 6 + 8b 3 = (За 2) 3 + (2b) 3 = (За 2 + 2Ь) ((За 2) 2 - За 2 2Ь + (2b) 2) = (За 2 + 2Ь) (9а 4 - 6а 2 Ь + 4b 2).

Помощь школьнику онлайн , Математика для 7 класса скачать , календарно-тематическое планирование

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.