Кто открыл гамма лучи. Гамма излучение

  • 24.09.2019

После открытия материалов, способных к самопроизвольному излучению элементарных частиц (радиоизлучению в результате распада), началось изучение их свойств. Активное участие в поиске новых и систематизации уже существующих знаний в физике принимали знаменитые супруги Кюри, а также Именно ему первому удалось открыть гамма-лучи. Поставленный им эксперимент был простым и, одновременно, гениальным.

В качестве источника излучения был взят радий. В толстостенной свинцовой емкости проделывалось узкое отверстие. На дне получившегося канала размещался радий. На небольшом удалении от емкости перпендикулярно оси отверстия был расположен фоточувствительный элемент - пластина. В промежутке между ней и емкостью с специальная установка могла генерировать магнитное поле высокой интенсивности, линии напряженности которого были ориентированы параллельно фоточувствительной пластине. Все элементы, кроме генератора поля, находились в безвоздушной среде, чтобы исключить воздействие атомов воздуха на результат эксперимента. Если бы Резерфорд проигнорировал этот момент, то гамма-лучи мог бы открыть кто-то другой.

При отсутствии магнитного воздействия на пластине возникало темное пятно, свидетельствующее о прямолинейном распространении излучения (все остальные направления попросту отсекались стенками свинцовой емкости). Но стоило появиться как на фоточувствительном элементе системы возникали сразу три пятна. Это означало, что некие частицы, излучаемые радием, отклоняются полем. Резерфорд предположил, что луч состоит как минимум из трех компонентов. Характер отклонения указывал на то, что частицы двух лучей обладают электрическим зарядом, а третий луч электронейтрален. Причем, отрицательная составляющая исходного излучения отклонялась гораздо выраженнее, чем положительная. Электронейтральная составляющая - это и есть гамма-лучи. Компонент с отрицательным зарядом получил название бета-лучей, а последний, положительный заряд - альфа-луч.

Кроме того, что они вели себя по-разному в магнитном поле, лучи обладали различными свойствами. Гамма-лучи способны проникать в материю на довольно большие расстояния. Так, свинцовая пластина толщиной в 1 см уменьшает их интенсивность всего в два раза. Альфа-луч может быть остановлен даже тонким листом бумаги. А вот бета-излучение занимает промежуточное положение: остановить поток можно металлом толщиной в несколько миллиметров.

Впоследствии выяснилось, что:

  • бета-луч представляет собой поток отрицательно заряженных частиц (электронов), перемещающихся с высокой скоростью;
  • альфа-луч - это ядра гелия, очень устойчивое образование;
  • гамма-луч - одна из разновидностей Спектр излучения полностью линейчатый, так как излучающее ядро характеризуется дискретными энергетическими состояниями. Представляют в виде уровней распределения энергии излученных квантов. Термин «гамма-излучение» все чаще применяется не только для описания процессов но и, вообще, для любого жесткого излучения электромагнитной природы в котором каждому кванту соответствует энергия не менее 10 кэВ. Источником данного вида излучения являются электроны в структуре возбужденных атомов. Излишек энергии переводит электроны на более высокие Оттуда они возвращаются к прежнему состоянию, выделяя излучение в виде рентгена или света (электромагнитные волны). Спектр электромагнитного излучения в случае гамма-лучей чрезвычайно мал и составляет не более 5*0,001 нм из-за чего отчетливее проявляются свойства частиц, а не волн.

Нагромождение слухов и страшилок вокруг таких понятий, как радиация, ионизация, гамма излучение, рождают путаницу и страхи у всех, кто не является дозиметристом-радиологом или физиком-ядерщиком. Попробуем разобраться в обилии фактов и разрозненных знаний, полученных обывателем в основном из средств массовой информации.

Терминология и теория

Для понимания основ допускаем, что всем известно о строении атомов всех веществ. Ядро и электроны, вращающиеся вокруг него, образуют систему с нейтральным зарядом. Если один или несколько электронов выбить из этой системы, атом приобретет определенный заряд и будет называться ион.

Выбивание электронов из системы ядро-электроны и есть процесс ионизации. Радиация - это и есть ионизирующее излучение, пучок частиц, выбивающих электроны, придающий атомам особенные свойства.

Всего известно три вида излучений, способных привести к ионизации элементарных частиц. В названии использованы греческие буквы: альфа-, бета- и гамма-излучение.

Излучения - какие они?

Любое из этих излучений - это высокоскоростной поток частиц, размер которых меньше атома. Ионизирующие частицы представляют опасность, пока они движутся. Но движение не может быть постоянным и, выбиваются электроны или нет, частицы теряют свою скорость и останавливаются. После чего они или остаются в веществе, или им поглощаются.

Все имеет время своего существования, и радиоактивные (ионизирующие) частицы не исключение. Упомянутые три вида излучений образованы разными частицами (их называют квантами) с различной скоростью и степенью проникания в вещество.

Альфа, бета, гамма

Излучение первой группы состоит из альфа-квантов, которые очень быстро теряют скорость, потому что тяжелые. Их жизненный путь всего несколько десятков микрометров.

Второй вид излучения образуют бета-кванты, отличающиеся очень большой скоростью. Проникающая способность их больше и в живой организм они проникнут на несколько миллиметров.

Гамма излучение это поток гамма-квантов, наделенных большой энергией и летящих со скоростью света, наиболее скоростные кванты, которые обладают свойствами частиц и волн.

В ключе наибольшей опасности по воздействию на человека гамма-излучение стоит на первом месте.

В чем опасность?

Альфа-кванты, конечно, очень интенсивны, но лист обычной бумаги станет для них непроходимым барьером. К тому же для воздействия необходимо ну очень близко находиться к объекту излучения.

Бета-частицы имеют маленькую массу и легко меняют направление движения при наличии препятствий. Обычное окно не пропустит это излучение. При прямом соприкосновении с телом человека поток бета-квантов может вызвать ожоги кожи.

Гамма-излучение, в отличие от альфа- и бета-, имеет огромную проникающую способность. Кроме того, особенность этого вида в том, что под его воздействием разрушение атома вещества происходит с образованием нового нестабильного по состоянию элемента.

Именно это излучение чаще всего понимают под радиацией. От него не спасет стеклянная преграда - тут необходимы экраны из свинца и мощные конструкции из бетона.

Как это работает?

Суть механизма разрушающего воздействия гамма-квантов:

  • На своем пути кванты оставляют за собой ионы, которые, в свою очередь, становятся источником ионизации.
  • Проходя через клетки живого организма, часть молекул разрушается и превращается в яд.
  • Это излучение является сильнейшим мутагеном, который вызывает изменения на всех уровнях генетического материала.

Наиболее подвержены повреждениям те клетки организма, которые быстро делятся. Мутации передаются последующим поколениям клеток, усугубляя положение. Так, первыми страдают система образования клеток крови, лимфатические узлы, репродуктивные клетки, пищеварительные органы и волосяные сумки.

Откуда это все берется?

Естественные источники гамма-излучения существовали задолго до освоения человеком ядерной физики. Искусственные источники - объекты ядерной энергетики - не зря вызывают повышенное внимание специалистов в сфере безопасности.

Важно помнить, что получить в быту дозы облучения, представляющие серьезную опасность для жизни, почти невозможно. И близость к объектам атомной энергетики тут ни при чем.

Из естественных возможностей облучения можно выделить внешнее и внутреннее. Внешнее происходит в нашей жизни постоянно - радиация Солнца и космических галактик, излучения горных пород, особенно вулканических, и воздуха. Внутреннее вызывается продуктами или водой, попадающими в наш организм.

Уровень излучения (радиационный фон) бывает далек от среднего показателя. Есть места, где он всегда повышен, например, высокогорные местности, вблизи вулканов, а еще на космических кораблях и в кабинах авиалайнеров.

Человечество приспособилось жить в существующих диапазонах излучений и сформировало определенный биологический запас прочности, что без видимых нарушений позволяет выдержать облучение во много раз большее.

А как же польза?

Как известно, все в нашем мире дуально. И гамма-излучение не исключение. При умелом обращении и использовании современного оборудования и средств защиты и оно приносит пользу человеку. Вот лишь несколько примеров использования гамма-квантов:

  • стерилизация оборудования и инструментов в медицине;
  • гамма-дефектоскопия - эффективный метод сверхточного определения дефектов деталей;
  • определение расстояний - от глубины скважин и особенностей полостей земной коры, до космических измерений;
  • в биотехнологии применяют гамма-облучение для получения мутантных организмов для выведения новых пород животных и сортов растений;
  • как элемент лучевой терапии при лечении онкологических заболеваний.

Способы защиты

Как уже говорилось, природный фон не может стать существенным элементом заражения. Но после развития ядерной энергетики и освоения энергии полураспада радиоактивных частиц, облучение может настигнуть нас внезапно. Трагедия на Чернобыльской АЭС продемонстрировала миру неготовность к таким последствиям в освоении мирного атома.

Эффективны в целях защиты от гамма-излучения только специализированные убежища. Но и подвал дома ослабит воздействие от излучения в тысячу раз.

Не лишним будет и внимательное отношение к предметам со специальной маркировкой. Например, в датчиках пожароопасности используется радиоактивный плутоний. А циферблаты датчиков обледенения и водолазных часов содержится соль радия 226. Снаружи эти предметы не опасны, но не стоит их разбирать.

Меры предосторожности

В уголовном кодексе предусмотрена статья за намеренное или случайное радиоактивное загрязнение. Поэтому если вы обнаружили предмет с радиационной маркировкой, то:

  • не разбирайте его и не выбрасывайте;
  • сообщите в специализированную службу;
  • обезопасьте себя и окружающих, отойдя на возможное расстояние от источника.

Личная профилактика сводится к тщательному мытью рук, ведь загрязнение радиоактивного характера передается подобно бактериальному.

Каждый человек наверняка слышал о трех типах радиоактивного излучения - альфа, бета и гамма. Все они возникают в процессе радиоактивного распада вещества, и у них есть как общие свойства, так и различия. Наибольшую опасность несет последний тип излучения. Что же он представляет собой?

Природа радиоактивного распада

Чтобы детальнее понять свойства гамма-распада, необходимо рассмотреть природу ионизирующего излучения. Это определение означает, что энергия такого типа излучения очень высока - когда оно попадает в другой атом, называемый «атом-мишень», он выбивает движущийся по его орбите электрон. При этом атом-мишень становится положительно заряженным ионом (поэтому излучение и было названо ионизирующим). От ультрафиолетового или инфракрасного это излучение отличается высокой энергией.

В целом альфа-, бета- и гамма-распады имеют общие свойства. Можно представить себе атом в виде маленького зернышка мака. Тогда орбита электронов будет мыльным пузырем вокруг него. При альфа-, бета- и гамма-распаде из этого зернышка вылетает крошечная частица. При этом заряд ядра меняется, а это означает, что был образован новый химический элемент. Пылинка несется с гигантской скоростью и врезается в электронную оболочку атома-мишени. Потеряв электрон, атом-мишень становится положительно заряженным ионом. Однако при этом химический элемент остается тем же, ведь ядро атома-мишени осталось прежним. Ионизация является процессом химической природы, практически тот же процесс происходит при взаимодействии некоторых металлов, которые растворяются в кислотах.

Где еще происходит γ-распад?

Но ионизирующие излучения происходят не только при радиоактивном распаде. Они также происходят при атомных взрывах и в ядерных реакторах. На Солнце и других звездах, а также в водородной бомбе осуществляется синтез легких ядер, сопровождающийся ионизирующим излучением. В оборудовании для рентгена и тоже происходит этот процесс. Основное свойство, которое имеют альфа-, бета-, гамма-распады - это высочайшая энергия ионизации.

А различия между этими тремя типами излучений определяются их природой. Радиация была открыта в конце XIX столетия. Тогда никто не знал, что представляет собой это явление. Поэтому три типа излучений и были названы буквами латинского алфавита. Гамма-излучение было открыто в 1910 году ученым по имени Генри Грэгг. Гамма-распад имеет такую же природу, как и солнечный свет, инфракрасные лучи, радиоволны. По своим свойствам γ-лучи представляют собой фотонное излучение, однако энергия содержащихся в них фотонов очень высока. Другими словами, это излучение с очень короткой длиной волны.

Свойства гамма-лучей

Это излучение чрезвычайно легко проникает через любые препятствия. Чем более плотный материал стоит на его пути, тем он лучше его задерживает. Чаще всего с этой целью используют свинцовые или бетонные конструкции. В воздухе γ-лучи легко преодолевают десятки и даже тысячи метров.

Гамма-распад очень опасен для человека. При его воздействии могут повреждаться кожа и внутренние органы. Бета-излучение можно сравнить со стрельбой мелкими пулями, а гамма - со стрельбой иглами. Во время ядерной вспышки, помимо гамма-излучения, также происходит образование нейтронных потоков. Гамма-лучи попадают на Землю вместе с Помимо них, оно несет на Землю протоны и другие частицы.

Действие гамма-лучей на живые организмы

Если сравнить альфа-, бета- и гамма-распады, то последний будет наиболее опасным для живых организмов. Скорость распространения этого типа излучения равна скорости света. Именно из-за его высокой скорости оно быстро попадает в живые клетки, вызывая их разрушение. Каким образом?

На пути γ-излучение оставляет большое количество ионизированных атомов, которые в свою очередь ионизируют новую порцию атомов. Клетки, которые подверглись мощному воздействию гамма-излучения, изменяются на различных уровнях своей структуры. Трансформировавшись, они начинают разлагаться и отравлять организм. И самым последним этапом является появление дефектных клеток, которые уже не могут нормально выполнять свои функции.

У человека разные органы имеют разную степень чувствительности к гамма-излучению. Последствия зависят от полученной дозы ионизирующего излучения. В результате этого в организме могут происходить различные физические процессы, нарушаться биохимия. Наиболее уязвимыми являются органы кроветворения, лимфатическая и пищеварительная системы, а также структуры ДНК. Это воздействие опасно для человека и тем, что излучение накапливается в организме. А также оно имеет скрытый период воздействия.

Формула гамма-распада

Чтобы вычислить энергию гамма-излучения, можно воспользоваться следующей формулой:

В этой формуле h - постоянная Планка, v - частота кванта электромагнитной энергии, с - скорость света, λ - длина волны.

3. Источники электромагнитного (фотонного) излучения.

Источники гамма-излучения.

Гамма-излучение (gamma radiation) - коротковолновое электромагнитное излучение с длиной волны менее 0,1 нм, которое возникает при распаде радиоактивных ядер, переходе ядер из возбужденного состояния в основное, при взаимодействии быстрых заряженных частиц с веществом, аннигиляции электронно-позитронных пар и при других превращениях элементарных частиц. В виду того, что ядра имеют только определенные разрешенные уровни энергетического состояния, спектр гамма-излучения дискретен и состоит, как правило, из нескольких групп энергий в диапазоне от нескольких кэВ до десятка МэВ. Для радионуклидов с большими атомными номерами количество энергетических групп гамма-квантов может достигать нескольких десятков, но они резко различаются по вероятности выхода и количество квантовых линий с наибольшим выходом обычно невелико.

Поток гамма-квантов обладает волновыми и корпускулярными свойствами и распространяется со скоростью света. Высокая проникающая способность гамма-излучения объясняется отсутствием электрического заряда и значительным запасом энергии. Интенсивность облучения гамма-лучами снижается обратно пропорционально квадрату расстояния от точечного источника.

Гамма-кванты взаимодействуют в основном с электронными оболочками атомов, передавая часть своей энергии электронам в процессе фотоэффекта и эффекта Комптона. При фотоэффекте фотон поглощается атомом среды с испусканием электрона, причем энергия фотона за вычетом энергии связи электрона в атоме передается освобожденному электрону. Вероятность фотоэффекта максимальна в области энергий квантов менее 200 кэВ, и быстро убывает с ростом энергии фотона. В случае эффекта Комптона на выбивание электрона с атомной оболочки расходуется только часть энергии фотона, а сам фотон изменяет направление движения. Комптоновское рассеяние преобладает в области энергий (0.2-5) МэВ и пропорционально атомному номеру среды. При энергии фотона выше 1,022 МэВ вблизи атомного ядра становится возможным образование пар электрон - позитрон, вероятность этого процесса увеличивается с ростом энергии фотона.

Пути пробега гамма-квантов в воздухе измеря-ются сотнями метров, в твердом веществе - десятками сантимет-ров. Проникающая способность гамма-излуче-ния увеличивается с ростом энергии гамма-квантов и умень-шается с увеличением плотности среды. Ослабление фотонного ионизирующего излучения слоем вещества происходит по экспоненциальному закону. Для энергии излучения 1 МэВ толщина слоя десятикратного ослабления составляет порядка 30 г/см 2 (2,5 см свинца, 4 см железа или 12-15 см бетона).

Радионуклидные источники гамма-квантов - естественные и искусственные бета-активные изотопы (таблица 3), дешевые и удобные в эксплуатации. При бета-распаде нуклидов ядро - продукт распада, образуется в возбужденном состоянии. Переход возбужденного ядра в основное состояние происходит с испусканием одного или нескольких следующих друг за другом гамма-квантов, снимающих энергию возбуждения. Радионуклидные источники представляют собой герметичные ампулы из нержавеющей стали или алюминия, заполненные активным изотопом. Энергия гамма-квантов радионуклидных источников не превышает 3 МэВ.

Таблица 3. Радионуклидные источники гамма-излучения.

Название

полураспада

Энергия линий

излучения, кэВ

Выход квантов

Кобальт-60

Стронций-85

Сурьма-124

Иридий-192

120; 136; 265; (280; 400)

610; 640-1450; 1690; 2080

100; 35; 50; 6.5

В настоящее время мощные источники гамма-излучения нашли применение в медицине (радиотерапия, стерилизация инструментов и материалов), в геологии и горной промышленности (плотнометрия, рудосортировка), в радиационной химии (радиационно-химическая модификация материалов, синтез полимеров), и во многих других отраслях промышленного производства и строительства (дефектоскопия, массометрия, толщинометрия материалов и многое другое).

В радиологических отделениях онкологических диспансеров эксплуатируются закрытые радионуклидные источники с суммарной активностью до 5*10 14 Бк. Переносные гамма-дефектоскопы типа "Гаммарид" и "Стапель-5М" на основе иридия-192 имеют источники с активностью от 85 до 120 Бк.

Физико-технические источники излучения представляют собой ускорители электронов, которые используются для генерации гамма-излучения. В этих ускорителях электронный поток разгоняется до энергий в несколько МэВ и направляется на мишень (цирконий, барий, висмут и др.), в которой возникает мощный поток гамма-квантов тормозного излучения с непрерывным спектром от нуля до максимальной энергии электронов.

Для создания мощных импульсных потоков тормозного гамма-излучения используются установки ЛИУ–10, ЛИУ–15, УИН–10, РИУС–5. Импульсный ускоритель РИУС-5 создает ток электронов в импульсах (0.02-2) мкс до 100 кА при энергии электронов до 14 МэВ, что позволяет создавать мощность дозы тормозного излучения до 10 13 Р/с со средней энергией гамма-квантов порядка 2 МэВ.

Малогабаритные импульсные бетатроны типа МИБ используются для радиографического контроля качества материалов и изделий в нестационарных условиях: на монтажных и строительных площадках, при контроле сварных соединений и запорной арматуры нефте- и газопроводов, контроле опор мостов и других ответственных строительных конструкций, а также контроле литья и сварных соединений больших толщин. Максимальная энергия тормозного излучения установок до 7.5 МэВ, максимальная толщина просвечивания материалов до 300 мм.

Источники рентгеновского излучения.

Рентгеновское излучение по своим физическим свойствам аналогично гамма-излучению, но природа его совсем другая. Это низкоэнергетическое (не более 100 кэВ) электромагнитное излучение. Оно возникает при возбуждении атомов элементов потоком электронов, альфа-частиц или гамма-квантов, при котором происходит выброс электронов с электронных оболочек атома. Восстановление электронных оболочек атома сопровождается излучением рентгеновских квантов и имеет линейчатый спектр энергий связи электронов с ядром на электронных оболочках.

Рентгеновское излучение сопровождает также бета-распад радионуклидов, при котором ядро элемента увеличивает свой заряд на +1, и происходит перестройка его электронной оболочки. Этот процесс позволяет создавать достаточно мощные и дешевые радионуклидные источники рентгеновского излучения (таблица 4). Естественно, что такие источники одновременно являются источниками определенного бета- и гамма-излучения. Для изготовления источников используются радионуклиды с минимальной энергией излучаемых бета-частиц и гамма-квантов.

Таблица 4. Радионуклидные источники квантов низких энергий.

Название

Период полураспада

Энергии излучения, кэВ

Выход, %/Бк

Кобальт-57

Кадмий-109

Гадолиний-153

Туллий-170

Америций-241

6.4; 14.4; 122; 136

41.5; 70; 97; 103

14-18; 59.6; 26.4

Защита от рентгеновского излучения существенно проще защиты от гамма-излучения. Слой свинца 1 мм обеспечивает десятикратное ослабление излучения с энергией 100 кэВ.

Физико-технические источники рентгеновского излучения - рентгеновские трубки, в которых под воздействием потока электронов, разогнанных до нескольких десятков кэВ, в мишени (аноде трубки) возбуждается излучение.

Рентгеновская трубка состоит из стеклянного вакуумного баллона с впаянными электродами – катодом, нагреваемым до высокой температуры, и анодом. Электроны, испускаемые катодом, ускоряются в пространстве между электродами сильным электрическим полем (до 500 кВ для мощных трубок) и бомбардируют анод. При ударе электронов об анод их кинетическая энергия частично преобразуется в энергию характеристического и тормозного излучения. КПД рентгеновских трубок обычно не превышает 3%. Поскольку большая часть кинетической энергии электронов превращается в тепло, анод выполняется из металла с высокой теплопроводностью, а на его поверхность (под 45 о к потоку электронов) в зоне фокусировки потока наносится мишень из материала с большим атомным номером, например вольфрама. Для мощных рентгеновских трубок применяется принудительное охлаждение анода (водой или специальным раствором). Удельная мощность, рассеиваемая анодом в современных трубках, от 10 до 10 4 Вт/мм 2 .

Рис. 3. Спектр излучения рентгеновской трубки

Типовой спектр излучения рентгеновской трубки приведен на рис. 3. Он состоит из непрерывного спектра тормозного излучения электронного пучка и характеристических линий рентгеновского излучения (острые пики) при возбуждении внутренних электронных оболочек атомов мишени.

4. Источники нейтронов.

Нейтронное излучение - это поток нейтральных частиц, имеющих массу, примерно равную массе протона. Эти частицы вылетают из ядер атомов при некоторых ядерных реакциях, в частности, при реакциях деления ядер урана и плутония. Вследствие того, что нейтроны не имеют электрического заряда, нейтронное излучение взаимодействует только с атомными ядрами среды и обладает достаточно большой проникающей способностью. В зависимости от кинетической энергии (в сравнении со средней энергией теплового движения E t ≈ 0.025 эВ) нейтроны условно подразделяют на тепловые (Е ~ E t), медленные (E t < E < 1 кэВ), промежуточные (1 < E < 500 кэВ) и быстрые (E > 500 кэВ).

Процесс ослабления нейтронного излучения при прохождении через вещество складывается из процессов замедления быстрых и промежуточных нейтронов, диффузии тепловых нейтронов и их захвата ядрами среды.

В процессах замедления быстрых и промежуточных нейтронов основную роль играет передача нейтронами энергии ядрам среды при прямых столкновениях с ними (неупругое и упругое рассеяние). При неупругом рассеянии часть энергии нейтронов расходуется на возбуждение ядра, которое снимается гамма-излучением. При упругом рассеянии чем меньше масса ядра и больше угол рассеяния, тем большую часть своей энергии передает нейтрон ядру. Вероятность упругого рассеяния практически постоянна до энергий 200 кэВ, и уменьшается в 3-5 раз по мере роста энергии нейтронов.

Радиационный захват нейтронов возможен на любых ядрах, за исключением ядер гелия. При захвате образуется возбужденное ядро, которое переходит в основное состояние с испусканием гамма-излучения, характерного для каждого нуклида, что широко используется для нейтронно-активационного анализа химического состава сред с высочайшей степенью точности (до 10 -8 %). На легких ядрах наблюдаются ядерные реакции с вылетом протонов и альфа-частиц. Тяжелые ядра при захвате нейтронов делятся на два более легких ядра с освобождением энергии до 200 МэВ, из которых порядка 160 МэВ передается осколкам деления. Вероятность захвата имеет индивидуальную для нуклидов зависимость от энергии нейтронов, с резонансными пиками и спадом к области высоких энергий. Захват нейтронов преобладает для медленных и тепловых нейтронов.

Защита от нейтронов выполняется из смеси (слоев) тяжелых элементов (железо, свинец для неупругого рассеяния), легких водородо- и углеродосодержащих веществ (вода, парафин, графит – упругое рассеяние), и элементов захвата тепловых нейтронов (водород, бор). При среднем соотношении 1:4 тяжелых и легких элементов ослабление потока нейтронов в 10:100:1000 раз достигается в слоях примерно 20:32:40 см.

Из всех видов внешних воздействий на человека нейтронное излучение наиболее опасно, т.к. интенсивно замедляется и поглощается водородосодержащей средой организма и вызывает ядерные реакции в его внутренних органах.

Радионуклидные источники нейтронов (таблица 5) выполняются на основе возбуждения в определенных химических элементах ядерных реакций типа (,n) - поглощение альфа-частицы Þ испускание нейтрона, или (,n) - поглощение гамма-кванта Þ испускание нейтрона. Они представляют собой, как правило, однородную спрессованную смесь элемента-излучателя альфа-частиц или гамма-квантов и элемента-мишени, в котором возбуждается ядерная реакция. В качестве альфа-излучателей используются полоний, радий, плутоний, америций, кюрий, в качестве гамма-излучателей - сурьма, иттрий, радий, мезоторий. Элементы - мишени для альфа-излучателей - бериллий, бор, для гамма-излучателей - бериллий, дейтерий. Смесь элементов запаивается в ампулы из нержавеющей стали.

Наиболее известными ампульными источниками являются радиево-бериллиевый и полониево-бериллиевый. Полоний-210 - практически чистый альфа-излучатель. Распад полония сопровождается гамма-излучением слабой интенсивности. Основной недостаток - небольшой срок службы, определяемый периодом полураспада полония.

В калифорниевом нейтронном источнике используется спонтанная ядерная реакция с выбросом нейтрона из ядра, которая сопровождается сильным гамма-излучением. При каждом делении ядра выделяется четыре нейтрона. 1 г источника в секунду выделяет 2,4*10 12 нейтронов, что соответствует нейтронному потоку среднего ядерного реактора. Источники имеют постоянный поток нейтронов (не требуется мониторинг), “точечность” излучения, длительный ресурс (более трех лет), сравнительно низкую стоимость.

Источники тепловых нейтронов выполняются аналогично и дополнительно содержат графитовый чехол-замедлитель.

Таблица 5. Радионуклидные источники нейтронов.

Название

Период полу-

распада, лет

энергия, МэВ

n/3.7 10 10 Бк

Полоний, бериллий

Плутоний-239, бериллий

Плутоний-238, бериллий

Радий, бериллий

Америций, бериллий

Актиний, бериллий

Полоний, бор

Сурьма, бериллий

Иттрий, бериллий

Мезоторий, бериллий

Радий, бериллий

Иттрий, дейтерий

Мезоторий, дейтерий

Радий, дейтерий

Калифорний

Энергетические спектры альфа-нейтронных источников непрерывны, от тепловых до 6-8 МэВ, гамма-нейтронных - приблизительно моноэнергетические, десятки или сотни кэВ. Выход гамма-нейтронных источников на 1-2 порядка меньше, чем альфа-нейтронных, и сопровождается сильным гамма-излучением. У альфа-нейтронных источников сопровождающее гамма-излучение, как правило, низкоэнергетическое и достаточно слабое, за исключением источников с радием (излучение радия и продуктов его распада) и америцием (низкоэнергетическое излучение америция).

Альфа-нейтронные источники обычно ограничены по применению интервалом 5-10 лет, что вызвано возможностью разгерметизации ампулы при накоплении в ней гелия и повышении внутреннего давления.

Физико-техническим источником нейтронов является нейтронная трубка. Она представляет собой малогабаритный электростатический ускоритель заряженных частиц - дейтонов (ядер атомов дейтерия 2 НºD), которые разгоняются до энергии более 100 кэВ, и направляются на тонкие мишени из дейтерия или трития (3 НºT), в которых индуцируются ядерные реакции:

d + D Þ 3 He + n + 3.3 МэВ, d + T Þ 4 He + n + 14.6 МэВ.

Большую часть выделяющейся энергии уносит нейтрон. Распределение энергии нейтронов достаточно узкое и практически моноэнергетическое по углам вылета. Выход нейтронов порядка 10 8 на 1 микрокулон дейтонов. Работают нейтронные трубки, как правило, в импульсном режиме, при этом мощность выхода может превышать 10 12 n/с.

Портативные нейтронные генераторы практически не обладают радиационной опасностью в выключенном состоянии, имеют возможность регулирования режима излучения нейтронов. К недостаткам генераторов относятся ограниченный ресурс работы (100-300 часов) и нестабильность выхода нейтронов от импульса к импульсу (до 50 %).

5. Инвентаризация и утилизация источников

Радионуклидные источники ионизирующего излучения представляют собой потенциальную опасность для населения по следующим причинам:

1. Они распространены по многим организациям, и не везде осуществляется штатный жизненный цикл источников (приобретение – учёт – контроль - использование – захоронение).

2. Источники ионизирующего излучения не могут быть обеспечены надёжной охраной.

3. Конструкция источников ионизирующего излучения такова, что при небрежном или неумелом обращении они могут нанести вред здоровью человека.

В России на базе ФГУП Всероссийского научно-исследовательского института химической технологии (ВНИИХТ) Росатома создан Центр государственного учета и контроля радиоактивных веществ и отходов. В 2000-2001 гг., согласно решению Правительства РФ, проведена Государственная инвентаризация радиоактивных материалов, радиоактивных отходов и источников ионизирующих излучений. Созданы и функционируют региональные ведомственные информационно аналитические центры. Они производят сбор, обработку и анализ информации об образовании, перемещении, переработке и хранению РВ.

Масштабы и сфера использования радионуклидных источников имеют тенденцию к увеличению, и проблема безопасности обращения с источниками на всех этапах их жизнедеятельного цикла была и будет оставаться одной из важных. В России действует уголовная ответственность за незаконное приобретение, хранение, использование, передачу или разрушение радиоактивных материалов.

Высокоактивные источники утилизируются на "ПО "Маяк". Низкоактивные источники захораниваются на региональных предприятиях НПО "Радон".

Радиофобия. Паническую боязнь любого ионизирующего из-лучения в любом количестве называют радиофобией. Неразумно выбегать из комнаты, в которой ра-ботает счетчик Гейгера и регистрирует естественный радиоак-тивный фон. Нужно понимать, что через каждый см 2 вашей кожи внутрь человека ежесекундно проходит порядка 10 ионизирующих частиц, а в теле человека происходит примерно 10 5 распадов в минуту.

Радиофобия в настоящее время распространилась на телеви-зор, как источник рентгеновского излучения, и на самолет, выносящий человека в верхние слои ат-мосферы, где более высок уровень космического излучения. Те-левизор действительно является источником рентгеновского излу-чения, но при ежедневном просмотре телевизионных программ по три-четыре часа в день за год будет получена доза в 100-200 раз меньше естественного фона. Полет в современном самолете на расстояние 2000 км обусловливает получение примерно одной сотой долю среднего значения естествен-ного облучения в год. На Земле имеются области, где уровень радиации в сотни раз превосходит средний (до 250 мЗв), однако неблагоприятных влияний на здоровье живущих там людей не отмечено.

И систематизация общих сведений о функциях, ... точность употребления географической терминологии ; - самостоятельность ответа... атом, атомное ядро, ионизирующие излучения , планета, звезда, ... навыков работы с источниками , (картографическим и хронологическими...

  • 5 математика и естественные науки

    Документ

    ... Общие сведения 535.338.32 Резонансное излучение . ... фотография 535.6:001.4 Терминология в колориметрии 535 ... изменяемости 539.1.03 Источники излучений . Получение источников излучений в лаборатории ® ... . Химическое действие ионизирующего излучения ® 539.1.044 ...

  • Гамма-излучением называется одна из коротковолновых разновидностей электромагнитных излучений. Из-за крайне малой длины волны излучения гамма диапазона обладают выраженными корпускулярными свойствами, при этом волновые свойства практически отсутствуют.

    Гамма обладает мощнейшим травмирующим действием на живые организмы, и при этом его совершенно невозможно распознать органами чувств.

    Оно относится к группе ионизирующих излучений, то есть способствует превращению устойчивых атомов различных веществ в ионы с положительным или отрицательным зарядом. Скорость гамма-излучения сопоставима со скоростью света. Открытие ранее неизвестных радиационных потоков было сделано в 1900 году французским учёным Вилларом.

    Для названий были использованы буквы греческого алфавита. Излучение, находящееся на шкале электромагнитных излучений после рентгеновского, получило название гаммы - третьей буквы алфавита.

    Следует понимать, что границы между различными видами радиации, весьма условны.

    Попробуем, избегая специфической терминологии, разобраться, что такое гамма ионизирующее излучение. Любое вещество состоит из атомов, которые в свою очередь включают в себя ядро и электроны. Атом, а тем более его ядро отличаются высокой устойчивостью, поэтому для их расщепления нужны особые условия.

    Если эти условия каким-то образом возникают или получены искусственно, происходит процесс ядерного распада, который сопровождается выделением большого количества энергии и элементарных частиц.

    В зависимости от того, что именно выделяется в этом процессе, излучения делятся на несколько видов. Альфа, бета и нейтронное излучение отличаются выделением элементарных частиц, а рентгеновские и гамма активный луч - это поток энергии.

    Хотя, на самом деле, любое излучение, в том числе и излучение в гамма-диапазоне, подобно потоку частиц. В случае этого излучения частицами потока являются фотоны или кварки.

    По законам квантовой физики, чем меньше длина волны, тем более высокой энергией обладают кванты излучения.

    Так как длина волны гамма лучей очень мала, то можно утверждать, что энергия гамма излучения чрезвычайно велика.

    Возникновение гамма-излучения

    Источниками излучения в гамма-диапазоне являются различные процессы. Во вселенной существуют объекты, в которых происходят реакции. Результатом этих реакций является космическое гамма-излучение.

    Основные источники гамма-лучей - это квазары и пульсары. Ядерные реакции с массивным выделением энергии и гамма-излучения также происходят в процессе преобразования звезды в сверхновую.

    Гамма электромагнитное излучение возникает при различных переходах в области атомной электронной оболочки, а также при распаде ядер некоторых элементов. Среди источников гамма-лучей можно также назвать определённую среду с сильным магнитным полем, где элементарные частицы тормозятся сопротивлением этой среды.

    Опасность гамма-лучей

    В силу своих свойств радиация гамма-спектра обладает очень высокой проникающей способностью. Чтобы её задержать, нужна свинцовая стена толщиной не менее пяти сантиметров.

    Кожные покровы и прочие защитные механизмы живого существа не являются препятствием гамма-излучению. Оно проникает прямо в клетки, оказывая разрушительное воздействие на все структуры. Облучённые молекулы и атомы вещества сами становятся источником излучения и провоцируют ионизацию других частиц.

    В результате этого процесса из одних веществ получаются другие. Из них составляются новые клетки с другим геномом. Ненужные при строительстве новых клеток остатки старых структур становятся токсинами для организма.

    Наибольшая опасность радиационных лучей для живых организмов, получивших дозу радиации, в том, что они не способны ощущать наличие в пространстве этой смертельной волны. А также в том, что у живых клеток нет никакой специфической защиты от разрушительной энергии, которую несёт гамма ионизирующее излучение. Наибольшее влияние этот вид радиации оказывает на состояние половых клеток, несущих молекулы ДНК.

    Разные клетки организма по-разному ведут себя в гамма-лучах, и обладают разной степенью устойчивости к воздействию этого вида энергии. Однако ещё одним свойством гамма-излучения является кумулятивная способность.

    Однократное облучение небольшой дозой не наносит непоправимого разрушительного воздействия на живую клетку. Именно поэтому радиационным излучениям нашлось применение в науке, медицине, промышленности и других областях человеческой деятельности.

    Области применения гамма-лучей

    Даже смертоносным лучам пытливые умы учёных нашли сферы применения. В настоящее время гамма-излучение используется в различных отраслях промышленности, идут на благо науки, а также успешно применяются в различных медицинских приборах.

    Способность изменять структуру атомов и молекул оказалась на благо при лечении тяжёлых заболеваний, разрушающих организм на клеточном уровне.

    Для лечения онкологических новообразований гамма-лучи незаменимы, так как способны разрушить аномальные клетки, и прекратить их стремительное деление. Иногда остановить аномальный рост раковых клеток невозможно ничем, тогда на помощь приходит гамма-излучение, где клетки уничтожаются полностью.

    Применяется гамма ионизирующее излучение для уничтожения патогенной микрофлоры и различных потенциально опасных загрязнений. В радиоактивных лучах стерилизуют медицинские инструменты и приборы. Также данный вид радиации применяется для обеззараживания некоторых продуктов.

    Гамма-лучами просвечивают различные цельнометаллические изделия для космической и других отраслей промышленности с целью обнаружения скрытых дефектов. В тех областях производства, где необходим предельный контроль за качеством изделий, этот вид проверки просто незаменим.

    При помощи гамма-лучей учёные измеряют глубину бурения, получают данные о возможности залегания различных пород. Гамма-лучи могут быть использованы и в селекции. Строго дозированным потоком облучаются определённые отобранные растения, чтобы получить нужные мутации в их геноме. Таким способом селекционеры получают новые породы растений с нужными им свойствами.

    С помощью гамма-потока определяются скорости космических аппаратов и искусственных спутников. Посылая лучи в космическое пространство, учёные могут определить расстояние и смоделировать путь космического аппарата.

    Способы защиты

    Земля обладает естественным механизмом защиты от космической радиации, это озоновый слой и верхние слои атмосферы.

    Те лучи, которые, обладая огромными скоростями, проникают в защищённое пространство земли, не причиняют большого вреда живым существам. Наибольшую опасность представляют источники и гамма-радиация, полученная в земных условиях.

    Самым главным источником опасности радиационного заражения остаются предприятия, где под контролем человека осуществляется контролируемая ядерная реакция. Это атомные электростанции, где производится энергия для обеспечения населения и промышленности светом и теплом.

    Для обеспечения работников этих объектов принимаются самые серьёзные меры. Трагедии, произошедшие в разных точках мира, из-за утраты человеком контроля за ядерной реакцией, научили людей быть осторожными с невидимым врагом.

    Защита работников электростанций

    На предприятиях ядерной энергетики и производствах, связанных с использованием гамма-излучения, строго ограничивается время контакта с источником радиационной опасности.

    Все сотрудники, имеющие служебную необходимость контактировать или находиться вблизи источника гамма-излучения, используют специальные защитные костюмы и проходят несколько ступеней очистки перед тем, как вернуться в «чистую» зону.

    Для эффективной защиты от гамма-лучей используются материалы, обладающие высокой прочностью. К ним относятся свинец, высокопрочный бетон, свинцовое стекло, определённые виды стали. Эти материалы применяются в сооружении защитных контуров электростанций.

    Элементы из этих материалов используются при создании противорадиационных костюмов для сотрудников электростанций, имеющих допуск к источникам радиации.

    В так называемой «горячей» зоне свинец нагрузки не выдерживает, так как его температура плавления недостаточно высока. В области, где протекает термоядерная реакция с выделением высоких температур, используются дорогие редкоземельные металлы, например вольфрам и тантал.

    Все люди, имеющие дело с гамма-излучением, обеспечиваются индивидуальными измерительными приборами.

    Ввиду отсутствия естественной чувствительности к радиации, человек может воспользоваться дозиметром, чтобы определить, какую дозу радиации он получил за определённый период.

    Нормальной считается доза, не превышающая 18-20 микрорентген в час. Ничего особенно страшного не произойдёт при облучении дозой до 100 микрорентген. Если человек получил такую дозу, могут проявиться последствия через две недели.

    При получении дозы в 600 рентген человеку грозит смерть в 95% случаев в течение двух недель. Доза в 700 рентген смертельна в 100% случаев.

    Из всех видов радиации именно гамма-лучи несут наибольшую опасность для человека. К сожалению, вероятность радиационного заражения существует для каждого. Даже находясь вдали от промышленных предприятий, производящих энергию посредством расщепления атомного ядра, можно подвергнуться опасности облучения.

    История знает примеры таких трагедий.