Атом - «Энциклопедия. Каков диаметр атома? Какой размер и масса атома

  • 30.09.2019

Тот простой факт, что всё вокруг состоит из мельчайших частиц вещества - молекул и атомов, - на самом деле обладает огромной научной силой. Из одного лишь этого утверждения можно вывести большое число следствий, дающих качественное объяснение многим физическим явлениям. Если бы вдруг человечество «забыло» все естественнонаучные знания, накопленные за многие века, то, уцепившись лишь за этот факт и пользуясь научным методом, оно смогло бы очень быстро восстановить азы многих разделов физики и химии.

Про атомарную структуру материи дети узнают еще в начальной школе. Но атомы не видны ни глазом, ни в оптический микроскоп. Более того, в обычных экспериментах с веществом, когда мы измеряем разнообразные характеристики материи (плотность , теплоемкость , удельную теплоту плавления и испарения , вязкость , силу поверхностного натяжения жидкости и так далее), мы вообще можем не задумываться о том, что она состоит из отдельных частиц. Современная физика, конечно, позволяет «разглядеть» отдельные атомы с помощью сложных приборов. Но возникает вопрос: существует ли какой-то простой способ определить типичный размер молекул, не прибегая к такой технике? Оказывается, да.

Задача

Вооружившись лишь фактом, что всё состоит из атомов, оцените размер молекулы воды на основании (некоторых из) перечисленных выше макроскопических характеристик. Численные значения этих параметров для воды можно легко найти в справочниках или в интернете.


Подсказка

Сразу стоит подчеркнуть, что решения, которые опираются на число Авогадро или на свойства отдельных молекул, - «обманные», поскольку они неявным образом уже используют размер молекул. Например, требуемую оценку легко получить из плотности и молярной массы воды и числа Авогадро. Однако число Авогадро, которое связывает микромир с макромиром и «знает» про размеры атомов, в чисто макроскопическом эксперименте не проявляется и само требует экспериментального измерения.

Размер атомов предлагается оценить (разумеется, не точно, а только по порядку величины) на основании именно макроскопических характеристик вещества.

Решение

Размер молекул можно извлечь из плотности, коэффициента поверхностного натяжения и удельной теплоты парообразования. Сделаем это двумя способами.

Способ 1. Жидкость состоит из молекул, но при этом сохраняет свой объем, а не разлетается на отдельные частицы, как газ. Это значит, во-первых, что молекулы в жидкости держатся друг относительно друга на некотором определенном расстоянии, по порядку величины равном диаметру самой молекулы (d ), а во-вторых, что каждое парное взаимодействие между молекулами характеризуется некоторой энергией связи (U ). Величины d и U - микроскопические, их численные значения мы заранее не знаем.

При испарении жидкость превращается в разреженный газ, в котором все связи между всеми молекулами можно считать разорванными. Удельная теплота парообразования E , измеряемая в Дж/кг, есть просто-напросто сумма всех межмолекулярных энергий связи, которые изначально были в килограмме воды. Помножив удельную теплоту парообразования на плотность ρ и на (неизвестный пока) объем, занимаемый одной молекулой (порядка d 3), мы получим энергию связей в расчете на одну молекулу. Эта величина раза в 2–3 больше U - ведь каждая молекула обычно связана с несколькими (4–6) соседями: E ρd 3 = 2U .

С другой стороны, явление поверхностного натяжения состоит в том, что всякая свободная поверхность жидкости характеризуется «лишней» энергией, пропорциональной площади поверхности: E пов = σS . Эту энергию можно легко измерить на опыте и извлечь отсюда коэффициент поверхностного натяжения σ. Микроскопически, эта энергия возникает из-за того, что в самом приповерхностном слое жидкости есть молекулы с «неработающими связями», то есть со связями, которые торчат наружу, в пустоту, а не замкнуты на соседние молекулы. Таких связей мало, скажем одна на каждую молекулу, и энергия этой «неработающей связи» примерно равна U . Поскольку каждая поверхностная молекула занимает площадь примерно d 2 , эту же величину U можно записать как σd 2 .

Приравнивая величину U , полученную этими двумя способами, находим типичный размер: d = 2σ/E ρ.

Способ 2. Возьмем сферическую каплю жидкости и разделим ее на две капли. Суммарный объем не изменился, но площадь поверхности возросла, а значит, возросла и энергия поверхностного натяжения. Поэтому на такое разделение нам надо затратить энергию, равную разности поверхностных энергий вначале и в конце. Будем дробить каплю всё дальше и дальше, пока не дойдем до «капель» размером с молекулу. Строго говоря, при таких размерах про поверхностное натяжение уже говорить нельзя, но для самых грубых оценок можно тем не менее сосчитать получившуюся «суммарную площадь поверхности», домножить ее на σ и найти, какую энергию надо затратить на такое разделение. Но разделение жидкости на отдельные «капли» размером с молекулу и есть процесс парообразования. Таким образом тоже можно получить формулу наподобие приведенной выше, но только с чуть отличающимся численным коэффициентом.

Осталось подставить числа. Плотность воды 1000 кг/м 3 , коэффициент поверхностного натяжения 0,07 Дж/м 2 , удельная теплота парообразования 2,3 МДж/кг. Размер молекулы отсюда получается 0,6·10 –10 м . Это примерно в 3 раза меньше реального размера молекулы, что совсем неплохо для столь грубой оценки.

Послесловие

Это, конечно, не единственный способ узнать размеры молекул на основании макроскопических данных, однако все подобные методы дают лишь очень грубую оценку по порядку величины. Намного более аккуратно измерить размеры можно при рассеянии рентгеновских лучей (а также электронов или нейтронов) с длиной волны меньше нанометра на кристаллах. Дифракционный узор показывает не только размеры кристаллической ячейки, но и рассказывает о том, как атомы в ней расположены друг относительно друга.

Интересно отметить, что еще в начале XX века далеко не все ученые придерживались атомистической картины строения вещества. Ключевыми моментами, доказавшими реальность молекул, было описание Эйнштейном броуновского движения и закона диффузии, а также обнаружение Перреном седиментационного равновесия (Нобелевская премия по физике за 1926 год). В обоих экспериментах микроскопически частицы вещества, размер которых можно было определить через наблюдение в микроскоп, вели себя в чём-то похоже на отдельные молекулы вещества, что и позволило «навести мосты» между микромиром и миром повседневных явлений.

Мы уже знаем, что атомы химических элементов могут отличаться друг от друга по составу и, очевидно, что это должно влиять на их массу, поскольку чем больше в ядре атома суммарное количество протонов и нейтронов, тем он тяжелее. Электроны практически не влияют на массу атома, поскольку обладают крайне малой по сравнению с нейтронами и протонами массой (m p /m e ~2000).

Так как количество протонов в каждом атоме всегда равно количеству электронов, а электроны, если рассматривать строение атома упрощенно, движутся вокруг ядра на значительном от него удалении, то радиус атома равен радиусу орбиты наиболее удаленного от ядра электрона. Следовательно, должна быть некоторая зависимость радиуса атома от количества таких орбит, которая в какой-то степени связана с количеством электронов.

Среди химических элементов наименьшие размеры имеют атомы водорода, радиус которых в обычном состоянии составляет всего лишь около 0,0000000000529 м (5,2910 -11 м) или 0,529 Å, где Å – обозначение единицы длины, называемой ангстрем и равной 10 -10 м. Кроме того, в качестве единиц измерения таких малых значений расстояний часто используют нанометры (нм). 1 нанометр равен 10 -9 м.

Легко догадаться, что малы не только размеры всех атомов, но и их массы. Так, например, масса атома водорода приблизительно равна 1,674∙10 -27 кг. Масса атома, выражаемая в килограммах (г, мг и т.д.), называется абсолютной атомной массой и обозначается как m a . Проводить расчеты с такими малыми величинами крайне неудобно, поэтому ученые нашли следующий выход – измерять все массы атомов других химических элементов в «атомах водорода». Таким образом, получалось, что, например, атом кислорода весит приблизительно 16 «атомов водорода», атом углерода — «12 атомов водорода» и т.д. И все бы хорошо, но все испортили изотопы – разновидности атомов одного и того же химического элемента, отличающиеся между собой массой из-за разного количества нейтронов в ядрах. Выходом могло бы стать использование некой средней массы атома водорода, но дело осложняется тем, что разные изотопы водорода в природе распространены неравномерно. Поэтому, в конечном итоге, было решено использовать в качестве относительной единицы массы не массу атома водорода, а одну двенадцатую массы атома углерода, поскольку данный элемент представлен практически полностью только изотопами углерода с 6 нейтронами и 6 протонами в ядрах (~99 %). Одну двенадцатую массы атома данного изотопа углерода было принято обозначать 1 а.е.м., что расшифровывается как «атомная единица массы». Одна атомная единица массы равно примерно 1,66·10 −27 кг.

Графическое представление смысла одной атомной единицы массы представлено на рисунке 2.

Рисунок 2. Графическая иллюстрация физического смысла одной атомной единицы массы

Таким образом, мы подошли к определению нового термина – относительной атомной массы:

Определение : относительная атомная масса химического элемента равна отношению его абсолютной массы к одной двенадцатой абсолютной массы атома углерода или к массе одной атомной единицы массы.

Относительную атомную массу обозначают символом A r (индекс r означает сокращение от английского слова relative, что переводится как «относительный»). Таким образом, обозначив в общем виде химический элемент символом Х, мы получаем следующую формульную запись представленного выше определения:

Относительная атомная масса — величина безразмерная, так как в числителе и знаменателе находятся значения, измеряемые в одинаковых единицах массы (кг, г или др.). Согласно представленной выше формуле, например, относительная атомная масса водорода равна:

а относительная атомная масса кислорода:

В большинстве расчетных задач, с которыми приходится иметь дело химикам, используются значения относительных атомных масс, округленные до целочисленных значений, т.е. применительно к водороду и кислороду:

Следует отметить, что атомную массу хлора округляют до 35,5. Это связано с тем, что у данного элемента изотопы с относительными массами 35 и 36 практически одинаково распространены в природе.

Рассмотрим зависимость некоторых свойств атомов от строения их электронных оболочек. Остановимся, прежде всего, на закономерностях изменения атомных и ионных радиусов.

Электронные облака не имеют резко очерченных границ. Поэтому понятие о размере атома не является строгим. Но если представить себе атомы в кристаллах простого вещества в виде соприкасающихся друг с другом шаров, то расстояние между центрами соседних шаров (т. е. между ядрами соседних атомов) можно принять равным удвоенному радиусу атома. Так, наименьшее межъядерное расстояние в кристаллах меди равно ; это позволяет считать, что радиус атома меди равен половине этой величины, т. е. .

Зависимость атомных радиусов от заряда ядра атома Z имеет периодический характер. В пределах одного периода с увеличением Z проявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах (радиусы атомов приведены в нм):

Это объясняется увеличивающимся притяжением электронов внешнего слоя к ядру по мере возрастания его заряда.

С началом застройки нового электронного слоя, более удаленного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов фтора и натрия). В результате в пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются. Приведем в качестве примера значения атомных радиусов (в нм) элементов некоторых главных подгрупп:

Электроны наружного слоя, наименее прочно связанные с ядром, могут отрываться от атома и присоединяться к другим атомам, входя в состав наружного слоя последних.

Атомы, лишившиеся одного или нескольких электронов, становятся заряженными положительно, так как заряд ядра атома превышает сумму зарядов оставшихся электронов. Наоборот, атомы, присоединившие к себе лишние электроны, заряжаются отрицательно. Образующиеся заряженные частицы называются ионами.

Ионы обозначают теми же символами, что и атомы, указывая справа вверху их заряд: например, положительный трехзарядный ион алюминия обозначают , отрицательный однозарядный ион хлора - .

Потеря атомов электронов приводит к уменьшению его эффективных размеров, а присоединение избыточных электронов - к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного нона (аниона) всегда больше радиуса соответствующего электронейтрального атома. Так, радиус атома калия составляет , а радиус иона радиусы атома хлора и иона соответственно равны 0,099 и . При этом радиус иона тем сильней отличается от радиуса атома, чем больше заряд иона. Например, радиусы атома хрома и ионов и составляют соответственно 0,127, 0,083 и .

В пределах одной подгруппы радиусы ионов одинакового заряда возрастают с увеличением заряда ядра. Это иллюстрируется следующими примерами (радиусы ионов даны в нм):

Такая закономерность объясняется увеличением числа электронных слоев и растущим удалением внешних электронов от ядра.

Атом - уникальная частица мироздания. Эта статья постарается донести до читателя информацию об этом элементе материи. Здесь мы рассмотрим такие вопросы: каков диаметр атома и его размеры, какие он имеет качественные параметры, в чем заключается его роль во Вселенной.

Знакомство с атомом

Атом - составная частица веществ, имеющая микроскопические размер и массу. Это наименьшая часть элементов химической природы с невероятно малыми размерами и массой.

Атомы строятся из двух основных структурных элементов, а именно из электронов и атомного ядра, которое, в свою очередь, образуется протонами и нейтронами. Число протонов может отличаться от количества нейтронов. Как в химии, так и в физике атомы, в которых величина протонов соизмерима с количеством электронов, называют электрически нейтральными. Если выше или ниже числа протонов, то атом, приобретая положительный или отрицательный заряд, становится ионом.

Атомы и молекулы в физике долгое время считались мельчайшими «кирпичиками», из которых строится Вселенная, и даже после открытия еще меньших составных компонентов остаются среди важнейших открытий в истории человечества. Именно атомы, связанные при помощи межатомных связей, образуют молекулы. Основная масса атома сосредоточена в ядре, а именно, в весе его протонов, которые составляют около 99,9 % от значений общей величины.

Исторические данные

Благодаря достижениям науки в области физики и химии было совершено множество открытий относительно природы атома, его строения и возможностей. Были произведены многочисленные опыты и расчеты, в ходе которых человек смог ответить на такие вопросы: каков диаметр атома, его размер, и многое другое.

Впервые было открыто и сформулировано философами древней Греции и Рима. В XVII-XVIII веках химики смогли при помощи экспериментов доказать идею об атоме как наименьшей частице вещества. Они показали, что множество веществ можно расщеплять многократно при помощи химических методов. Однако в дальнейшем открытые физиками показали, что даже атом можно разделить, а строится он из субатомных компонентов.

Международный съезд ученых по химии в Карлсруэ, расположенном на территории Германии, в 1860 г. принял решение относительно понятия об атомах и молекулах, где атом рассматривается как самая маленькая часть химических элементов. Следовательно, он также входит в состав веществ простого и сложного типа.

Диаметр атома водорода был изучен одним из самых первых. Однако его расчеты были произведены множество раз и последние из них, опубликованные в 2010 г., показали, что он на 4 % меньше, чем предполагалось ранее (10 -8). Показатель общего значения величины атомного ядра соответствует числу 10 -13 -10 -12 , а порядок величины всего диаметра равен 10 -8 . Это вызвало множество противоречий и проблем, поскольку сам водород по праву относится к основным составным частям всей обозримой Вселенной, а подобная несостыковка вынуждает совершать множество перерасчетов по отношению к фундаментальным утверждениям.

Атом и его модель

В настоящее время известно пять основных моделей атома, отличающиеся между собой, прежде всего, временными рамками представлениями об его устройстве. Рассмотрим непосредственно модели:

  • Кусочки, из которых состоит материя. Демокрит считал, что любое свойство веществ должно определяться его формами, массой и другим рядом практических характеристик. Например, огонь может обжечь, потому что его атомы острые. Согласно мнению Демокрита, даже душа образована атомами.
  • Атомная модель Томсона, созданная в 1904 г., самим Дж. Дж. Томсоном. Он предположил, что атом можно принимать в качестве положительно заряженного тела, заключенного внутри электронов.
  • Ранняя планетарная атомная модель Нагаоки, созданная в 1904 году, полагала, что устройство атома аналогично системе Сатурна. Ядро маленьких размеров и имеющее положительный показатель заряда окружено электронами, которые двигаются по кольцам.
  • Атомная планетарная модель, открытая Бором и Резерфордом. В 1911 г. Э. Резерфорд, после того как провел целый ряд экспериментов, стал полагать, что атом схож с планетарной системой, где у электронов есть орбиты, по которым они двигаются вокруг ядра. Однако это предположение шло в разрез с данными классической электродинамики. Чтобы доказать состоятельность этой теории, Нильс Бор ввел понятие о постулатах, утверждающих и показывающих, что электрону не требуется расходовать энергию, так как он находится в определенном, специальном энергетическом состоянии. Изучение атома в дальнейшем привело к тому, что появилась квантовая механика, которая смогла объяснить множество противоречий, которые можно было наблюдать.
  • Квантово-механическая атомная модель утверждает, что центральная основа рассматриваемой частицы состоит из ядра, образующегося из протонов, а также нейтронов и электронов, движущихся вокруг него.

Особенности строения

Размер атома ранее предопределял, что это неделимая частица. Однако множество опытов и экспериментов показали нам, что он строится из субатомных частиц. Любой атом состоит из электронов, протонов и нейтронов, за исключением водорода - 1, который не включает в себя последние.

Стандартная модель показывает, что протоны и нейтроны образованы посредством взаимодействия между кварками. Они относятся к фермионам, наряду с лептонами. В настоящее время различают 6 видов кварков. Протоны своим образованием обязаны двум u-кварками и одному d-кварку, а нейтрон - одному u-кварку и двум d-кварками. Ядерное взаимодействие сильного типа, которым связываются кварки, передается при помощи глюонов.

Движение электронов в атомном пространстве предопределяется их «желанием» быть ближе к ядру, другими словами, притягиваться, а также кулоновскими силами взаимодействия между ними. Эти же типы сил удерживают каждый электрон в потенциальном барьере, окружившем ядро. Орбита движения электронов обуславливает величину диаметра атома, равную прямой линии, проходящей от одной точки в окружности к другой, а также через центр.

У атома имеется его спин, который представлен собственным импульсным моментом и лежит вне понимания общей природы материи. Описывается при помощи квантовой механики.

Размеры и масса

Каждое ядро атома с одинаковым показателем числа протонов относится к общему химическому элементу. К изотопам относятся представители атомов одного элемента, но имеющие различие в нейтронном количестве.

Поскольку в физике строение атома указывают на то, что основную их массу составляют протоны и нейтроны, то общую сумму данных частиц имеют массовым числом. Выражение атомной массы в состоянии спокойствия происходит посредством использования атомных единиц массы (а. е. м.), которые по-другому именуются дальтонами (Да).

Размер атома не имеет четко выраженных границ. Потому определяется он при помощи измерения расстояния между ядрами одинакового типа атомов, химически связанных между собой. Другой способ измерения возможен при расчете длительности пути от ядра до дальнейшей из имеющихся электронных орбит стабильного типа. элементов Д. И. Менделеева располагает в себе атомы по размеру, от меньших к большим, в направлении столбца сверху вниз, движение по направлению слева направо также основано на уменьшении их размеров.

Время распада

Все хим. элементы имеют изотопы, от одного и выше. Они содержат в себе нестабильное ядро, подверженное радиоактивному распаду, вследствие чего происходит испускание частиц или электромагнитного излучения. Радиоактивным называют тот изотоп, у которого величина радиуса сильного взаимодействия выходит за пределы дальних точек диаметра. Если рассмотреть на примере аурума, то изотопом будет атом Au, за пределы диаметра которого во всех направлениях "вылетают" излучающиеся частицы. Изначально диаметр атома золота соответствует величине двух радиусов, каждый из которых равен 144 пк, а частицы, выходящие за пределы этого расстояния от ядра, будут считаться изотопами. Существует три типа распада: альфа-, бета- и гамма излучение.

Понятие о валентности и наличии энергетических уровней

Мы уже ознакомились с ответами на такие вопросы: каков диаметр атома, его размер, ознакомились с понятием распада атома и т. д. Однако, помимо этого, существуют и такие характеристики атомов, как величина энергетических уровней и валентность.

Электроны, двигающиеся вокруг атомного ядра, обладают потенциальной энергией и пребывают в связанном состоянии, располагаясь на возбужденном уровне. В соответствии с квантовой моделью, электрон занимает только дискретное количество энергетических уровней.

Валентность - это общая способность атомов, у которых на электронной оболочке имеется свободное место, устанавливать связи химического типа с другими атомными единицами. Посредством установления химических связей атомы стараются заполнить свой слой внешней валентной оболочки.

Ионизация

В результате воздействия высокого значения напряженности на атом он может подвергаться необратимой деформации, которая сопровождается электронным отрывом.

Это приводит к ионизации атомов, в ходе которой они отдают электрон(ы) и претерпевают превращение из стабильного состояния в ионы с положительным зарядом, иначе именуемые катионами. Этот процесс требует определенной энергии, которую называют потенциалом ионизации.

Подводя итоги

Изучение вопросов о строении, особенностях взаимодействия, качественных параметрах, о том, каков же диаметр атома и какие он имеет размеры, все это позволило человеческому разуму совершить невероятный труд, помогающий лучше осознать и понять устройство всей материи вокруг нас. Эти же вопросы позволили открыть человеку понятия об электроотрицательности атома, его дисперсном притяжении, валентных возможностях, определить длительность радиоактивного распада и многое другое.

Молекула (новолат. molecula, уменьшит. от лат. moles-масса), микрочастица, образованная из двух или большего числа атомов и способная к самостоятельному существованию. Имеет постоянный состав (качественный и количественный) входящих в нее атомных ядер и фиксированное число электронов и обладает совокупностью свойств, позволяющих отличать одну молекулу от других, в том числе от молекул того же состава. Молекула, как система, состоящая из взаимодействующих электронов и ядер, может находиться в различных состояниях и переходить из одного состояния в другое вынужденно (под влиянием внешних воздействий) или самопроизвольно. Для всех молекул данного вида характерна некоторая совокупность состояний, которая может служить для идентификации молекул. Как самостоятельное образование молекула обладает в каждом состоянии определенным набором физических свойств, эти свойства в той или иной степени сохраняются при переходе от молекул к состоящему из них веществу и определяют свойства этого вещества. При химических превращениях молекула одного вещества обмениваются атомами с молекулами другого вещества, распадаются на молекулы с меньшим числом атомов, а также вступают в химические реакции других типов. Поэтому химия изучает вещества и их превращения в неразрывной связи со строением и состоянием молекул

Обычно молекулой называют электрически нейтральную частицу; если молекула несет электрический заряд (положительный или отрицательный), то говорят о молекулярных ионах (катионах или анионах соответственно). В веществе положительные ионы всегда сосуществуют вместе с отрицательными. Молекулы, находящиеся в состояниях с мультиплетностью, отличной от единицы (как правило, в дублетных состояниях), называют радикалами. Свободные радикалы в обычных условиях, как правило, не могут существовать длительное время. Известны, однако, свободные радикалы сравнительно сложного строения, которые являются достаточно стабильными и могут существовать при обычных условиях.

По числу входящих в молекулу атомных ядер различают молекулы двухатомные, трехатомные и т.д. Если число атомовв молекуле превосходит сотни и тысячи, молекула называется макромолекулой. Сумма масс всех атомов, входящих в состав молекулы, рассматривается как молекулярная масса (смотри также Молекулярная масса полимера. Молекулярно-массовое распределение). По величине молекулярной массы все вещества условно делят на низко- и высокомолекулярные.

А́том (от др.-греч. ἄτομος - неделимый) - частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.

Представление об атомах как неделимых мельчайших частицах вещества возникло еще в античные времена, но только в XVIII веке трудами А. Лавуазье, М. В. Ломоносова и других ученых была доказана реальность существования атомов.

Общая характеристика строения атома. Атом состоит из положительно заряженного ядра, окруженного облаком отрицательно заряженныхэлектронов. Размеры атома в целом определяются размерами его электронного облака и велики по сравнению с размерами _ядра атома (линейные размеры атома ~ 10~ 8 см, его ядра ~ 10" -10" 13 см). Электронное облако атома не имеет строго определенных границ, поэтому размеры атома в значит. степени условны и зависят от способов их определения (см. Атомные радиусы). Ядро атома состоит из Z протонов и N нейтронов, удерживаемых ядерными силами (см. Ядро атомное). Положит. заряд протона и отрицат. заряд электрона одинаковы по абс. величине и равны е= 1,60*10 -19 Кл; нейтрон не обладает элек-трич. зарядом. Заряд ядра +Ze - осн. характеристика атома, обусловливающая его принадлежность к определенному хим. элементу. Порядковый номер элемента в периодич. системе Менделеева (атомный номер) равен числу протонов в ядре.

В электрически нейтральном атоме число электронов в облаке равно числу протонов в ядре. Однако при определенных условиях он может терять или присоединять электроны, превращаясь соотв. в положит. или отрицат. ион, напр. Li + , Li 2+ или О - , О 2- . Говоря об атомах определенного элемента, подразумевают как нейтральные атомы, так и ионы этого элемента.

Строение атома и свойства веществ . Хим. св-ва определяются строением внеш. электронных оболочек атомов, в к-рых электроны связаны сравнительно слабо (энергии связи от неск. эВ до неск. десятков эВ). Строение внеш. оболочек атомов хим. элементов одной группы (или подгруппы) периодич. системы аналогично, что и обусловливает сходство хим. св-в этих элементов.(1) При увеличении числа электронов в заполняющейся оболочке их энергия связи, как правило, увеличивается; наиб. энергией связи обладают электроны в замкнутой оболочке. Поэтому атомы с одним или неск. электронами в частично заполненной внеш. оболочке отдают их в хим. р-циях. Атомы, к-рым не хватает одного или неск. электронов для образования замкнутой внеш. оболочки, обычно принимают их. Атомы благородных газов, обладающие замкнутыми внеш. оболочками, при обычных условиях не вступают в хим. р-ции.

Строение внутр. оболочек атомов, электроны которых связаны гораздо прочнее (энергия связи 10 2 -10 4 эВ), проявляется лишь при взаимод. атомов с быстрыми частицами и фотонами высоких энергий. Такие взаимод. определяют характер рентгеновских спектров и рассеяние частиц (электронов,нейтронов) на атомах (см. Дифракционные методы). Масса атома определяет такие его физ. св-ва, как импульс, кинетич. энергия. От механических и связанных с ними магн. и электрич. моментов ядра атома зависят нек-рые тонкие физ. эффекты (ЯМР, ЯКР, сверхтонкая структура спектральных линий, см Спектроскопия).

1сноска: Электро́нво́льт (редко электроновольт ; русское обозначение: эВ , международное: eV ) - внесистемная единица энергии, используемая в атомной и ядерной физике, в физике элементарных частиц и в близких и родственных областях науки (биофизике, физической химии, астрофизике и т. п.). В Российской Федерации электронвольт допущен к использованию в качестве внесистемной единицы без ограничения срока с областью применения.

Ядерная модель атома

В начале 20 века в результате изучения катодных лучей были обнаружены отрицательные частицы – электроны с зарядом 1,6 . 10‾ 19 Кл, массой 9,11 . 10‾ 31 кг, открыто рентгеновское электромагнитное излучение. Обобщив эти открытия, Дж.Томсон в 1897 году предложил свою модель атома – это положительно заряженная сфера, в которую вкраплены отрицательные электроны (подобно изюму в пудинге). Если эта модель верна, тогда металлическая фольга – это пленка положительного электричества, содержащая электроны и поток α- частиц должен легко проникать через нее, не меняя направление.

В 1909 г. сотрудники англ. ученого Э. Резерфорда это проверили. 1 из 100000 α - частиц при прохождении через золотую фольгу рассеивались на большие углы и даже поворачивали обратно. Анализируя результаты эксперимента, Резерфорд сделал вывод, что масса и заряд атома сконцентрированы в малой части объема, называемой ядром. Отклоняются те α - частицы, которые сталкиваются с ядрами. Большинство же α - частиц проходит через пространство между ядрами. Модель строения атома, предложенная Э. Резерфордом, напоминала солнечную систему. Ее называют планетарной моделью. Согласно ей, в центре атома находится положительное ядро, в котором сосредоточена вся масса атома. Вокруг ядра по круговым орбитам движутся электроны. Заряд ядра и число электронов одинаковы, т.е. атом нейтральная частица.

В 1913г. английский физик Мозли измерил длины волн рентгеновских лучей, испускаемых разными металлами в катодной трубке, и построил график зависимости обратного значения квадратного корня из длины волны рентгеновских лучей от порядкового номера элемента. Этот график (рис.1) показывает, что порядковый номер отражает какую-то важную характеристику элемента. Мозли предположил, что этой характеристикой является заряд ядра атома, и что он возрастает на единицу при переходе от одного элемента к следующему за ним по порядку. Он назвал порядковый номер атомным номером - Z .

Закон Мозли :

Корень квадратный из величины, обратной длине волны рентгеновских лучей, испускаемых атомами различных элементов, находится в линейной зависимости от порядкового номера элемента.

Это закон, связывающий частоту спектральных линий характеристического рентгеновского излучения атома химического элемента с его порядковым номером.

где - длина волны, а – постоянная величина, Z – порядковый номер элемента (заряд ядра).

Позже стало известно, что порядковый номер равен числу протонов в ядре. Таким образом, порядковый (атомный) номер равен заряду ядра и он же определяет наличие в нем протонов (положительных частиц). А так как атомы нейтральны, то число электронов в атоме должно быть равно числу протонов. Но массы атомов оказались больше суммарной массы протонов. Для объяснения избытка массы было высказано предположение о существовании нейтронов. Эти частицы должны были иметь ту же массу, что и протон, но нулевой заряд (1,675 . 10 - 27 кг). Нейтрон был открыт сотрудником Резерфорда Чедвигом в 1932 г. Было окончательно установлено, что атом состоит из ядра и электронов, а ядро – из протонов и нейтронов. Их сумму называютнуклонным числом или массовым - А .

А = Z + N ,

Z - число протонов, N - число нейтронов.

Атомы с различным числом протонов (Z ) и нейтронов (N ), но с одинаковым числом нуклонов А , называют изобарами . Например,

Изотопы – атомы с одинаковым числом протонов (Z ), но с разным числом нуклонов

Изотоны – атомы с одинаковым числом нейтронов (N )

Таким образом, дробные значения атомных масс в периодической системе объясняются наличием изотопов для одного и того же элемента.

А́томное ядро́ - центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.

Спектра́льная ли́ния - особенность участка спектра, выражающаяся в локальном повышении (светлые, эмиссионные линии, спектральные максимумы) или понижении (тёмные линии, линии поглощения, спектральные минимумы) уровня сигнала.

Остаточной интенсивностью называют усиление/ослабление излучения в спектральной линии по сравнению с непрерывным спектром.

Функция, характеризующая зависимость остаточной интенсивности от частоты, называется профилем линии.

Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10 −2 до 10 2 Å (от 10 −12 до 10 −8 м).

Фото́н (от др.-греч. φῶς, род. пад. φωτός, «свет») - элементарная частица, квант электромагнитного излучения (в узком смысле -света). Это безмассовая частица, способная существовать в вакууме только двигаясь со скоростью света.