Умножать разные корни. Формулы корней

  • 13.10.2019

Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.

Число c является n -ной степенью числа a когда:

Операции со степенями.

1. Умножая степени с одинаковым основанием их показатели складываются:

a m ·a n = a m + n .

2. В делении степеней с одинаковым основанием их показатели вычитаются:

3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:

(abc…) n = a n · b n · c n …

4. Степень дроби равняется отношению степеней делимого и делителя:

(a/b) n = a n /b n .

5. Возводя степень в степень, показатели степеней перемножают:

(a m) n = a m n .

Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.

Например . (2·3·5/15)² = 2²·3²·5²/15² = 900/225 = 4 .

Операции с корнями.

1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:

2. Корень из отношения равен отношению делимого и делителя корней:

3. При возведении корня в степень довольно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в n раз и в тоже время возвести в n -ую степень подкоренное число, то значение корня не поменяется:

5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n -ой степени из подкоренного числа, то значение корня не поменяется:

Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:

Формулу a m :a n =a m - n можно использовать не только при m > n , но и при m < n .

Например . a 4:a 7 = a 4 - 7 = a -3 .

Чтобы формула a m :a n =a m - n стала справедливой при m=n , нужно присутствие нулевой степени.

Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.

Например . 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.

Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n , необходимо извлечь корень n -ой степени из m -ой степени этого числа а .

Приветствую, котаны! В прошлый раз мы подробно разобрали, что такое корни (если не помните, рекомендую почитать). Главный вывод того урока: существует лишь одно универсальное определение корней, которое вам и нужно знать. Остальное — брехня и пустая трата времени.

Сегодня мы идём дальше. Будем учиться умножать корни, изучим некоторые проблемы, связанные с умножением (если эти проблемы не решить, то на экзамене они могут стать фатальными) и как следует потренируемся. Поэтому запасайтесь попкорном, устраивайтесь поудобнее — и мы начинаем.:)

Вы ведь тоже ещё не вкурили?

Урок получился довольно большим, поэтому я разделил его на две части:

  1. Сначала мы разберём правила умножения. Кэп как бы намекает: это когда есть два корня, между ними стоит знак «умножить» — и мы хотим что-то с этим сделать.
  2. Затем разберём обратную ситуацию: есть один большой корень, а нам приспичило представить его в виде произведения двух корней попроще. С какого перепугу это бывает нужно — вопрос отдельный. Мы разберём лишь алгоритм.

Тем, кому не терпится сразу перейти ко второй части — милости прошу. С остальными начнём по порядку.

Основное правило умножения

Начнём с самого простого — классических квадратных корней. Тех самых, которые обозначаются $\sqrt{a}$ и $\sqrt{b}$. Для них всё вообще очевидно:

Правило умножения. Чтобы умножить один квадратный корень на другой, нужно просто перемножить их подкоренные выражения, а результат записать под общим радикалом:

\[\sqrt{a}\cdot \sqrt{b}=\sqrt{a\cdot b}\]

Никаких дополнительных ограничений на числа, стоящие справа или слева, не накладывается: если корни-множители существуют, то и произведение тоже существует.

Примеры. Рассмотрим сразу четыре примера с числами:

\[\begin{align} & \sqrt{25}\cdot \sqrt{4}=\sqrt{25\cdot 4}=\sqrt{100}=10; \\ & \sqrt{32}\cdot \sqrt{2}=\sqrt{32\cdot 2}=\sqrt{64}=8; \\ & \sqrt{54}\cdot \sqrt{6}=\sqrt{54\cdot 6}=\sqrt{324}=18; \\ & \sqrt{\frac{3}{17}}\cdot \sqrt{\frac{17}{27}}=\sqrt{\frac{3}{17}\cdot \frac{17}{27}}=\sqrt{\frac{1}{9}}=\frac{1}{3}. \\ \end{align}\]

Как видите, основной смысл этого правила — упрощение иррациональных выражений. И если в первом примере мы бы и сами извлекли корни из 25 и 4 без всяких новых правил, то дальше начинается жесть: $\sqrt{32}$ и $\sqrt{2}$ сами по себе не считаются, но их произведение оказывается точным квадратом, поэтому корень из него равен рациональному числу .

Отдельно хотел бы отметить последнюю строчку. Там оба подкоренных выражения представляют собой дроби. Благодаря произведению многие множители сокращаются, а всё выражение превращается в адекватное число.

Конечно, не всегда всё будет так красиво. Иногда под корнями будет стоять полная лажа — непонятно, что с ней делать и как преобразовывать после умножения. Чуть позже, когда начнёте изучать иррациональные уравнения и неравенства, там вообще будут всякие переменные и функции. И очень часто составители задач как раз и рассчитывают на то, что вы обнаружите какие-то сокращающиеся слагаемые или множители, после чего задача многократно упростится.

Кроме того, совсем необязательно перемножать именно два корня. Можно умножить сразу три, четыре — да хоть десять! Правило от этого не поменяется. Взгляните:

\[\begin{align} & \sqrt{2}\cdot \sqrt{3}\cdot \sqrt{6}=\sqrt{2\cdot 3\cdot 6}=\sqrt{36}=6; \\ & \sqrt{5}\cdot \sqrt{2}\cdot \sqrt{0,001}=\sqrt{5\cdot 2\cdot 0,001}= \\ & =\sqrt{10\cdot \frac{1}{1000}}=\sqrt{\frac{1}{100}}=\frac{1}{10}. \\ \end{align}\]

И опять небольшое замечание по второму примеру. Как видите, в третьем множителе под корнем стоит десятичная дробь — в процессе вычислений мы заменяем её обычной, после чего всё легко сокращается. Так вот: очень рекомендую избавляться от десятичных дробей в любых иррациональных выражениях (т.е. содержащих хотя бы один значок радикала). В будущем это сэкономит вам кучу времени и нервов.

Но это было лирическое отступление. Теперь рассмотрим более общий случай — когда в показателе корня стоит произвольное число $n$, а не только «классическая» двойка.

Случай произвольного показателя

Итак, с квадратными корнями разобрались. А что делать с кубическими? Или вообще с корнями произвольной степени $n$? Да всё то же самое. Правило остаётся прежним:

Чтобы перемножить два корня степени $n$, достаточно перемножить их подкоренные выражения, после чего результат записать под одним радикалом.

В общем, ничего сложного. Разве что объём вычислений может оказаться больше. Разберём парочку примеров:

Примеры. Вычислить произведения:

\[\begin{align} & \sqrt{20}\cdot \sqrt{\frac{125}{4}}=\sqrt{20\cdot \frac{125}{4}}=\sqrt{625}=5; \\ & \sqrt{\frac{16}{625}}\cdot \sqrt{0,16}=\sqrt{\frac{16}{625}\cdot \frac{16}{100}}=\sqrt{\frac{64}{{{25}^{2}}\cdot 25}}= \\ & =\sqrt{\frac{{{4}^{3}}}{{{25}^{3}}}}=\sqrt{{{\left(\frac{4}{25} \right)}^{3}}}=\frac{4}{25}. \\ \end{align}\]

И вновь внимание второе выражение. Мы перемножаем кубические корни, избавляемся от десятичной дроби и в итоге получаем в знаменателе произведение чисел 625 и 25. Это довольно большое число — лично я с ходу не посчитаю, чему оно равно.

Поэтому мы просто выделили точный куб в числителе и знаменателе, а затем воспользовались одним из ключевых свойств (или, если угодно — определением) корня $n$-й степени:

\[\begin{align} & \sqrt{{{a}^{2n+1}}}=a; \\ & \sqrt{{{a}^{2n}}}=\left| a \right|. \\ \end{align}\]

Подобные «махинации» могут здорово сэкономить вам время на экзамене или контрольной работе, поэтому запомните:

Не спешите перемножать числа в подкоренном выражении. Сначала проверьте: вдруг там «зашифрована» точная степень какого-либо выражения?

При всей очевидности этого замечания должен признать, что большинство неподготовленных учеников в упор не видят точные степени. Вместо этого они перемножают всё напролом, а затем удивляются: почему это получились такие зверские числа?:)

Впрочем, всё это детский лепет по сравнению с тем, что мы изучим сейчас.

Умножение корней с разными показателями

Ну хорошо, теперь мы умеем перемножать корни с одинаковыми показателями. А что, если показатели разные? Скажем, как умножить обычный $\sqrt{2}$ на какую-нибудь хрень типа $\sqrt{23}$? Можно ли вообще это делать?

Да конечно можно. Всё делается вот по этой формуле:

Правило умножения корней. Чтобы умножить $\sqrt[n]{a}$ на $\sqrt[p]{b}$, достаточно выполнить вот такое преобразование:

\[\sqrt[n]{a}\cdot \sqrt[p]{b}=\sqrt{{{a}^{p}}\cdot {{b}^{n}}}\]

Однако эта формула работает только при условии, что подкоренные выражения неотрицательны . Это очень важное замечание, к которому мы вернёмся чуть позже.

А пока рассмотрим парочку примеров:

\[\begin{align} & \sqrt{3}\cdot \sqrt{2}=\sqrt{{{3}^{4}}\cdot {{2}^{3}}}=\sqrt{81\cdot 8}=\sqrt{648}; \\ & \sqrt{2}\cdot \sqrt{7}=\sqrt{{{2}^{5}}\cdot {{7}^{2}}}=\sqrt{32\cdot 49}=\sqrt{1568}; \\ & \sqrt{5}\cdot \sqrt{3}=\sqrt{{{5}^{4}}\cdot {{3}^{2}}}=\sqrt{625\cdot 9}=\sqrt{5625}. \\ \end{align}\]

Как видите, ничего сложного. Теперь давайте разберёмся, откуда взялось требование неотрицательности, и что будет, если мы его нарушим.:)


Умножать корни несложно

Почему подкоренные выражения должны быть неотрицательными?

Конечно, можно уподобиться школьным учителям и с умным видом процитировать учебник:

Требование неотрицательности связано с разными определениями корней чётной и нечётной степени (соответственно, области определения у них тоже разные).

Ну что, стало понятнее? Лично я, когда читал этот бред в 8-м классе, понял для себя примерно следующее: «Требование неотрицательности связано с *#&^@(*#@^#)~%» — короче, я нихрена в тот раз не понял.:)

Поэтому сейчас объясню всё по-нормальному.

Сначала выясним, откуда вообще берётся формула умножения, приведённая выше. Для этого напомню одно важное свойство корня:

\[\sqrt[n]{a}=\sqrt{{{a}^{k}}}\]

Другими словами, мы можем спокойно возводить подкоренное выражение в любую натуральную степень $k$ — при этом показатель корня придётся умножить на эту же степень. Следовательно, мы легко сведём любые корни к общему показателю, после чего перемножим. Отсюда и берётся формула умножения:

\[\sqrt[n]{a}\cdot \sqrt[p]{b}=\sqrt{{{a}^{p}}}\cdot \sqrt{{{b}^{n}}}=\sqrt{{{a}^{p}}\cdot {{b}^{n}}}\]

Но есть одна проблема, которая резко ограничивает применение всех этих формул. Рассмотрим вот такое число:

Согласно только что приведённой формуле мы можем добавить любую степень. Попробуем добавить $k=2$:

\[\sqrt{-5}=\sqrt{{{\left(-5 \right)}^{2}}}=\sqrt{{{5}^{2}}}\]

Минус мы убрали как раз потому, что квадрат сжигает минус (как и любая другая чётная степень). А теперь выполним обратное преобразование: «сократим» двойку в показателе и степени. Ведь любое равенство можно читать как слева-направо, так и справа-налево:

\[\begin{align} & \sqrt[n]{a}=\sqrt{{{a}^{k}}}\Rightarrow \sqrt{{{a}^{k}}}=\sqrt[n]{a}; \\ & \sqrt{{{a}^{k}}}=\sqrt[n]{a}\Rightarrow \sqrt{{{5}^{2}}}=\sqrt{{{5}^{2}}}=\sqrt{5}. \\ \end{align}\]

Но тогда получается какая-то хрень:

\[\sqrt{-5}=\sqrt{5}\]

Этого не может быть, потому что $\sqrt{-5} \lt 0$, а $\sqrt{5} \gt 0$. Значит, для чётных степеней и отрицательных чисел наша формула уже не работает. После чего у нас есть два варианта:

  1. Убиться об стену констатировать, что математика — это дурацкая наука, где «есть какие-то правила, но это неточно»;
  2. Ввести дополнительные ограничения, при которых формула станет рабочей на 100%.

В первом варианте нам придётся постоянно вылавливать «неработающие» случаи — это трудно, долго и вообще фу. Поэтому математики предпочли второй вариант.:)

Но не переживайте! На практике это ограничение никак не влияет на вычисления, потому что все описанные проблемы касаются лишь корней нечётной степени, а из них можно выносить минусы.

Поэтому сформулируем ещё одно правило, которое распространяется вообще на все действия с корнями:

Прежде чем перемножать корни, сделайте так, чтобы подкоренные выражения были неотрицательны.

Пример. В числе $\sqrt{-5}$ можно вынести минус из-под знака корня — тогда всё будет норм:

\[\begin{align} & \sqrt{-5}=-\sqrt{5} \lt 0\Rightarrow \\ & \sqrt{-5}=-\sqrt{{{5}^{2}}}=-\sqrt{25}=-\sqrt{{{5}^{2}}}=-\sqrt{5} \lt 0 \\ \end{align}\]

Чувствуете разницу? Если оставить минус под корнем, то при возведении подкоренного выражения в квадрат он исчезнет, и начнётся хрень. А если сначала вынести минус, то можно хоть до посинения возводить/убирать квадрат — число останется отрицательным.:)

Таким образом, самый правильный и самый надёжный способ умножения корней следующий:

  1. Убрать все минусы из-под радикалов. Минусы бывают только в корнях нечётной кратности — их можно поставить перед корнем и при необходимости сократить (например, если этих минусов окажется два).
  2. Выполнить умножение согласно правилам, рассмотренным выше в сегодняшнем уроке. Если показатели корней одинаковые, просто перемножаем подкоренные выражения. А если разные — используем злобную формулу \[\sqrt[n]{a}\cdot \sqrt[p]{b}=\sqrt{{{a}^{p}}\cdot {{b}^{n}}}\].
  3. 3.Наслаждаемся результатом и хорошими оценками.:)

Ну что? Потренируемся?

Пример 1. Упростите выражение:

\[\begin{align} & \sqrt{48}\cdot \sqrt{-\frac{4}{3}}=\sqrt{48}\cdot \left(-\sqrt{\frac{4}{3}} \right)=-\sqrt{48}\cdot \sqrt{\frac{4}{3}}= \\ & =-\sqrt{48\cdot \frac{4}{3}}=-\sqrt{64}=-4; \end{align}\]

Это самое простой вариант: показатели корней одинаковы и нечётны, проблема лишь в минусе у второго множителя. Выносим этот минус нафиг, после чего всё легко считается.

Пример 2. Упростите выражение:

\[\begin{align} & \sqrt{32}\cdot \sqrt{4}=\sqrt{{{2}^{5}}}\cdot \sqrt{{{2}^{2}}}=\sqrt{{{\left({{2}^{5}} \right)}^{3}}\cdot {{\left({{2}^{2}} \right)}^{4}}}= \\ & =\sqrt{{{2}^{15}}\cdot {{2}^{8}}}=\sqrt{{{2}^{23}}} \\ \end{align}\]

Здесь многих смутило бы то, что на выходе получилось иррациональное число. Да, так бывает: мы не смогли полностью избавиться от корня, но по крайней мере существенно упростили выражение.

Пример 3. Упростите выражение:

\[\begin{align} & \sqrt{a}\cdot \sqrt{{{a}^{4}}}=\sqrt{{{a}^{3}}\cdot {{\left({{a}^{4}} \right)}^{6}}}=\sqrt{{{a}^{3}}\cdot {{a}^{24}}}= \\ & =\sqrt{{{a}^{27}}}=\sqrt{{{a}^{3\cdot 9}}}=\sqrt{{{a}^{3}}} \end{align}\]

Вот на это задание хотел бы обратить ваше внимание. Тут сразу два момента:

  1. Под корнем стоит не конкретное число или степень, а переменная $a$. На первый взгляд, это немного непривычно, но в действительности при решении математических задач чаще всего придётся иметь дело именно с переменными.
  2. В конце мы умудрились «сократить» показатель корня и степень в подкоренном выражении. Такое случается довольно часто. И это означает, что можно было существенно упростить вычисления, если не пользоваться основной формулой.

Например, можно было поступить так:

\[\begin{align} & \sqrt{a}\cdot \sqrt{{{a}^{4}}}=\sqrt{a}\cdot \sqrt{{{\left({{a}^{4}} \right)}^{2}}}=\sqrt{a}\cdot \sqrt{{{a}^{8}}} \\ & =\sqrt{a\cdot {{a}^{8}}}=\sqrt{{{a}^{9}}}=\sqrt{{{a}^{3\cdot 3}}}=\sqrt{{{a}^{3}}} \\ \end{align}\]

По сути, все преобразования выполнялись лишь со вторым радикалом. И если не расписывать детально все промежуточные шаги, то в итоге объём вычислений существенно снизится.

На самом деле мы уже сталкивались с подобным задание выше, когда решали пример $\sqrt{5}\cdot \sqrt{3}$. Теперь его можно расписать намного проще:

\[\begin{align} & \sqrt{5}\cdot \sqrt{3}=\sqrt{{{5}^{4}}\cdot {{3}^{2}}}=\sqrt{{{\left({{5}^{2}}\cdot 3 \right)}^{2}}}= \\ & =\sqrt{{{\left(75 \right)}^{2}}}=\sqrt{75}. \end{align}\]

Ну что ж, с умножением корней разобрались. Теперь рассмотрим обратную операцию: что делать, когда под корнем стоит произведение?

1. Корень степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: где (правило извлечения корня из произведения).

2. Если , то у (правило извлечения корня из дроби).

3. Если то (правило извлечения корня из корня).

4. Если то правило возведения корня в степень).

5. Если то где т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.

6. Если то 0, т. е. большему положительному подкоренному выражению соответствует и большее значение корня.

7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например,

(правило умножения корней);

(правило деления корней);

8. Правило вынесения множителя из-под знака корня. При

9. Обратная задача - внесение множителя под знак корня. Например,

10. Уничтожение иррациональности в знаменателе дроби.

Рассмотрим некоторые типичные случаи.

Например,

11. Применение тождеств сокращенного умножения к действиям с арифметическими корнями:

12. Множитель, стоящий перед корнем, называется его коэффициентом. Например, Здесь 3 является коэффициентом.

13. Корни (радикалы) называются подобными, если они имеют одинаковые показатели корней и одинаковые подкоренные выражения, а отличаются только коэффициентом. Чтобы судить о том, подобны данные корни (радикалы) или нет, нужно привести их к простейшей форме.

Например, и подобны, так как

УПРАЖНЕНИЯ С РЕШЕНИЯМИ

1. Упростить выражения:

Решение. 1) Перемножать подкоренное выражение нет смысла, так как каждый из сомножителей представляет квадрат целого числа. Воспользуемся правилом извлечения корня из произведения:

В дальнейшем такие действия будем выполнять устно.

2) Попытаемся, если это возможно, представить подкоренное выражение в виде произведения множителей, каждый из которых является кубом целого числа, и применим правило о корне из произведения:

2. Найти значение выражения:

Решение. 1) По правилу извлечения корня из дроби имеем:

3) Преобразуем подкоренные выражения и извлечем корень:

3. Упростить при

Решение. При извлечении корня из корня показатели корней перемножаются, а подкоренное выражение остается без изменения

Если перед корнем, находящимся под корнем, имеется коэффициент, то прежде чем выполнить операцию извлечения корня, вводят этот коэффициент под знак радикала, перед которым он стоит.

Извлечем на основании изложенных правил два последних корня:

4. Возвести в степень:

Решение. При возведении корня в степень показатель корня остается без изменения, а показатели подкоренного выражения умножаются на показатель степени.

(так как определен, то );

Если данный корень имеет коэффициент, то этот коэффициент возводится в степень отдельно и результат записывается коэффициентом при корне.

Здесь мы использовали правило, что показатель корня и показатель подкоренного выражения можно умножать на одно и то же число (мы умножили на т. е. разделили на 2).

Например, или

4) Выражение в скобках, представляющее сумму двух различных радикалов, возведем в куб и упростим:

Поскольку имеем:

5. Исключить иррациональность в знаменателе:

Решение. Для исключения (уничтожения) иррациональности в знаменателе дроби нужно подыскать простейшее из выражений, которое в произведении со знаменателем дает рациональное выражение, и умножить на подысканный множитель числитель и знаменатель данной дроби.

Например, если в знаменателе дроби двучлен то надо числитель и знаменатель дроби умножить на выражение, сопряженное знаменателю, т. е. сумму надо умножить на соответствующую разность и наоборот.

В более сложных случаях уничтожают иррациональность не сразу, а в несколько приемов.

1) В выражении должно быть

Умножая числитель и знаменатель дроби на получим:

2) Умножая числитель и знаменатель дроби на неполный квадрат суммы, получим:

3) Приведем дроби к общему знаменателю:

Решая данный пример, мы должны иметь в виду, что каждая дробь имеет смысл, т. е. знаменатель каждой дроби отличен от нуля. Кроме того,

При преобразовании выражений, содержащих радикалы, часто допускают ошибки. Они вызваны неумением правильно применять понятие (определение) арифметического корня и абсолютной величины.

Умножение корней правила

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. »)

В предыдущем уроке мы разобрались, что такое квадратный корень. Пришла пора разобраться, какие существуют формулы для корней , каковы свойства корней , и что со всем этим можно делать.

Формулы корней, свойства корней и правила действий с корнями — это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да.

Начнём с самой простой. Вот она:

Напоминаю (из предыдущего урока): а и b — неотрицательные числа ! Иначе формула смысла не имеет.

Это свойство корней , как видите простое, короткое и безобидное. Но с помощью этой формулы корней можно делать массу полезных вещей! Разберём на примерах все эти полезные вещи.

Полезная вещь первая. Эта формула позволяет нам умножать корни .

Как умножать корни?

Да очень просто. Прямо по формуле. Например:

Казалось бы, умножили, и что? Много ли радости?! Согласен, немного. А вот как вам такой пример ?

Из множителей корни ровно не извлекаются. А из результата — отлично! Уже лучше, правда? На всякий случай сообщу, что множителей может быть сколько угодно. Формула умножения корней всё равно работает. Например:

Так, с умножением всё ясно, зачем нужно это свойство корней — тоже понятно.

Полезная вещь вторая. Внесение числа под знак корня.

Как внести число под корень?

Предположим, что у нас есть вот такое выражение:

Можно ли спрятать двойку внутрь корня? Легко! Если из двойки сделать корень, сработает формула умножения корней. А как из двойки корень сделать? Да тоже не вопрос! Двойка — это корень квадратный из четырёх !

Корень, между прочим, можно сделать из любого неотрицательного числа! Это будет корень квадратный из квадрата этого числа. 3 — корень из 9. 8 — корень из 64. 11 — корень из 121. Ну, и так далее.

Конечно, расписывать так подробно нужды нет. Разве что, для начала. Достаточно сообразить, что любое неотрицательное число, умноженное на корень, можно внести под корень. Но — не забывайте! — под корнем это число станет квадратом самого себя. Это действие — внесение числа под корень — можно ещё назвать умножением числа на корень. В общем виде можно записать:

Процедура простая, как видите. А зачем она нужна?

Как и любое преобразование, эта процедура расширяет наши возможности. Возможности превратить жестокое и неудобное выражение в мягкое и пушистое). Вот вам простенький пример :

Как видите, свойство корней, позволяющее вносить множитель под знак корня, вполне годится для упрощения.

Кроме того, внесение множителя под корень позволяет легко и просто сравнивать значения различных корней. Безо всякого их вычисления и калькулятора! Третья полезная вещь.

Как сравнивать корни?

Это умение очень важно в солидных заданиях, при раскрытии модулей и прочих крутых вещах.

Сравните вот эти выражения. Какое из них больше? Без калькулятора! С калькулятором каждый. э-э-э. короче, каждый справится!)

Так сразу и не скажешь. А если внести числа под знак корня?

Запомним (вдруг, не знали?): если число под знаком корня больше, то и сам корень — больше! Отсюда сразу правильный ответ, безо всяких сложных вычислений и расчётов:

Здорово, да? Но и это ещё не всё! Вспомним, что все формулы работают как слева направо, так и справа налево. Мы пока формулу умножения корней слева направо употребляли. Давайте запустим это свойство корней наоборот, справа налево. Вот так:

И какая разница? Разве это что-то даёт!? Конечно! Сейчас сами увидите.

Предположим, нам нужно извлечь (без калькулятора!) корень квадратный из числа 6561. Кое-кто на этом этапе и падёт в неравной борьбе с задачей. Но мы упорные, мы не сдаёмся! Полезная вещь четвёртая.

Как извлекать корни из больших чисел?

Вспоминаем формулу извлечения корней из произведения. Ту, что я чуть выше написал. Но где у нас произведение!? У нас огромное число 6561 и всё. Да, произведения здесь нет. Но если нам надо — мы его сделаем ! Разложим это число на множители. Имеем право.

Для начала сообразим, на что делится это число ровно? Что, не знаете!? Признаки делимости забыли!? Зря. Идите в Особый раздел 555, тема «Дроби», там они есть. На 3 и на 9 делится это число. Потому, что сумма цифр (6+5+6+1=18) делится на эти числа. Это один из признаков делимости. На три нам делить ни к чему (сейчас поймёте, почему), а вот на 9 поделим. Хотя бы и уголком. Получим 729. Вот мы и нашли два множителя! Первый — девятка (это мы сами выбрали), а второй — 729 (такой уж получился). Уже можно записать:

Улавливаете идею? С числом 729 поступим аналогично. Оно тоже делится на 3 и 9. На 3 опять не делим, делим на 9. Получаем 81. А это число мы знаем! Записываем:

Всё получилось легко и элегантно! Корень пришлось по кусочкам извлекать, ну и ладно. Так можно поступать с любыми большими числами. Раскладывать их на множители, и — вперёд!

Кстати, а почему на 3 делить не надо было, догадались? Да потому, что корень из трёх ровно не извлекается! Имеет смысл раскладывать на такие множители, чтобы хотя бы из одного корень хорошо извлекался. Это 4, 9, 16 ну, и так далее. Делите своё громадное число на эти числа поочерёдно, глядишь, и повезёт!

Но не обязательно. Может и не повезти. Скажем, число 432 при разложении на множители и использовании формулы корней для произведения даст такой результат:

Ну и ладно. Всё равно мы упростили выражение. В математике принято оставлять под корнем самое маленькое число из возможных. В процессе решения все зависит от примера (может и без упрощения всё посокращается), а вот в ответе надо дать результат, который уже дальнейшему упрощению не поддаётся.

Кстати, знаете, что мы с вами сейчас с корнем из 432 сделали?

Мы вынесли множители из-под знака корня ! Вот так называется эта операция. А то попадётся задание — «вынести множитель из-под знака корня » а мужики-то и не знают.) Вот вам ещё одно применение свойства корней. Полезная вещь пятая.

Как вынести множитель из-под корня?

Легко. Разложить подкоренное выражение на множители и извлечь корни, которые извлекаются. Смотрим:

Ничего сверхъестественного. Важно правильно выбрать множители. Здесь мы разложили 72 как 36·2. И всё получилось удачно. А могли разложить иначе: 72 = 6·12. И что!? Ни из 6, ни из 12 корень не извлекается. Что делать?!

Ничего страшного. Или поискать другие варианты разложения, или продолжать раскладывать всё до упора! Вот так:

Как видим, всё получилось. Это, кстати, не самый быстрый, но самый надёжный способ. Раскладывать число на самые маленькие множители, а затем собирать в кучки одинаковые. Способ успешно применяется и при перемножении неудобных корней. Например, надо вычислить:

Перемножать всё — сумасшедшее число получится! И как потом из него корень извлекать?! Опять на множители раскладывать? Не, лишняя работа нам ни к чему. Сразу раскладываем на множители и собираем одинаковые по кучкам:

Вот и всё. Конечно, раскладывать до упора не обязательно. Всё определяется вашими личными способностями. Довели пример до состояния, когда вам всё ясно, значит, можно уже считать. Главное — не ошибаться. Не человек для математики, а математика для человека!)

Применим знания к практике? Начнём с простенького:

СТЕПЕНЬ С РАЦИОНАЛЬНЫМ ПОКАЗАТЕЛЕМ,

СТЕПЕННАЯ ФУНКЦИЯ IV

§ 82. Умножение и деление корней

1. Умножение корней. В § 79 было получено правило умножения корней с одинаковыми показателями:

Чтобы умножить корни с разными показателями, предварительно их нужно привести к общему показателю, а затем умножить как корни с одинаковыми показателями.

Пусть, например, надо умножить n a на m b . Используя теорему 3 § 80, можно написать:

Например, √ 3 3 √ 9 = 6 √ 3 3 6 √ 9 2 = 6 √ 3 3 9 2 = 6 √ 3 3 3 4 = 6 √ 3 7 = 3 6 √ 3

В качестве общего показателя для корней n a на m b удобнее всего выбирать наименьшее общее кратное чисел n и m . Например, если нужно умножить 4 √ 2 на 6 √ 32 , то в качестве общего показателя для данных корней удобно выбрать число 12, являющееся наименьшим общим кратным чисел 4 и 6.

Теорема 3 § 80 дает: 4 √ 2 = 12 √ 2 3 ; 6 √ 32 = 12 √ 32 2 = 12 √ 2 10 .

4 √ 2 6 √ 32 = 12 √ 2 3 12 √ 2 10 = 12 √ 2 13 = 2 12 √ 2

2. Деление корней. В § 79 было получено правило деления корней с одинаковыми показателями:

Чтобы разделить корни с разными показателями, предварительно их следует привести к общему показателю, а затем разделить как корни с одинаковыми показателями.

oldskola1.narod.ru

Умножение корней: основные правила

Приветствую, котаны! В прошлый раз мы подробно разобрали, что такое корни (если не помните, рекомендую почитать). Главный вывод того урока: существует лишь одно универсальное определение корней, которое вам и нужно знать. Остальное - брехня и пустая трата времени.

Сегодня мы идём дальше. Будем учиться умножать корни, изучим некоторые проблемы, связанные с умножением (если эти проблемы не решить, то на экзамене они могут стать фатальными) и как следует потренируемся. Поэтому запасайтесь попкорном, устраивайтесь поудобнее - и мы начинаем.:)

Вы ведь тоже ещё не вкурили?

Урок получился довольно большим, поэтому я разделил его на две части:

  • Сначала мы разберём правила умножения. Кэп как бы намекает: это когда есть два корня, между ними стоит знак «умножить» - и мы хотим что-то с этим сделать.
  • Затем разберём обратную ситуацию: есть один большой корень, а нам приспичило представить его в виде произведения двух корней попроще. С какого перепугу это бывает нужно - вопрос отдельный. Мы разберём лишь алгоритм.
  • Тем, кому не терпится сразу перейти ко второй части - милости прошу. С остальными начнём по порядку.

    Основное правило умножения

    Начнём с самого простого - классических квадратных корней. Тех самых, которые обозначаются $\sqrt$ и $\sqrt$. Для них всё вообще очевидно:

    Правило умножения. Чтобы умножить один квадратный корень на другой, нужно просто перемножить их подкоренные выражения, а результат записать под общим радикалом:

    Никаких дополнительных ограничений на числа, стоящие справа или слева, не накладывается: если корни-множители существуют, то и произведение тоже существует.

    Примеры. Рассмотрим сразу четыре примера с числами:

    Как видите, основной смысл этого правила - упрощение иррациональных выражений. И если в первом примере мы бы и сами извлекли корни из 25 и 4 без всяких новых правил, то дальше начинается жесть: $\sqrt $ и $\sqrt $ сами по себе не считаются, но их произведение оказывается точным квадратом, поэтому корень из него равен рациональному числу .

    Отдельно хотел бы отметить последнюю строчку. Там оба подкоренных выражения представляют собой дроби. Благодаря произведению многие множители сокращаются, а всё выражение превращается в адекватное число.

    Конечно, не всегда всё будет так красиво. Иногда под корнями будет стоять полная лажа - непонятно, что с ней делать и как преобразовывать после умножения. Чуть позже, когда начнёте изучать иррациональные уравнения и неравенства, там вообще будут всякие переменные и функции. И очень часто составители задач как раз и рассчитывают на то, что вы обнаружите какие-то сокращающиеся слагаемые или множители, после чего задача многократно упростится.

    Кроме того, совсем необязательно перемножать именно два корня. Можно умножить сразу три, четыре - да хоть десять! Правило от этого не поменяется. Взгляните:

    И опять небольшое замечание по второму примеру. Как видите, в третьем множителе под корнем стоит десятичная дробь - в процессе вычислений мы заменяем её обычной, после чего всё легко сокращается. Так вот: очень рекомендую избавляться от десятичных дробей в любых иррациональных выражениях (т.е. содержащих хотя бы один значок радикала). В будущем это сэкономит вам кучу времени и нервов.

    Но это было лирическое отступление. Теперь рассмотрим более общий случай - когда в показателе корня стоит произвольное число $n$, а не только «классическая» двойка.

    Случай произвольного показателя

    Итак, с квадратными корнями разобрались. А что делать с кубическими? Или вообще с корнями произвольной степени $n$? Да всё то же самое. Правило остаётся прежним:

    Чтобы перемножить два корня степени $n$, достаточно перемножить их подкоренные выражения, после чего результат записать под одним радикалом.

    В общем, ничего сложного. Разве что объём вычислений может оказаться больше. Разберём парочку примеров:

    Примеры. Вычислить произведения:

    И вновь внимание второе выражение. Мы перемножаем кубические корни, избавляемся от десятичной дроби и в итоге получаем в знаменателе произведение чисел 625 и 25. Это довольно большое число - лично я с ходу не посчитаю, чему оно равно.

    Поэтому мы просто выделили точный куб в числителе и знаменателе, а затем воспользовались одним из ключевых свойств (или, если угодно - определением) корня $n$-й степени:

    Подобные «махинации» могут здорово сэкономить вам время на экзамене или контрольной работе, поэтому запомните:

    Не спешите перемножать числа в подкоренном выражении. Сначала проверьте: вдруг там «зашифрована» точная степень какого-либо выражения?

    При всей очевидности этого замечания должен признать, что большинство неподготовленных учеников в упор не видят точные степени. Вместо этого они перемножают всё напролом, а затем удивляются: почему это получились такие зверские числа?:)

    Впрочем, всё это детский лепет по сравнению с тем, что мы изучим сейчас.

    Умножение корней с разными показателями

    Ну хорошо, теперь мы умеем перемножать корни с одинаковыми показателями. А что, если показатели разные? Скажем, как умножить обычный $\sqrt $ на какую-нибудь хрень типа $\sqrt $? Можно ли вообще это делать?

    Да конечно можно. Всё делается вот по этой формуле:

    Однако эта формула работает только при условии, что подкоренные выражения неотрицательны . Это очень важное замечание, к которому мы вернёмся чуть позже.

    А пока рассмотрим парочку примеров:

    Как видите, ничего сложного. Теперь давайте разберёмся, откуда взялось требование неотрицательности, и что будет, если мы его нарушим.:)

    Умножать корни несложно

    Почему подкоренные выражения должны быть неотрицательными?

    Конечно, можно уподобиться школьным учителям и с умным видом процитировать учебник:

    Требование неотрицательности связано с разными определениями корней чётной и нечётной степени (соответственно, области определения у них тоже разные).

    Ну что, стало понятнее? Лично я, когда читал этот бред в 8-м классе, понял для себя примерно следующее: «Требование неотрицательности связано с *#&^@(*#@^#)

    %» - короче, я нихрена в тот раз не понял.:)

    Поэтому сейчас объясню всё по-нормальному.

    Сначала выясним, откуда вообще берётся формула умножения, приведённая выше. Для этого напомню одно важное свойство корня:

    Другими словами, мы можем спокойно возводить подкоренное выражение в любую натуральную степень $k$ - при этом показатель корня придётся умножить на эту же степень. Следовательно, мы легко сведём любые корни к общему показателю, после чего перемножим. Отсюда и берётся формула умножения:

    Но есть одна проблема, которая резко ограничивает применение всех этих формул. Рассмотрим вот такое число:

    Согласно только что приведённой формуле мы можем добавить любую степень. Попробуем добавить $k=2$:

    Минус мы убрали как раз потому, что квадрат сжигает минус (как и любая другая чётная степень). А теперь выполним обратное преобразование: «сократим» двойку в показателе и степени. Ведь любое равенство можно читать как слева-направо, так и справа-налево:

    Но тогда получается какая-то хрень:

    Этого не может быть, потому что $\sqrt \lt 0$, а $\sqrt \gt 0$. Значит, для чётных степеней и отрицательных чисел наша формула уже не работает. После чего у нас есть два варианта:

    1. Убиться об стену констатировать, что математика - это дурацкая наука, где «есть какие-то правила, но это неточно»;
    2. Ввести дополнительные ограничения, при которых формула станет рабочей на 100%.
    3. В первом варианте нам придётся постоянно вылавливать «неработающие» случаи - это трудно, долго и вообще фу. Поэтому математики предпочли второй вариант.:)

      Но не переживайте! На практике это ограничение никак не влияет на вычисления, потому что все описанные проблемы касаются лишь корней нечётной степени, а из них можно выносить минусы.

      Поэтому сформулируем ещё одно правило, которое распространяется вообще на все действия с корнями:

      Прежде чем перемножать корни, сделайте так, чтобы подкоренные выражения были неотрицательны.

      Пример. В числе $\sqrt$ можно вынести минус из-под знака корня - тогда всё будет норм:

      Чувствуете разницу? Если оставить минус под корнем, то при возведении подкоренного выражения в квадрат он исчезнет, и начнётся хрень. А если сначала вынести минус, то можно хоть до посинения возводить/убирать квадрат - число останется отрицательным.:)

      Таким образом, самый правильный и самый надёжный способ умножения корней следующий:

    4. Убрать все минусы из-под радикалов. Минусы бывают только в корнях нечётной кратности - их можно поставить перед корнем и при необходимости сократить (например, если этих минусов окажется два).
    5. Выполнить умножение согласно правилам, рассмотренным выше в сегодняшнем уроке. Если показатели корней одинаковые, просто перемножаем подкоренные выражения. А если разные - используем злобную формулу \[\sqrt[n]\cdot \sqrt[p]=\sqrt>\cdot ^ >>\].
    6. 3.Наслаждаемся результатом и хорошими оценками.:)
    7. Ну что? Потренируемся?

      Пример 1. Упростите выражение:

      Это самое простой вариант: показатели корней одинаковы и нечётны, проблема лишь в минусе у второго множителя. Выносим этот минус нафиг, после чего всё легко считается.

      Пример 2. Упростите выражение:

      Здесь многих смутило бы то, что на выходе получилось иррациональное число. Да, так бывает: мы не смогли полностью избавиться от корня, но по крайней мере существенно упростили выражение.

      Пример 3. Упростите выражение:

      Вот на это задание хотел бы обратить ваше внимание. Тут сразу два момента:

    8. Под корнем стоит не конкретное число или степень, а переменная $a$. На первый взгляд, это немного непривычно, но в действительности при решении математических задач чаще всего придётся иметь дело именно с переменными.
    9. В конце мы умудрились «сократить» показатель корня и степень в подкоренном выражении. Такое случается довольно часто. И это означает, что можно было существенно упростить вычисления, если не пользоваться основной формулой.
    10. Например, можно было поступить так:

      По сути, все преобразования выполнялись лишь со вторым радикалом. И если не расписывать детально все промежуточные шаги, то в итоге объём вычислений существенно снизится.

      На самом деле мы уже сталкивались с подобным задание выше, когда решали пример $\sqrt \cdot \sqrt $. Теперь его можно расписать намного проще:

    11. Лишение водительского удостоверения за пьянку в 2018 году Управление автомобилем в состоянии алкогольного опьянения - одно из самых тяжких нарушений правил дорожного движения. Закон от 23.07.13 №196-ФЗ […]