Ридберга постоянная. Определение постоянной ридберга для атомного водорода

  • 24.09.2019

Формула Ридберга - эмпирическая формула, описывающая длины волн в спектрах излучения атомов химических элементов. Предложена шведским учёным Йоханнесом Ридбергом и представлена 5 ноября 1888 года.

Формула Ридберга для водородоподобных элементов выглядит следующим образом:

Длина волны света в вакууме;

Постоянная Ридберга для рассматриваемого химического элемента;

Атомный номер, или число протонов в ядре атома данного элемента;

И - целые числа, такие что .


27) Атом водорода: по Томсону, Бору

Модель Бора

Боровская модель водородоподобного атома (Z - заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро. Переход электрона с орбиты на орбиту сопровождается излучением или поглощением кванта электромагнитной энергии ().

Полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно, и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка: .

Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты R n и энергии E n находящегося на этой орбите электрона:

Здесь m e - масса электрона, Z - количество протонов в ядре, - диэлектрическая постоянная, e - заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера, решая задачу о движении электрона в центральном кулоновском поле.

Радиус первой орбиты в атоме водорода R 0 =5,2917720859(36)×10 −11 м, ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты E 0 = − 13.6 эВ представляет собой энергию ионизации атома водорода.


28) Опыт Франка Герца

Суть опытов, предложенных и проведенных Франком и Герцем в 1913 году, состояла в нахождении потенциалов ионизации атомов ртути, т.е. в определении энергии ускоренного электрона в наполненной парами ртути трехэлектродной лампе, который, сталкиваясь с атомом ртути, мог отщепить слабосвязанный с ним внешний (валентный) электрон. Заметим, что в том же году Н. Бор сформулировал свои постулаты.


Согласно идеям Бора энергия электрона в атоме может принимать непроизвольные значения, а лишь значения из определенного дискретного набора, впоследствии названные энергетическими уровнями. Эти энергетические уровни иногда называют оптическими уровнями, так как при любых переходах между ними поглощаются или излучаются фотоны, длины волн которых лежат в видимой или соседних областях спектра.

Опыт, явившийся экспериментальным доказательством дискретности внутренней энергии атома. Поставлен в 1913 Дж. Франком и Г. Герцем.

На рисунке приведена схема опыта. К катоду К и сетке C1 электровакуумной трубки, наполненной парами Hg (ртути), прикладывается разность потенциалов V, ускоряющая электроны, и снимается зависимость силы тока I от V. К сетке C2 и аноду А прикладывается замедляющая разность потенциалов. Ускоренные в области I электроны испытывают соударения с атомами Hg в области II. Если энергия электронов после соударения достаточна для преодоления замедляющего потенциала в области III, то они попадут на анод. Следовательно, показания гальванометра Г зависят от потери электронами энергии при ударе.

В опыте наблюдался монотонный рост I при увеличении ускоряющего потенциала вплоть до 4,9 В, то есть электроны с энергией Е < 4,9 эВ испытывали упругие соударения с атомами Hg и внутренняя энергия атомов не менялась. При значении V = 4,9 В (и кратных ему значениях 9,8 В, 14,7 В) появлялись резкие спады тока. Это определённым образом указывало на то, что при этих значениях V соударения электронов с атомами носят неупругий характер, то есть энергия электронов достаточна для возбуждения атомов Hg. При кратных 4,9 эВ значениях энергии электроны могут испытывать неупругие столкновения несколько раз.

Таким образом, опыт Франка - Герца показал, что спектр поглощаемой атомом энергии не непрерывен, а дискретен, минимальная порция (квант электромагнитного поля), которую может поглотить атом Hg, равна 4,9 эВ. Значение длины волны λ = 253,7 нм свечения паров Hg, возникавшее при V > 4,9 В, оказалось в соответствии со вторым постулатом Бора

,

где E 0 и E 1 - энергии основного и возбужденного уровней энергии. В опыте Франка - Герца, E 0 - E 1 = 4,9 эВ.


29) Волны Луи де Бройля

Волны, связанные с любой микрочастицей и отражающие их квантовую природу.

; -позволяет найти длину волны для частицы, которая обладает импульсом р.

Для е: ; 1[Ангстрем]=[м].

Свойство волн де Бройля.

;

(фаза скорости волны де Бройля>скорости света);


30) Принцип неопределённости Гейзенберга

Определение: произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше, чем постоянная Планка.

Обобщённый принцип неопределённости

Теорема . Для любых самосопряжённых операторов: и , и любого элемента x из H такого, что ABx и BAx оба определены (то есть, в частности, Ax и Bx также определены), имеем:

Это прямое следствие неравенства Коши - Буняковского.

Следовательно, верна следующая общая форма принципа неопределённости , впервые выведенная в 1930 г. Говардом Перси Робертсоном и (независимо) Эрвином Шрёдингером:

Это неравенство называют соотношением Робертсона - Шрёдингера .

Оператор AB BA называют коммутатором A и B и обозначают как [A ,B ]. Он определен для тех x , для которых определены оба ABx и BAx .

Из соотношения Робертсона - Шрёдингера немедленно следует соотношение неопределённости Гейзенберга :

Предположим, A и B - две физические величины, которые связаны с самосопряжёнными операторами. Если AB ψ и BA ψ определены, тогда:

,

Среднее значение оператора величины X в состоянии ψ системы, и

Оператор стандартного отклонения величины X в состоянии ψ системы.

Приведённые выше определения среднего и стандартного отклонения формально определены исключительно в терминах теории операторов. Утверждение становится однако более значащим, как только мы заметим, что они являются фактически средним и стандартным отклонением измеренного распределения значений. См. квантовая статистическая механика.

То же самое может быть сделано не только для пары сопряжённых операторов (например координаты и импульса, или продолжительности и энергии), но вообще для любой пары Эрмитовых операторов. Существует отношение неопределённости между напряжённостью поля и числом частиц, которое приводит к явлению виртуальных частиц.

Возможно также существование двух некоммутирующих самосопряжённых операторов A и B , которые имеют один и тот же собственный вектор ψ. В этом случае ψ представляет собой чистое состояние, которое является одновременно измеримым для A и B .

Общие наблюдаемые переменные, которые повинуются принципу неопределённости

Предыдущие математические результаты показывают, как найти отношения неопределённости между физическими переменными, а именно, определить значения пар переменных A и B , коммутатор которых имеет определённые аналитические свойства.

  • самое известное отношение неопределённости - между координатой и импульсом частицы в пространстве:

(R

физическая постоянная (См. Физические постоянные), введённая И. Ридбергом в 1890 при изучении спектров атомов. Р. п. входит в выражения для уровней энергии (См. Уровни энергии) и частот излучения атомов (см. Спектральные серии). Если принять, что масса ядра атома бесконечно велика по сравнению с массой электрона (ядро неподвижно), то, согласно квантовомеханическому расчёту, R = 2 με 4 /ch 3 = (109737,3143 ± 0,0010) см -1 (на 1974), где е и m - заряд и масса электрона, с - скорость света, h - Планка постоянная. При учёте движения ядра масса электрона заменяется приведённой массой электрона и ядра и тогда R i = R ∞ /(1 + m/Mi ), где M i - масса ядра. Для лёгких атомов (водорода H, дейтерия D, гелия 4 He) Р. п. имеет значения (см -1 ): R H = 109677,593; R D = 109707, 417; R 4He = 109722,267.

Лит.: Тейлор Б., Паркер В., Лангенберг Д., Фундаментальные константы и квантовая электродинамика, пер. с англ., М.,1972.

  • - , число структурных элементов в ед. кол-ва в-ва...

    Физическая энциклопедия

  • - одна из фундаментальных физических констант; равна отношению газовой постоянной R к Авогадро постоянной NA, обозначается k; названа в честь австр. физика Л. Больцмана...

    Физическая энциклопедия

  • - , характеризует магн. вращение плоскости поляризации света в в-ве. Названа по имени франц. математика М. Верде, наиболее полно исследовавшего законы магн. вращения...

    Физическая энциклопедия

  • - число частиц в 1 моле в-ва. Обозначается NA и равна (6,022045...

    Химическая энциклопедия

  • - фундаментальная физ. постоянная, равная отношению газовой постоянной Rк постоянной Авогадро NA ...

    Химическая энциклопедия

  • - физ. постоянная k, равная отношению универс. газовой постоянной R к числу Авогадро NA: k = R/NА = 1,3807 х 10-23 Дж/К. Названа по имени Л. Больцмана...
  • - число молекул или атомов в 1 моле вещества; NA=6,022?1023 моль-1. Названа по имени А. Авогадро...

    Современная энциклопедия

  • - число молекул или атомов в 1 моле вещества, NА = 6,022045 х 1023моль-1; назв. по имени А. Авогадро...

    Естествознание. Энциклопедический словарь

  • - характеризует вращение плоскости поляризации света в в-ве под действием магн. поля. Угол поворота ф плоскости поляризации света"...

    Естествознание. Энциклопедический словарь

  • - одна из осн. уннверс. физ. постоянных, равная отношению универс...

    Большой энциклопедический политехнический словарь

  • - одна из основных физических постоянных, равная отношению универсальной газовой постоянной R к числу Авогадро NA. : k = R/NA. Названа по имени Л. Больцмана...
  • - введённая И. Ридбергом в 1890 при изучении спектров атомов. Р. п. входит в выражения для уровней энергии и частот излучения атомов...

    Большая Советская энциклопедия

  • - физическая постоянная k, равная отношению универсальной газовой постоянной R к числу Авогадро NA: k = R/NA = 1,3807.10-23 Дж/К. Названа по имени Л. Больцмана...
  • - физическая постоянная, входящая в формулы для уровней энергии и спектральных серий атомов: , где, М - масса ядра, m и е - масса и заряд электрона, с - скорость света, h - постоянная Планка...

    Большой энциклопедический словарь

  • - посто"...

    Русский орфографический словарь

  • - константа...

    Словарь синонимов

"Ридберга постоянная" в книгах

Постоянная забота

Из книги Листы дневника. Том 1 автора

Постоянная забота Наши комитеты уже спрашивают, каково будет их положение после ратификации Пакта. Некоторым друзьям, может быть, кажется, что официальная ратификация Пакта уже исключает всякую общественную инициативу и сотрудничество. Между тем на деле должно быть как

Постоянная «прокачка»

Из книги Быстрые результаты. 10-дневная программа повышения личной эффективности автора Парабеллум Андрей Алексеевич

Постоянная «прокачка» Почему вам будет тяжело удержать себя на нынешнем уровне? Потому что сейчас мы искусственно, за волосы, вытащили вас наверх, приподняли над горами, над деревьями, чтобы вы увидели за ними лес, окрестности, разглядели перспективу…Ваша задача -

«У нас постоянная паранойя»

Из книги Бизнес путь: Yahoo! Секреты самой популярной в мире интернет-компании автора Вламис Энтони

«У нас постоянная паранойя» Эти слова Джерри Янг сказал репортеру Christian Science Monitor еще в 1998 году. Это чувство никуда не делось, и не без причины, как мы покажем позже.Трудно отделить паранойю от культуры этой компании. Она была у них с самого начала. И возможно, именно она

Постоянная забота

Из книги Врата в будущее (сборник) автора Рерих Николай Константинович

Постоянная забота Наши комитеты уже спрашивают, каково будет их положение после ратификации Пакта? Некоторым друзьям, может быть, кажется, что официальная ратификация Пакта уже исключает всякую общественную инициативу и сотрудничество. Между тем на деле должно быть как

Постоянная радость

Из книги Большая книга женского счастья автора Блаво Рушель

Постоянная радость Внезапно, без всякой причины, вы испытываете радость. В обычной жизни вы радуетесь, если на это есть какая-то причина. Встретили красивого мужчину и радуетесь этому; неожиданно вам перепали деньги, в которых вы нуждались, и вы радуетесь; купили дом с

Постоянная Забота

Из книги О Вечном… автора Рерих Николай Константинович

Постоянная Забота Наши комитеты уже спрашивают, каково будет их положение после ратификации Пакта? Некоторым друзьям, может быть, кажется, что официальная ратификация Пакта уже исключает всякую общественную инициативу и сотрудничество. Между тем на деле должно быть как

Введена шведским учёным Йоханнесом Робертом Ридбергом в 1890 году при изучении спектров излучения атомов. Обозначается как R .

Данная константа изначально появилась как эмпирический подгоночный параметр в формуле Ридберга , описывающей спектральные серии водорода . Позже Нильс Бор показал, что её значение можно вычислить из более фундаментальных постоянных , объяснив их связь с помощью своей модели атома (модель Бора). Постоянная Ридберга является предельным значением наивысшего волнового числа любого фотона, который может быть испущен атомом водорода; с другой стороны, это волновое число фотона с наименьшей энергией, способного ионизировать атом водорода в его основном состоянии.

Также используется тесно связанная с постоянной Ридберга единица измерения энергии , называемая просто Ридберг и обозначаемая \mathrm{Ry}. Она соответствует энергии фотона, волновое число которого равно постоянной Ридберга, то есть энергии ионизации атома водорода.

По состоянию на 2012 год, постоянная Ридберга и g-фактор электрона являются наиболее точно измеренными фундаментальными физическими постоянными.

Численное значение

R = 10973731.568508(65) м −1 .

Для лёгких атомов постоянная Ридберга имеет следующие значения:

  • Водород : R_H = 109677.583407 см −1 ;
  • Дейтерий : R_D = 109707,417 см −1 ;
  • Гелий : R_{He} = 109722,267 см −1 .
\mathrm{Ry} = 13{,}605693009(84) эВ = 2{,}179872325(27)\times10^{-18} Дж.

Свойства

Постоянная Ридберга входит в общий закон для спектральных частот следующим образом:

\nu = R{Z^2} \left(\frac{1}{n^2} - \frac{1}{m^2} \right)

где \nu - волновое число (по определению, это обратная длина волны или число длин волн, укладывающихся на 1 см), Z - порядковый номер атома.

\nu = \frac{1}{\lambda} см −1

Соответственно, выполняется

\frac{1}{\lambda} = R{Z^2} \left(\frac{1}{n^2} - \frac{1}{m^2} \right) R_c = 3{,}289841960355(19)\times10^{15} с −1

Обычно, когда говорят о постоянной Ридберга, имеют в виду постоянную, вычисленную при неподвижном ядре. При учёте движения ядра масса электрона заменяется приведённой массой электрона и ядра и тогда

R_i = \frac{R}{1 + m / M_i}, где M_i - масса ядра атома.

См. также

Напишите отзыв о статье "Постоянная Ридберга"

Примечания

Литература

  • Шпольский Э. В. Атомная физика. Том1 - М.: Наука, 1974.
  • Борн М. Атомная физика. - М.: Мир, 1970.
  • Савельев И. В. Курс общей физики. Книга 5. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц. - М.: АСТ, Астрель, 2003.

Отрывок, характеризующий Постоянная Ридберга

– Ах, какая досада! – сказал Долгоруков, поспешно вставая и пожимая руки князя Андрея и Бориса. – Вы знаете, я очень рад сделать всё, что от меня зависит, и для вас и для этого милого молодого человека. – Он еще раз пожал руку Бориса с выражением добродушного, искреннего и оживленного легкомыслия. – Но вы видите… до другого раза!
Бориса волновала мысль о той близости к высшей власти, в которой он в эту минуту чувствовал себя. Он сознавал себя здесь в соприкосновении с теми пружинами, которые руководили всеми теми громадными движениями масс, которых он в своем полку чувствовал себя маленькою, покорною и ничтожной» частью. Они вышли в коридор вслед за князем Долгоруковым и встретили выходившего (из той двери комнаты государя, в которую вошел Долгоруков) невысокого человека в штатском платье, с умным лицом и резкой чертой выставленной вперед челюсти, которая, не портя его, придавала ему особенную живость и изворотливость выражения. Этот невысокий человек кивнул, как своему, Долгорукому и пристально холодным взглядом стал вглядываться в князя Андрея, идя прямо на него и видимо, ожидая, чтобы князь Андрей поклонился ему или дал дорогу. Князь Андрей не сделал ни того, ни другого; в лице его выразилась злоба, и молодой человек, отвернувшись, прошел стороной коридора.
– Кто это? – спросил Борис.
– Это один из самых замечательнейших, но неприятнейших мне людей. Это министр иностранных дел, князь Адам Чарторижский.
– Вот эти люди, – сказал Болконский со вздохом, который он не мог подавить, в то время как они выходили из дворца, – вот эти то люди решают судьбы народов.
На другой день войска выступили в поход, и Борис не успел до самого Аустерлицкого сражения побывать ни у Болконского, ни у Долгорукова и остался еще на время в Измайловском полку.

На заре 16 числа эскадрон Денисова, в котором служил Николай Ростов, и который был в отряде князя Багратиона, двинулся с ночлега в дело, как говорили, и, пройдя около версты позади других колонн, был остановлен на большой дороге. Ростов видел, как мимо его прошли вперед казаки, 1 й и 2 й эскадрон гусар, пехотные батальоны с артиллерией и проехали генералы Багратион и Долгоруков с адъютантами. Весь страх, который он, как и прежде, испытывал перед делом; вся внутренняя борьба, посредством которой он преодолевал этот страх; все его мечтания о том, как он по гусарски отличится в этом деле, – пропали даром. Эскадрон их был оставлен в резерве, и Николай Ростов скучно и тоскливо провел этот день. В 9 м часу утра он услыхал пальбу впереди себя, крики ура, видел привозимых назад раненых (их было немного) и, наконец, видел, как в середине сотни казаков провели целый отряд французских кавалеристов. Очевидно, дело было кончено, и дело было, очевидно небольшое, но счастливое. Проходившие назад солдаты и офицеры рассказывали о блестящей победе, о занятии города Вишау и взятии в плен целого французского эскадрона. День был ясный, солнечный, после сильного ночного заморозка, и веселый блеск осеннего дня совпадал с известием о победе, которое передавали не только рассказы участвовавших в нем, но и радостное выражение лиц солдат, офицеров, генералов и адъютантов, ехавших туда и оттуда мимо Ростова. Тем больнее щемило сердце Николая, напрасно перестрадавшего весь страх, предшествующий сражению, и пробывшего этот веселый день в бездействии.
– Ростов, иди сюда, выпьем с горя! – крикнул Денисов, усевшись на краю дороги перед фляжкой и закуской.
Офицеры собрались кружком, закусывая и разговаривая, около погребца Денисова.
– Вот еще одного ведут! – сказал один из офицеров, указывая на французского пленного драгуна, которого вели пешком два казака.
Один из них вел в поводу взятую у пленного рослую и красивую французскую лошадь.
– Продай лошадь! – крикнул Денисов казаку.
– Изволь, ваше благородие…
Офицеры встали и окружили казаков и пленного француза. Французский драгун был молодой малый, альзасец, говоривший по французски с немецким акцентом. Он задыхался от волнения, лицо его было красно, и, услыхав французский язык, он быстро заговорил с офицерами, обращаясь то к тому, то к другому. Он говорил, что его бы не взяли; что он не виноват в том, что его взяли, а виноват le caporal, который послал его захватить попоны, что он ему говорил, что уже русские там. И ко всякому слову он прибавлял: mais qu"on ne fasse pas de mal a mon petit cheval [Но не обижайте мою лошадку,] и ласкал свою лошадь. Видно было, что он не понимал хорошенько, где он находится. Он то извинялся, что его взяли, то, предполагая перед собою свое начальство, выказывал свою солдатскую исправность и заботливость о службе. Он донес с собой в наш арьергард во всей свежести атмосферу французского войска, которое так чуждо было для нас.
Казаки отдали лошадь за два червонца, и Ростов, теперь, получив деньги, самый богатый из офицеров, купил ее.

Данная константа изначально появилась как эмпирический подгоночный параметр в формуле Ридберга , описывающей спектральные серии водорода . Позже Нильс Бор показал, что её значение можно вычислить из более фундаментальных постоянных , объяснив их связь с помощью своей модели атома (модель Бора). Постоянная Ридберга является предельным значением наивысшего волнового числа любого фотона, который может быть испущен атомом водорода; с другой стороны, это волновое число фотона с наименьшей энергией, способного ионизировать атом водорода в его основном состоянии.

Также используется тесно связанная с постоянной Ридберга единица измерения энергии , называемая просто Ридберг и обозначаемая R y {\displaystyle \mathrm {Ry} } . Она соответствует энергии фотона, волновое число которого равно постоянной Ридберга, то есть энергии ионизации атома водорода.

По состоянию на 2012 год, постоянная Ридберга и g-фактор электрона являются наиболее точно измеренными фундаментальными физическими постоянными.

Численное значение

R {\displaystyle R} = 10973731.568508(65) м −1 .

Для лёгких атомов постоянная Ридберга имеет следующие значения:

R y = 13,605 693009 (84) {\displaystyle \mathrm {Ry} =13{,}605693009(84)} эВ = 2,179 872325 (27) × 10 − 18 {\displaystyle 2{,}179872325(27)\times 10^{-18}} Дж.

Свойства

Постоянная Ридберга входит в общий закон для спектральных частот следующим образом:

ν = R Z 2 (1 n 2 − 1 m 2) {\displaystyle \nu =R{Z^{2}}\left({\frac {1}{n^{2}}}-{\frac {1}{m^{2}}}\right)}

где ν {\displaystyle \nu } - волновое число (по определению, это обратная длина волны или число длин волн, укладывающихся на 1 см), Z - порядковый номер атома.

ν = 1 λ {\displaystyle \nu ={\frac {1}{\lambda }}} см −1

Соответственно, выполняется

1 λ = R Z 2 (1 n 2 − 1 m 2) {\displaystyle {\frac {1}{\lambda }}=R{Z^{2}}\left({\frac {1}{n^{2}}}-{\frac {1}{m^{2}}}\right)} R c = 3,289 841960355 (19) × 10 15 {\displaystyle R_{c}=3{,}289841960355(19)\times 10^{15}} с −1

Обычно, когда говорят о постоянной Ридберга, имеют в виду постоянную, вычисленную при неподвижном ядре. При учёте движения ядра масса электрона заменяется приведённой массой электрона и ядра и тогда

R i = R 1 + m / M i {\displaystyle R_{i}={\frac {R}{1+m/M_{i}}}} , где M i {\displaystyle M_{i}} - масса ядра атома.