Строение скелетных мышц. Строение мышц человека

  • 17.10.2019

Лекция 6. ОДА. МЫШЕЧНАЯ СИСТЕМА

1. Строение и функции скелетных мышц

2. Классификация скелетных мышц

4. Мышцы тела человека

Строение и функции скелетных мышц

Скелетные мышцы являются активной частью опорно-двигательного аппарата. Построены эти мышцы из поперечнополосатых (исчерченных) мышечных волокон. Мышцы прикрепляются к костям скелета и при своем сокращении (укорочении) приводят костные рычаги в движение. Мышцы удерживают положение тела и его частей в пространстве, перемещают костные рычаги при ходьбе, беге и других движениях, выполняют жевательные, глотательные и дыхательные движения, участвуют в артикуляции речи и мимике, вырабатывают тепло.

В теле человека насчитывается около 600 мышц, большинство из которых парные. Масса скелетных мышц у взрослого человека достигает 30-40 % массы тела. У новорожденных и детей на долю мышц приходится до 20-25 % массы тела. В пожилом и старческом возрасте масса мышечной ткани не превышает 20-30 %.

Каждая мышца состоит из большого числа мышечных волокон. Каждое волокно имеет тонкую оболочку - эндомизий, образованный небольшим количеством соединительнотканных волокон. Пучки мышечных волокон окружены рыхлой волокнистой соединительной тканью, получившей название внутреннего перимизия, который отделяет мышечные пучки друг от друга. Снаружи мышца также имеет тонкую соединительнотканную оболочку - наружный перимизий, тесно сращенный с внутренним перимизием проникающими внутрь мышцы пучками соединительнотканных волокон. Соединительнотканные волокна, окружающие мышечные волокна и их пучки, выходя за пределы мышцы, образуют сухожилие.

В каждой мышце разветвляется большое число кровеносных сосудов, по которым кровь приносит к мышечным волокнам питательные вещества и кислород, а уносит продукты обмена веществ. Источником энергии для мышечных волокон является гликоген. В процессе его расщепления вырабатывается аденозинтрифосфорная кислота (АТФ), используемая для мышечного сокращения. Нервы, входящие в мышцу, содержат чувствительные и двигательные волокна.

Скелетные мышцы обладают такими свойствами, как возбудимость, проводимость и сократимость. Мышцы способны под влиянием нервных импульсов возбуждаться, приходить в рабочее (деятельное) состояние. При этом возбуждение быстро распространяется (проводится) от нервных окончаний (эффекторов) до сократительных структур - мышечных волокон. В результате мышца сокращается, укорачивается, приводит в движение костные рычаги.

У мышц различают сократительную часть (брюшко), построенную из поперечнополосатых мышечных волокон, и сухожильные концы (сухожилия), которые прикрепляются к костям скелета. У некоторых мышц сухожилия вплетаются в кожу (мимические мышцы), прикрепляются к глазному яблоку или к соседним мышцам (у мышц промежности). Образованы сухожилия из оформленной плотной волокнистой соединительной ткани и отличаются большой прочностью. У мышц, расположенных на конечностях, сухожилия узкие и длинные. Многие лентовидные мышцы имеют широкие сухожилия, получившие название апоневрозов.

Классификация скелетных мышц

В настоящее время мышцы классифицируют с учетом их формы, строения, расположения и функции.

Форма мышц . Наиболее часто встречаются мышцы веретенообразные и лентовидные (рис. 30). Веретенообразные мышцы располагаются преимущественно на конечностях, где они действуют на длинные костные рычаги. Лентовидные мышцы имеют различную ширину, они обычно участвуют в образовании стенок туловища, брюшной, грудной полостей. Веретенообразные мышцы могут иметь два брюшка, разделенные промежуточным сухожилием (двубрюшная мышца), две, три и четыре начальные части - головки (двуглавые, трехглавые, четырехглавая мышцы). Различают мышцы длинные и короткие, прямые и косые, круглые и квадратные.

Строение мышц . Мышцы могут иметь перистое строение, когда мышечные пучки прикрепляются к сухожилию с одной, двух или нескольких сторон. Это одноперистые, двуперистые, много перистые мышцы. Перистые мышцы построены из большого количества коротких мышечных пучков, обладают значительной силой. Это сильные мышцы. Однако они способны сокращаться лишь на небольшую длину. В то же время мышцы с параллельным расположением длинных мышечных пучков не очень сильные, но они способны укорачиваться до 50 % своей длины. Это ловкие мышцы, они имеются там, где движения выполняются с большим размахом.

По выполняемой функции и по действию на суставы выделяют мышцы-сгибатели и разгибатели, приводящие и отводящие, сжиматели (сфинктеры) и расширители. Различают мышцы по их расположению в теле человека: поверхностные и глубокие, латеральные и медиальные, передние и задние.

3. Вспомогательные аппараты мышц

Свои функции мышцы выполняют с помощью вспомогательных аппаратов, к которым относятся фасции, фиброзные и костно-фиброзные каналы, синовиальные сумки, блоки.

Фасции – это соединительнотканные чехлы мышц. Они разделяют мышцы на мышечные перегородки, устраняют трение мышц одна о другую.

Каналы (фиброзные и костно-фиброзные) имеются в тех местах, где сухожилия перекидываются через несколько суставов (на кисти, стопе). Служат каналы для удержания сухожилий в определенном положении при сокращении мышц.

Синовиальные влагалища образованы синовиальной оболочкой (мембраной) одна пластинка которой выстилает стенки канала, а другая окружает сухожилие и срастается с ним. Обе пластинки срастаются своими концами, образуют замкнутую узкую полость, которая содержит небольшое количество жидкости (синовии) и смачивает скользящие одна о другую синовиальные пластинки.

Синовиальные (слизистые) сумки выполняют функцию, сходную с синовиальными влагалищами. Сумки представляют собой замкнутые, наполненные синовиальной жидкостью или слизью мешочки, расположенные в местах, где сухожилие перекидывается через костный выступ или через сухожилие другой мышцы.

Блоками называют костные выступы (мыщелки, надмыщелки), через которые перекидывается мышечное сухожилие. В результате угол прикрепления сухожилия к кости увеличивается. При этом возрастает сила действия мышцы на кость.

Работа и сила мышц

Мышцы действуют на костные рычаги, приводят их в движение или удерживают части тела в определенном положении. В каждом движении обычно участвует несколько мышц. Мышцы, действующие в одном направлении называют синергистами, действующие в разных направлениях - антагонистами.

На кости скелета мышцы действуют с определенной силой и выполняют при этом работу - динамическую или статическую. При динамической работе костные рычаги изменяют свое положение, перемещаются в пространстве. При статической работе мышцы напрягаются, но длина их не изменяется, тело (или его части) удерживается в определенном неподвижном положении. Такое сокращение мышц без изменения их длины называют изометрическим сокращением. Сокращение мышцы, сопровождающееся изменением ее длины, называют изотоническим сокращением.

С учетом места приложения мышечной силы к костному рычагу и других их характеристик в биомеханике выделяют рычаги первого рода и рычаги второго порядка (рис. 32). У рычага первого рода точка приложения мышечной силы и точка сопротивления (тяжесть тела, масса груза) находятся по разные стороны от точки опоры (от сустава). Примером рычага первого рода может служить голова, которая опирается на атлант (точка опоры). Тяжесть головы (ее лицевая часть) находится по одну сторону от оси атлантозатылочного сочленения, а место приложения силы затылочных мышц к затылочной кости - по другую сторону от оси. Равновесие головы достигается при условии, когда вращающий момент прилагаемой силы (произведение силы затылочных мышц на длину плеча, равную расстоянию от точки опоры до места приложения силы) будет соответствовать вращающему моменту силы тяжести передней части головы (произведение силы тяжести на длину плеча, равную расстоянию от точки опоры до точки приложения тяжести).

У рычага второго рода и точка приложения мышечной силы, и точка сопротивления (силы тяжести) находятся по одну сторону от точки опоры (оси сустава). В биомеханике выделяют два вида рычага второго рода. У первого вида рычага второго рода плечо приложения мышечной силы длиннее плеча сопротивления. Например, стопа человека. Плечо приложения силы трехглавой мышцы голени (расстояние от пяточного бугра до точки опоры - головок плюсневых костей) длиннее плеча приложения силы тяжести тела (от оси голеностопного сустава до точки опоры). В этом рычаге имеется выигрыш в прилагаемой мышечной силе (рычаг длиннее) и проигрыш в скорости перемещения силы тяжести тела (рычаг короче). У второго вида рычага второго рода плечо приложения мышечной силы будет короче плеча сопротивления (приложения силы тяжести). Плечо от локтевого сустава до места прикрепления сухожилия двуглавой мышцы короче, чем расстояние от этого сустава до кисти, где находится приложение силы тяжести. В этом случае имеется выигрыш в и размахе перемещения кисти (длинное плечо) и проигрыш в силе, действующей на костный рычаг (короткое плечо приложения силы).

Сила действия мышцы определяется массой (весом) того груза, который эта мышца может поднять на определенную высоту при своем максимальном сокращении. Такую силу принято называть подъемной силой мышцы. Подъёмная силы мышцы зависит от количества и толщины ее мышечных волокон. У человека мышечная сила составляет 5-10 кг на 1 кв. см физиологического поперечника мышцы. Для морфофункциональной характеристики мышц существует понятие их анатомического и физиологического по перечников (рис. 33). Физиологическим поперечником мышцы называют сумму поперечного сечения (площадей) всех мышечных волокон данной мышцы. Анатомическим поперечником мышцы является величина (площадей) поперечного ее сечения в наиболее широком месте. У мышцы с продольно расположенными волокнами (лентовидной, веретенообразной мышц) величина анатомического и физиологического поперечников будут одинаковыми. При косой ориентации большого числа коротких мышечных пучков, как это имеет место у перистых мышц, физиологический поперечник будет больше анатомического.

Вращающая сила мышцы зависит не только от ее физиологического или анатомического поперечника, или подъемной силы, но и от угла прикрепления мышцы к кости. Чем больше угол, под которым мышца прикрепляется к кости, тем большее действие она может оказать на эту кость. Для увеличения угла прикрепления мышц к кости служат блоки.

Мышцы тела человека

В зависимости от расположения в теле и для удобства изучения выделяют мышцы головы, шеи, туловища; мышцы верхних и нижних конечностей.

Мышцы, расположенные в разных областях тела человека, не только выполняют различные функции, но и имеют свои особенности строения. На конечностях с их длинными костными рычагами, приспособленными для передвижения, захватывания и удерживания различных предметов, мышцы имеют, как правило, веретенообразную форму, с продольным или косым расположением мышечных волокон, узкими и длинными сухожилиями. В области туловища, в образовании его стенок, участвуют ленто видные мышцы с широкими плоскими сухожилиями. Такие широкие сухожилия называют апоневрозами. В области головы жевательные мышцы одним своим концом начинаются на неподвижных костях основания черепа, а другим концом прикрепляются к единственной подвижной части черепа - нижней челюсти. Мимические мышцы начинаются на костях черепа и прикрепляются к коже. При сокращении мимических мышц изменяется рельеф кожи лица, формируется мимика.

Ключевую роль в осуществлении движения как основополагающего свойства живого организма играют мышцы. У человека мышцы составляют от 40% до 50% массы тела (Одноралов Н.И.,1965; Бегун П.И., Шукейло Ю.А.,2000; Финандо Д., Финандо С.,2001; Lockart R.D. и соавт.,1969). Мышечная система человека имеет три важнейшие функции (Финандо Д., Финандо С.,2001; Иваничев Г.А., Старосельцева Н.Г,2002):

  • первая функция - поддержание тела и внутренних органов;
  • вторая функция - движения тела в целом, его отдельных частей и внутренних органов;
  • третья функция - метаболическая.

Все мышцы человеческого организма имеют общие основные свойства , которые имеют важное значение для функционирования мышечной системы и дополняют друг друга:

1. возбудимость - способность воспринимать нервный импульс и отвечать на него;

2. сократимость - способность укорочения при получении соответствующего стимула;

3. растяжимость - способность удлиняться под воздействием внешней силы;

4. эластичность - способность возвращаться к нормальной форме после сокращения или растяжения.

Мышечная система человека представлена мышцами трех следующих типов:

1. скелетные мышцы;

2. висцеральные мышцы;

3. мышца сердца.

Главным объектом данного учебного пособия являются скелетные мышцы, связанные с движениями позвоночника и конечностей. Они предназначены для выполнения статических и динамических задач человеческого организма. Для статики они должны отвечать следующим требованиям :

1. противостоять силам гравитации с минимальной затратой энергии, обеспечивая силовой баланс между частями опорно-двигательного аппарата;

2. обеспечивать постоянство внутреннего эндоритма составляющих элементов опорно-двигательного аппарата.

Для динамики скелетные мышцы человека должны выполнять следующие функции:

  • совершать движения различными регионами позвоночника и конечностей в определенной последовательности в виде перемещения тела или его частей адекватно цели, в соответствующем объеме;
  • ограничивать распространение этого движения на соседние регионы, обеспечивать однонаправленность выполнения движения.

Скелетные мышцы - это поперечно-полосатые мышцы Общее число скелетных мышц в теле человека - более 600 (Бегун П.И., Шукейло Ю.А,2000). Каждая скелетная мышца является единым органом, обладающим сложной структурной организацией (Хабиров ФА, Хабиров Р.А.,1995; Петров К Б.,1998; Бегун П.И., Шукейло Ю А,2000; Иваничев Г.А, Старосельцева Н.Г.,2002). Всякое мышечное волокно является многоядерной цилиндрической клеткой, окруженной мембраной - сарколеммой. Мышечные клетки содержат смещенные к периферии ядра и миофибриллы.

Поперечные мембраны разделяют каждую миофибриллу на саркомеры - структурные единицы миофибрилл, обладающие способностью сокращаться. Каждая миофибрилла представляет собой цепь, составленную из филаментов. Различают толстые филаменты - темные, анизотропные, состоящие из миозина, и тонкие миофиламенты - белые, изотропные, состоящие из актина. Белки актин и миозин составляют актиномиозиновый комплекс, который обеспечивает под влиянием аденозинтрифосфорной кислоты мышечное сокращение. Каждое мышечное волокно окружает соединительно-тканная оболочка - эндомизиум, группу волокон - перимизиум, всю мышцу - эпимизиум.

Скелетные мышцы крепятся к костям посредством соединительной части мышцы - сухожилия. К вспомогательному аппарату мышц относятся фасции, синовиальные сумки, влагалища сухожилий, сесамовидные кости. Фасции - это фиброзные оболочки, покрывающие мышцы и их отдельные группы. Синовиальные сумки, содержащие синовиальную жидкость, являются внесуставными полостями, предохраняющими мышцу от повреждения, уменьшающими трение. Влагалища сухожилий предназначены для защиты сухожилий мышц от тесного прилежания к костям, что облегчает работу мышц. В толще некоторых мышц имеются сесамовидные кости, улучшающие работу мышц. Самая большая сесамовидная кость - надколенник, расположена в сухожилии четырехглавой мышцы бедра.

В поперечно-полосатой мышечной ткани выделяют три типа волокон (Сапрыкин В.П., Турбин Д.А.,1997, Макарова И Н., Епифанов В.А, 2002):

1 тип - красные, медленные;

2 тип - быстрые:

А - промежуточные, красные,

В - белые.

Мышца человека содержит и белые, и красные волокна, но в разных соотношениях. Медленные красные волокна 1 типа обладают хорошо развитой капиллярной сетью, большим количеством митохондрий и высокой активностью окислительных ферментов, что определяет их существенную аэробную выносливость при выполнении работы продолжительное время (Иваничев Г.А., Старосельцева Н.Г,2002). Быстрые красные волокна 2 типа А занимают промежуточное положение между красными медленными волокнами и белыми быстрыми волокнами. Отличительной особенностью промежуточных красных волокон, относящихся к быстрым, является их способность использовать энергию при гликолизе как по аэробному, так и по анаэробному циклам Кребса.

Быстрые красные волокна являются мало утомляемыми мышечными волокнами. Мышечные волокна белые содержат большое количество миофибрилл, благодаря которому развивается большая сила сокращения. Они относятся к быстрым волокнам 2 типа В. Быстрые мышечные волокна содержат больше гликолитических ферментов, меньше митохондрий и миоглобина, имеют незначительную сеть капилляров. Аэробная выносливость этих волокон невелика. Они легко и быстро утомляются.

Скелетные мышцы человека состоят из экстрафузальных мышечных волокон, специализируемых на сократительной функции, и интрафузальных мышечных волокон, представляющих нервно-мышечное веретено (Хабиров Ф.А., Хабиров Р.А.,1995).

Сложный аппарат обеспечения движений включает в себя афферентную и эфферентную части (Карлов В.А.,1999; Ходос X.-Б.Г.,2001).

Красноярова Н.А.

Анатомо-физиологические особенности скелетных мышц и тесты для их исследования

Структурно-функциональной единицей скелетной мышцы является симпласт или мышечное волокно - огромная клетка, имеющая форму протяженного цилиндра с заостренными краями (под наименованием симпласт, мышечное волокно, мышечная клетка следует понимать один и тот же объект).

Длина мышечной клетки чаще всего соответствует длине целой мышцы и достигает 14 см, а диаметр равен нескольким сотым долям миллиметра. скелетный мышца строение развитие

Мышечное волокно, как и любая клетка, окружено оболочкой - сарколемой. Снаружи отдельные мышечные волокна окружены рыхлой соединительной тканью, которая содержит кровеносные и лимфатические сосуды, а так же нервные волокна.

Группы мышечных волокон, образуют пучки, которые, в свою очередь, объединяются в целую мышцу, помещенную в плотный чехол соединительной ткани переходящей на концах мышцы в сухожилия, крепящиеся к кости (рис.1).

Рис. 1.

Усилие, вызываемое сокращением длины мышечного волокна, передается через сухожилия костям скелета и приводит их в движение.

Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов (рис. 2) - нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления - аксоны в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну.

Рис. 2.

Таким образом, один мотонейрон иннервирует целую группу волокон (так называемая нейромоторная единица), которая работает как единое целое.

Мышца состоит из множества нервно моторных единиц и способна работать не всей своей массой, а частями, что позволяет регулировать силу и скорость сокращения.

Для понимания механизма сокращения мышцы необходимо рассмотреть внутреннее строение мышечного волокна, которое, как вы уже поняли, сильно отличается от обычной клетки. Начнем с того, что мышечное волокно многоядерно. Связано это с особенностями формирования волокна при развитии плода. Симпласты (мышечные волокна) образуются на этапе эмбрионального развития организма из клеток предшественников - миобластов.

Миобласты (неоформленные мышечные клетки) интенсивно делятся, сливаются и образуют мышечные трубочки с центральным расположением ядер. Затем в мышечных трубочках начинается синтез миофибрилл (сократительных структур клетки см. ниже), и завершается формирование волокна миграцией ядер на периферию. Ядра мышечного волокна к этому времени уже теряют способность к делению, и за ними остается только функция генерации информации для синтеза белка.

Но не все миобласты идут по пути слияния, часть из них обособляется в виде клеток-сателлитов, располагающихся на поверхности мышечного волокна, а именно в сарколеме, между плазмолемой и базальной мембраной - составными частями сарколемы. Клетки-сателлиты, в отличие от мышечных волокон, не утрачивают способность к делению на протяжении всей жизни, что обеспечивает увеличение мышечной массы волокон и их обновление. Восстановление мышечных волокон при повреждении мышцы возможно благодаря клеткам-сателлитам. При гибели волокна, скрывающиеся в его оболочке, клетки-сателиты активизируются, делятся и преобразуются в миобласты.

Миобласты сливаются друг с другом и образуют новые мышечные волокна, в которых затем начинается сборка миофибрилл. То есть при регенерации полностью повторяются события эмбрионального (внутриутробного) развития мышцы.

Помимо многоядерности отличительной чертой мышечного волокна является наличие в цитоплазме (в мышечном волокне ее принято называть саркоплазмой) тонких волоконец - миофибрилл (рис.1), расположенных вдоль клетки и уложенных параллельно друг другу. Число миофибрилл в волокне достигает двух тысяч.

Миофибриллы являются сократительными элементами клетки и обладают способностью уменьшать свою длину при поступлении нервного импульса, стягивая тем самым мышечное волокно. Под микроскопом видно, что миофибрилла имеет поперечную исчерченность - чередующиеся темные и светлые полосы.

При сокращении миофибриллы светлые участки уменьшают свою длину и при полном сокращении исчезают вовсе. Для объяснения механизма сокращения миофибриллы около пятидесяти лет назад Хью Хаксли была разработана модель скользящих нитей, затем она нашла подтверждение в экспериментах и сейчас является общепринятой.

К основным функциональным свойствам мышечной ткани относятся возбудимость, сократимость, растяжимость, эластичность и пластичность.

Возбудимость - способность мышечной ткани приходить в состояние возбуждения при действии тех или иных раздражителей. В обычных условиях происходит электрическое возбуждение мышцы, вызываемое разрядом мотонейронов в области концевых пластинок. Возникающий под влиянием медиатора потенциал концевой пластинки (ПКП), достигнув порогового уровня (около 30 мВ), вызывает генерацию потенциала действия, распространяющегося в обе стороны мышечного волокна.

Возбудимость мышечных волокон ниже возбудимости нервных волокон, иннервирующих мышцы, хотя критический уровень деполяризации мембран в обоих случаях одинаков. Это объясняется тем, что потенциал покоя мышечных волокон выше (около 90 мВ) потенциала покоя нервных волокон (70 мВ). Следовательно, для возникновения потенциала действия в мышечном волокне необходимо деполяризовать мембрану на большую величину, чем в нервном волокне.

Способность мышцы реагировать на раздражение ее двигательного мотонейрона, т.е. на импульсы, приходящие к ней по нерву, обозначается как непрямая возбудимость мышцы. Однако возбудимостью обладает и само мышечное волокно. Это доказывается раздражением участков мышцы, где отсутствуют окончания двигательного нерва.

Можно исключить влияние нервных элементов на мышцу, подвергнув ее отравлению некоторыми ядами (например, кураре). В этом случае возбуждение с нерва на мышцу не передается, но нерв и мышца сами по себе продолжают функционировать, т.е. мышца продолжает реагировать на непосредственно наносимое на нее раздражение. Таким образом, опыты подобного рода с несомненностью устанавливают наличие в мышечном волокне так называемой прямой возбудимости, т.е. способности мышечных волокон реагировать и на раздражение, действующее непосредственно и на них, а не через нервные волокна.

И прямая и непрямая возбудимость мышцы обусловлена функцией мембраны мышечного волокна. Возбуждение в мышцах проводится изолированно, т.е. не переходит с одного мышечного волокна на другое. Скорость распространения возбуждения в белых и красных волокнах скелетных мышц различна: в белых волокнах она равна 12 - 15, в красных - 3 - 4 м/с.

В мышцах имеется пассивный упругий компонент, который включает сухожилия, соединительную ткань, покрывающую мышечные волокна, их пучки и мышцу в целом, а также упругие образования боковых поперечных мостиков миозиновой нити. Поэтому скелетная мышца - упругое образование. Упругостью обладают активные сократительные и пассивные компоненты мышцы, которые и обеспечивают растяжимость, эластичность и пластичность мышц.

Растяжимость - свойство мышцы удлиняться под влиянием силы тяжести (нагрузки). Чем больше нагрузка, тем больше растяжимость мышцы. Растяжимость зависит и от вида мышечных волокон. Красные волокна растягиваются больше, чем белые, мышцы с параллельными волокнами удлиняются больше, чем перистые. Даже в условиях покоя мышцы всегда несколько растянуты, поэтому они упруго напряжены (находятся в состоянии мышечного тонуса).

Эластичность - свойство деформированного тела возвращаться к первоначальному своему состоянию после удаления силы, вызвавшей деформацию. Это свойство изучается при растяжении мышцы грузом. После удаления груза, мышца не всегда достигает первоначальной длины, особенно при длительном растяжении или под действием большого груза. Это связано с тем, что мышца теряет свойство совершенной упругости.

Пластичность - (греч. Plastikos - годный для лепки, податливый) свойство тела деформироваться под действием механических нагрузок, сохранять приданную или длину или вообще форму после прекращения действия внешней деформирующей силы. Чем длительнее действует большая внешняя сила, тем сильнее пластические изменения.

Пластичность мышц связана и с остаточным укорочением мышц после длительного тетанического сокращения, или контрактуры. Красные волокна, которые удерживают тело в определенном положении, обладают большей пластичностью, чем белые.

При прямом или непрямом раздражении мышца укорачивается или же развивает напряжение в продольном направлении. Это изменение формы или напряжения мышцы носит название мышечного сокращения, следовательно, сократимость - это специфическая деятельность мышечной ткани при ее возбуждении.

Для изучения свойств мышц в учебных целях и в эксперименте в качестве объекта обычно используют нервно-мышечный препарат лягушки, а в качестве раздражителя - электрический ток. Запись сокращений мышцы на приборе миографе при прямом или непрямом раздражении называется миографией. Скорость и сила ответной реакции скелетной мышцы на раздражение зависит не только от параметров раздражителя, но и от типа мышечных волокон. Сократимость и возбудимость мышц разного вида различна.

По скорости сокращения различают быстрые и медленные мышечные волокна. В быстрых волокнах обычно лучше развит саркоплазматический ретикулум, они слабее снабжены кровеносными сосудами, имеют более крупные и длинные волокна, их расслабление после сокращения происходит в 50 - 100 раз быстрее, чем медленных волокон. Организм для выполнения статической работы (например, поддержание позы) использует главным образом медленные, тонические красные мышцы, а для скоростных движений - быстрые белые мышцы.

Различают различные режимы сокращения мышц, которые определяются частотой и силой поступающих импульсов возбуждения.

На прямые и непрямые раздражения частотой не более 6 - 8 Гц мышца, состоящая из медленных двигательных единиц, отвечает одиночными сокращениями. Сокращение наступает не сразу после нанесения раздражения, а через определенный промежуток времени, называемый латентным периодом. Его величина составляет для икроножной мышцы лягушки 0,01 с. Фаза укорочения длится 0,04 с, фаза расслабления - 0,05 с.

Начало сокращения соответствует восходящей фазе потенциала действия, когда он достигает пороговой величины (примерно 40 мВ). У млекопитающих одиночное сокращение скелетных мышц длится 0,04 - 0,1 с, но оно неодинаково в различных мышцах у одного и того же животного. В красных волокнах мышц оно значительно больше, чем в белых. Если на мышцу действуют два быстро следующих друг за другом раздражения (период между импульсами не более 100 мс), мышечные волокна расслабляются не полностью и каждое последующее сокращение как бы наслаивается на предыдущее. Происходит суммация сокращений, которая может быть полной, когда оба сокращения сливаются, образуя одну вершину, или неполной, в зависимости от частоты раздражений. В обоих случаях сокращение имеет большую амплитуду, чем максимальное сокращение при одиночном раздражении.

При воздействии на мышцу ритмических раздражений высокой частоты наступает сильное и длительное сокращение мышцы, которое называется тетаническим сокращением или тетанусом. Этот термин впервые применил Э. Вебер в 1821 году.

Тетанус может быть зубчатым (при частоте раздражений 20 - 40 Гц) или сплошным, гладким (при частоте 50 Гц и выше). Амплитуда тетанического сокращения в 2 - 4 раза выше амплитуды одиночного сокращения при той же силе раздражения.

Гладкий тетанус возникает тогда, когда очередной импульс раздражения действует на мышцу до начала фазы расслабления. При очень большой частоте раздражений каждое очередное раздражение будет попадать на фазу абсолютной рефрактерности и мышца вообще не будет сокращаться. Высота мышечного сокращения при тетанусе зависит от ритма раздражения, а также от возбудимости и лабильности, которые изменяются в процессе сокращения мышцы. Тетанус наиболее высокий при оптимальном ритме, когда каждый последующий импульс действует на мышцу в фазу экзальтации, вызванной предыдущим импульсом. В этом случае создаются наилучшие условия (оптимум силы и частоты раздражения, оптимум ритма) для работы мышцы.

При тетанических сокращениях мышечные волокна утомляются больше, чем при одиночных сокращениях. Поэтому даже в пределах одной мышцы происходит периодическая смена частоты импульсации (вплоть до полного исчезновения) в разных двигательных единицах.

Импульсы с мотонейронов в условиях покоя участвуют в поддержании мышечного тонуса.

Под тонусом понимают состояние естественного постоянного напряжения мышц при невысоких энергетических затратах. В поддержании тонуса участвуют проприорецепторы мышц (мышечные веретена) и центральная нервная система.

Осуществление тонуса скелетных мышц обусловлено функцией медленных двигательных единиц красных волокон мышц. Тонус скелетных мышц связан с поступлением редких нервных импульсов к мышце, в результате чего мышечные волокна возбуждаются не одновременно, а попеременно. У домашних животных существуют специализированные рефлекторные дуги, одни из которых обеспечивают тетанические сокращения, а другие мышечный тонус. Тонус скелетных мышц играет важную роль в поддержании определенного положения тела в пространстве и деятельности двигательного аппарата.

При сближении актиновых и миозиновых фибрилл вследствие замыкания поперечных мостиков в мышечном волокне развивается напряжение (активная механическая тяга). В зависимости от условий, в которых происходит сокращение мышц, развивающееся напряжение реализуется по-разному. Различают два основных типа мышечных сокращений - изотонический и изометрический. Когда мышца при раздражении сокращается, не поднимая никакого груза, происходит укорочение мышечных волокон, но их напряжение не меняется и равно нулю, такое сокращение называют изотоническим (греч. isos - равный, tonos - напряжение). В эксперименте изотоническое сокращение получают при электрическом (тетаническом) раздражении изолированной мышцы, отягащенной небольшим грузом. Укорочение мышцы происходит при постоянном напряжении, равном внешней нагрузки.

Изометрическое (греч. isos - равный, meros - мера) - это сокращение, при котором длина волокон не уменьшается, но их напряжение возрастает (сокращение при неизменной длине). В этом случае сократительный компонент укорачивается за счет растяжения пассивного упругого компонента, который может увеличивать свою длину на 2 - 6 % от длины покоя.

С молекулярной точки зрения напряжение при изотоническом сокращении обеспечивается замыканием и размыканием поперечных мостиков. При этом скорость сокращения зависит от числа замкнутых мостиков, образуемых в единицу времени (чем их меньше, тем больше скорость и соответственно меньше сила сокращения).

При изометрическом же сокращении напряжение в мышечных волокнах создается за счет повторного прикрепления поперечных мостиков на одних и тех же фиксированных участках актиновых нитей.

В естественных условиях деятельности мышц практически не встречается чисто изотоническое или чисто изометрическое сокращение.

Смешанный тип сокращения мышц, при котором изменяются длина и напряжение, называется ауксотоническим. При совершении животным сложных двигательных актов все работающие мышцы сокращаются ауксотонически - с преобладанием либо изотонического, либо изометрического типа сокращения.

Мышечная ткань признана доминантной тканью человеческого организма, удельный вес которой в общем весе человека составляет до 45 % у мужчин и до 30 % у представительниц прекрасного пола. Мускулатура включает разнообразные мышцы. Виды мышц насчитывают более шестисот наименований.

Значение мышц в организме

Мышцы играют крайне важную роль в любом живом организме. С их помощью приводится в движение опорно-двигательный аппарат. Благодаря работе мышц человек, как другие живые организмы, может не только ходить, стоять, бегать, совершать любое движение, но и дышать, жевать и перерабатывать пищу, и даже самый главный орган - сердце - тоже состоит из мышечной ткани.

Как осуществляется работа мышц?

Функционирование мышц происходит благодаря следующим их свойствам:

  • Возбудимость - это процесс активации, проявляемый в виде ответной реакции на раздражитель (как правило, это внешний фактор). Свойство проявляется в виде изменения обмена веществ в мышце и её мембране.
  • Проводимость - свойство, означающее способность мышечной ткани передавать образовавшийся в результате воздействия раздражителя нервный импульс от мышечного органа к спинному и головному мозгу, а также в обратном направлении.
  • Сократимость - конечное действие мускулатуры в ответ на стимулирующий фактор, проявляется в виде укорачивания мышечного волокна, также меняется тонус мышц, то есть степень их напряжённости. При этом скорость сокращения и максимальная напряжённость мускулатуры могут быть различными как следствие разного влияния раздражителя.

Следует отметить, что работа мышц возможна благодаря чередованию вышеописанных свойств чаще всего в следующем порядке: возбудимость-проводимость-сократимость. В случае если речь идёт о произвольной работе мускулатуры и импульс идёт от центральной нервной системы, то алгоритм будет иметь вид проводимость-возбудимость-сократимость.

Строение мышц

Любая мышца человека состоит из совокупности продолговатых действующих в одном и том же направлении клеток, называемой мышечным пучком. Пучки, в свою очередь, содержат мышечные клетки длиной до 20 см, именуемые также волокнами. Форма клеток поперечно-полосатых мышц продолговатая, гладких - веретенообразная.

Мышечное волокно представляет собой продолговатой формы клетку, ограниченную внешней оболочкой. Под оболочкой параллельно друг другу располагаются способные сокращаться белковые волокна: актиновые (светлые и тонкие) и миозиновые (тёмные, толстые). В периферийной части клетки (у поперечно-полосатых мышц) располагается несколько ядер. У гладких мышц ядро всего одно, оно имеет местоположение в центре клетки.

Классификация мышц по различным критериям

Наличие различных характеристик, отличных у тех или иных мышц, позволяет их условно группировать по объединяющему признаку. На сегодняшний день анатомия не располагает единой классификацией, по которой можно было бы сгруппировать человеческие мышцы. Виды мышц однако можно классифицировать по разнообразным признакам, а именно:

  1. По форме и длине.
  2. По выполняемым функциям.
  3. По отношению к суставам.
  4. По локализации в теле.
  5. По принадлежности к определённым частям тела.
  6. По расположению мышечных пучков.

Наряду с видами мышц выделяют три основные группы мышц в зависимости от физиологических особенностей строения:

  1. Поперечно-полосатые скелетные мышцы.
  2. Гладкие мышцы, составляющие структуру внутренних органов и сосудов.
  3. Сердечные волокна.

Одна и та же мышца может принадлежать одновременно к нескольким группам и видам, перечисленных выше, поскольку может содержать сразу несколько перекрёстных признаков: форму, функции, отношение к части тела и т.д.

Форма и величина мышечных пучков

Несмотря на относительно одинаковое строение всех мышечных волокон, они могут быть разной величины и формы. Таким образом, классификация мышц по данному признаку выделяет:

  1. Короткие мышцы приводят в движение небольшие участки опорно-двигательной системы человека и, как правило, находятся в глубоких слоях мускулатуры. Пример - межпозвоночные спинные мышцы.
  2. Длинные, наоборот, локализованы на тех частях тела, которые совершают большие амплитуды движений, например конечности (руки, ноги).
  3. Широкие покрывают в основном туловище (на животе, спине, грудине). Могут иметь разную направленность мышечных волокон, обеспечивая тем самым разнообразные сократительные движения.

Встречаются в организме человека и различные формы мускулатуры: круглые (сфинктеры), прямые, квадратные, ромбовидные, веретенообразные, трапециевидные, дельтовидные, зубчатые, одно- и двухперистые и мышечные волокна других форм.

Разновидности мускулатуры по выполняемым функциям

Скелетные мышцы человека могут выполнять различные функции: сгибание, разгибание, приведение, отведение, вращение. Исходя из данного признака, мышцы можно условно сгруппировать следующим образом:

  1. Разгибатели.
  2. Сгибатели.
  3. Приводящие.
  4. Отводящие.
  5. Вращательные.

Первые две группы всегда находятся на одной части тела, но в противоположных сторонах таким образом, что когда сокращаются первые, вторые расслабляются, и наоборот. Сгибающие и разгибающие мышцы приводят в движение конечности и являются мышцами-антогонистами. Например, мышца плеча бицепс сгибает руку, а трицепс разгибает. Если в результате работы мускулатуры часть тела или орган совершает движение в сторону тела, эти мышцы приводящие, если в обратном направлении - отводящие. Вращатели обеспечивают круговые движения шеи, поясницы, головы, при этом вращатели делятся на два подвида: пронаторы, осуществляющие движение внутрь, и супинаторы, обеспечивающие движение в наружную сторону.

По отношению к суставам

Мускулатура крепится с помощью сухожилий к суставам, приводя их в движение. В зависимости от варианта крепления и количества суставов, на которые воздействуют мышцы, они бывают: односуставные и многосуставные. Таким образом, если мускулатура крепится только к одному суставу, то это односуставная мышца, если к двум - двусуставная, а если больше суставов - многосуставная (сгибатели/разгибатели пальцев).

Как правило, односуставные мышечные пучки длиннее многосуставных. Они обеспечивают более полную амплитуду движения сустава относительно своей оси, поскольку расходуют свою сократительную способность только на один сустав, в то время как свою сократимость распределяют на два сустава многосуставные мышцы. Виды мышц последние короче и могут обеспечить гораздо меньшую подвижность при одновременном движении суставов, к которым они прикреплены. Ещё одним свойством многосуставной мускулатуры называют пассивную недостаточность. Её можно наблюдать, когда под влиянием внешних факторов мышца полностью растягивается, после этого она не продолжает движение, а, напротив, затормаживает.

Локализация мускулатуры

Мышечные пучки могут располагаться в подкожном слое, образуя поверхностные группы мышц, а могут и в более глубоких слоях - к ним относятся глубинные мышечные волокна. Так например, мускулатура шеи состоит из поверхностных и глубинных волокон, одни из которых отвечают за движения шейного отдела, а другие оттягивают кожу шеи, прилегающего участка кожи груди, а также участвуют в поворотах и опрокидываниях головы. В зависимости от расположения по отношению к определённому органу могут быть внутренние и наружные мышцы (наружные и внутренние мышцы шеи, живота).

Виды мускулатуры по частям тела

По отношению к частям тела мускулатура делится на следующие виды:

  1. Мышцы головы подразделяются на две группы: жевательные, отвечающие за механическое измельчение пищи, и мимические мышцы - виды мышц, благодаря которым человек выражает свои эмоции, настроение.
  2. Мышцы туловища подразделяются по анатомическим отделам: шейные, грудные (большая грудинная, трапециевидная, грудинно-ключичная), спинные (ромбовидная, широчайшая спинная, большая круглая), брюшные (внутренние и наружные брюшные, в том числе пресс и диафрагма).
  3. Мышцы верхних и нижних конечностей: плечевые (дельтовидная, трёхглавая, двуглавая плечевая), локтевые сгибатели и разгибатели, икроножные (камбаловидная), берцовые, мышцы стопы.

Разновидности мускулатуры по расположению мышечных пучков

Анатомия мышц у различных видов может отличаться расположением мышечных пучков. В связи с этим выделяют такие мышечные волокна, как:

  1. Перистые напоминают строение птичьего пера, в них пучки мышц крепятся к сухожилиям только одной стороной, а другой расходятся. Перистая форма расположения мышечных пучков характерна для так называемых сильных мышц. Место их крепления к надкостнице является довольно обширным. Как правило, они короткие и могут развивать большую силу и выносливость, при этом тонус мышц не будет отличаться большой величиной.
  2. Мышцы с параллельным расположением пучков также называют ловкими. По сравнению с перистыми они имеют большую длину, при этом менее выносливы, однако могут выполнять более тонкую работу. При сокращении напряжение в них значительно увеличивается, что значительно снижает их выносливость.

Группы мускулатуры по структурным особенностям

Скопления мышечных волокон образуют целые ткани, структурные особенности которых обуславливает их условное разделения на три группы:


Скелетная мускулатура является одной из основных систем человеческого организма и представляет собой активное звено двигательного аппарата.

Скелетные мышцы осуществляют движения отдельных частей тела и перемещение человека в пространстве, а также принимают активное участие в работе внутренних органов. Всего в теле человека насчитывается порядка 600 мышц.

Классификация скелетных мышц

Скелетная мускулатура состоит из волокон нескольких основных типов:

  • Медленные волокна. В них содержится большое количество белков миоглобина, связывающего кислород и являющегося своеобразным «дыхательным веществом» для мышц, аналогом гемоглобина для крови. Их называют «красными», так как они имеют темно-красный цвет. Эти волокна отвечают за поддержание позы. Переутомление в них наступает медленно из-за миоглобина и наличия митохондрий, а восстановление - быстро.
  • Быстрые волокна. Способны быстро сокращаться длительное время без утомляемости. Отсутствие утомления объясняется повышенным содержанием митохондрий и образованием АТФ при помощи окислительного фосфорилирования. Число волокон в нейромоторной единице такой мышцы меньше, чем в предыдущей.
  • Быстрые волокна с гликотическим окислением. В этих волокнах для образования АТФ используется гликолиз, в них меньше митохондрий. Мышцы с такими волокнами развиваются и сокращаются намного быстрее, но быстро утомляются. В них отсутствует белок миоглобин, в результате чего их называют «белыми».

Мышцы состоят из двигательных, или нейромоторных единиц. Часть мускулатуры, отвечающая за быстрые и точные движения, состоит из небольшого числа волокон. Мышцы, ответственные за поддержание позы, более массивны и могут содержать до нескольких тысяч таких волокон.

Основные типы мышц

В основном, все мышцы делятся на 3 типа:

  • Синергисты. Предназначены для осуществления движения только в одном направлении.
  • Антагонисты. Могут работать в разных направлениях.
  • Многофункциональные мышцы. Воздействуют более чем на один определенный сустав. Могут придавать движениям крутящий момент.

Расположение волокон в мышцах

Волокна скелетной мускулатуры могут располагаться в мышцах:

  • Параллельно растяжению. Так происходит, когда человек выполняет упражнения в быстром темпе, а уровень нагрузки при этом минимален.
  • Перпендикулярно растяжению. В этом случае используются короткие сокращения при максимальной нагрузке.

Механизмы, регулирующие силу сокращения мышц

Сила сокращения волокон мускулатуры регулируется центральной нервной системой. При этом используется два разных механизма подбора моторных единиц:

  • Для точных, координированных и тщательно рассчитанных движений во время занятий используются двигательные единицы, количество волокон в которых не превышает 30.
  • Сильные и грубые движения используют мышцы с числом волокон от 100 и выше.

Чем больше человек прикладывает мышечной силы для выполнения того или иного упражнения, тем сильнее генерируемый импульс. Благодаря этому увеличивается задействованное число мышц и производится еще большая сила приложения.

Функции скелетных мышц человека

Скелетная мускулатура входит в состав опорно-двигательной системы человека. При этом скелетные мышцы призваны выполнять следующие функции:

  • обеспечивать принятие и удержание определенной позы тела
  • перемещать тело в пространстве;
  • перемещать отдельные части человеческого тела относительно других частей;
  • выделять тепло, обеспечивая терморегуляцию организма.

Свойства скелетных мышц

Скелетная мускулатура обладает следующими физическими свойствами:

  • Возбудимость. Это состояние выражается в способности отвечать на действия раздражителей при помощи мембранного потенциала и ионной проводимости. Возбудителями могут быть медиаторы мотонейронов или миорелаксанты, которые действуют путем блокирования передачи нервного импульса. Также в лабораториях часто используются электростимуляторы.
  • Проводимость. Позволяет проводить действие вглубь и вдоль мышечного волокна согласно Т-системе.
  • Сократимость. Мышцы могут укорачиваться, а также увеличивать напряжение в условиях возбуждения.
  • Эластичность. Мышечные волокна способны развивать напряжение во время растягивания.

Тонус скелетной мускулатуры

Скелетные мышцы не могут находиться в полностью расслабленном состоянии и сохраняют определенный уровень напряжения, который называется тонусом. Тонус выражается в поддержании упругости мышц в спокойном состоянии. Он сохраняется благодаря нервным импульсам, поступающим последовательно с большими интервалами и раздражающим разные волокна.

Вместе с тем человек как высокоорганизованное существо, способен регулировать тонус по своему желанию. Например, он может полностью расслабить или напрячь мышцы, а также выбирать уровень напряжения. Для этого ему не нужно выполнять какую-либо физическую работу.

Работа скелетной мускулатуры

Основная задача скелетной мускулатуры - мышечная работа. Она полностью соответствует физическому закону А = FS, в котором определяется количество энергии, которая была затрачена на перемещение тела в определенных условиях (с использованием силы). Также существует возможность работы в изотоническом режиме, при котором сокращение мышцы происходит без нагрузки на нее.

Кроме того, выделяется изотермический режим, во время которого в условиях максимальной нагрузки мышца не укорачивается. В таком случае химическая энергия преобразуется в тепловую. При работе в естественных условиях изотермическими называются сокращения в фиксированной позе, и динамическими - в активной.

Сила и работа не остаются постоянными и эффективность занятий постепенно снижается. Такое состояние называется утомлением. Наиболее утомителен статический режим. При его использовании мышечные волокна быстрее накапливают продукты, возникающие в процессе окисления (пировиноградная, а также молочная кислота). При этом нарушается ресинтез АТФ, отвечающий за энергообеспечение сокращений мышц. Кроме того, на степень физической утомляемости влияет степень умственного напряжения во время работы. Чем она выше, тем меньше утомляются мышцы.

Виды мышц

В настоящее время различаются следующие виды мышц:

  • одноперистые, в которых мышечные пучки прикреплены с одной стороны сухожилия (такие, как сгибатели больших пальцев кистей);
  • двуперистые, в которых пучки прикрепляются с двух сторон сухожилий (такие, как длинные сгибатели больших пальцев ног);
  • многоперистые, в которых перистые группы примыкают к своим аналогам (такие, как дельтовидная мышца);
  • треугольные, в которых пучки соединяются с разных направлений (височная мышца).

Кроме того, мышцы имеют разное количество головок и могут быть:

  • двуглавыми;
  • трехглавыми;
  • четырехглавыми.

Скелетные мышцы выполняют много других функций. Например, могут обеспечить тканевое дыхание сердцу в экстренных случаях при помощи вещества оксимиоглобин (соединение кислорода и миоглобина). Поэтому развитие скелетных мышц является одной из основ спортивного и хорошего развитого тела человека, а также его здоровья.