Из чего сделан фотоаппарат. Как устроен и работает зеркальный фотоаппарат

  • 24.09.2019

Как устроены цифровые зеркальные фотоаппараты? Большинство из них устройство имеют примерно одинаковое. Это, прежде всего, корпус, собственно камера, на которую крепится фотообъектив. Объектив служит для создания изображения на матрице, а матрица - для записи фотографического изображения. В зеркальных аппаратах съемочный объектив так же передает изображение и в видоискатель. Незеркальные аппараты имеют чуть другую схему. Изображение на матрицу и изображение в видоискатель чаще всего передается двумя различными объективами. В этом случае объектив для видоискателя маленький и находится над основным объективом. В самых простых аппаратах, так называемых «мыльницах», на экране дисплея отображается изображение, которое непосредственно попадает на матрицу.

Принцип действия фотоаппарата примерно таков: световой поток проходит сквозь объектив и попадает на диафрагму. Диафрагма регулирует количество попавшего в объектив света и пропускает его дальше, на зеркало. Свет отражается от зеркала и попадает в призму, преломляясь через которую доходит до видоискателя, в котором фотограф и видит то, что находится непосредственно перед объективом. К изображению в видоискателе добавляется и другая полезная информация о снимаемом кадре. Что это за информация, ее количество - это зависит от конкретной модели аппарата. Как говорят, от его наворочености.

В собственно момент фотографирования зеркало, входящее в эту механическую конструкцию, поднимается и открывается затвор фотоаппарата. Именно в этот момент и происходит так называемое экспонирование. Свет попадает на матрицу и создает на ней изображение. После экспонирования затвор закрывается, зеркало опускается на свое место и ваш фотоаппарат готов сделать следующий снимок. Интересно то, что весь этот сложный технологический процесс происходит внутри аппарата за сотые и даже за тысячные доли секунды.

C того дня, как придумали это механическое устройство для фотосъемки, в процесс фотографирования не было внесено ничего принципиально нового. Световой пучок проходит сквозь объектив, масштабируется и попадает на установленный внутри фотоаппарата светочувствительный элемент. Этот принцип одинаков и для пленочных, и для цифровых фотокамер.

В чем заключается различие зеркального и незеркального фотоаппаратов? В чем преимущества зеркалки? Как мы уже сказали, зеркальный аппарат имеет в своей конструкции зеркало, которое позволяет нам в видоискателе видеть точно ту же картинку, что попадает на светочувствительный элемент.

А в чем отличие между зеркальным цифровым и зеркальным пленочным аппаратом? Вот на этом давайте остановимся поподробнее.

  • Первым делом следует сказать, что в зеркальном цифровом фотоаппарате использована электронная система записи изображения. Оно записывается на электронную карту памяти. В плёночном же аппарате изображение сохраняется на фотографической плёнке.
  • Практически все зеркальные фотокамеры записывают изображение на матрицу, поверхность которой меньше чем площадь кадра в пленочном зеркальном фотоаппарате.
  • Устройство цифрового зеркального фотоаппарата таково, что фотограф может сразу просматривать отснятые кадры. Зеркальный пленочный фотоаппарат такой возможности не предоставляет. Полученное изображение мы можем увидеть на фотоплёнке после некоторой химической её обработки.
  • Пленочные зеркалки старых моделей полностью механические. Они не нуждаются в электрическом питании. А современные цифровые зеркальные фотокамеры не могут жить и работать без батареек или аккумуляторных батарей.
  • При съемке зеркальной плёночной камерой кадр лучше немного переэкспонировать, а при работе с цифровой камерой - как раз наоборот: недоэкспозиция выгоднее.
  • Зеркальные фотоаппараты, не зависимо от того, пленочные они или цифровые, позволяют пользоваться множеством всевозможных аксессуаров: сменные объективы, фотовспышки, пульты дистанционного управления и пр.

Как устроен современный цифровой зеркальный фотоаппарат.

Давайте для начала рассмотрим его принципиальное устройство. Каждый современный человек сегодня знает, что основная часть любого фотоаппарата - это светонепроницаемая коробка, которую раньше называли камерой-обскурой. В одной из стенок этой коробки проделано отверстие. На противоположной от отверстия стенке находится светочувствительный сенсор, который называется матрицей. Для того, чтобы создать фотографический снимок, современные фотоаппараты оснащены множеством дополнительных элементов. Основные компоненты конструкции фотокамеры - объектив, затвор и диафрагма.

  1. Объектив - это оптическая конструкция, состоящая из стеклянных (или, в недорогих моделях пластиковых) линз. Световой поток преломляется, проходя сквозь эти линзы, попадает на матрицу или плёнку, что делает изображение качественным.
  2. Затвор - это устройство, чаще механическое, которое установлено между объективом и матрицей. Затвор представляет собой непрозрачную плоскость. Эта плоскость открывается и закрывается с огромной скоростью, чем регулирует доступ света на матрицу. Отрезок времени, на который затвор остается открытым, называется выдержка.
  3. Диафрагма - это круглое отверстие, которое может менять свой диаметр. Она позволяет дозировать количественное поступление света на матрицу фотокамеры. Диафрагма чаще всего установлена внутри объектива, между его линзами.

Ну вот, теперь вы имеете некоторое понятие о современной цифровой зеркальной фотокамере. Теперь давайте изучать это сложнейшее электронно-механическое устройство и принцип его работы более детально. Поговорим о каждом из упомянутых конструктивных элементах поподробнее.

Объектив

Объектив - наиболее важная составляющая любого фотоаппарата. Ему всегда уделяется особое внимание.

Что такое фотографический объектив? Это оптическая система линз, собранная в оправе из металла. Объектив проецирует изображение на плоскость. В цифровом фотоаппарате - на матрицу, в пленочном - на плёнку. Хорошие фотографические объективы должны давать на плёнке или матрице резкое изображение по всей площади кадра, его пропорции должны соответствовать реальным пропорциям объекта съемки. Современный объектив - изделие достаточно сложное технически. Производство объективов - высокотехнологичное и точное производство. На заводах, выпускающих объективы, каждый из них проверяется индивидуально и очень тщательно. В былые времена, на заре фотографии, в фотоаппаратах в качестве объектива использовалась всего одна собирательная линза. Но такой примитивный объектив имел множество недостатков. Например, изображение получалось резким только в центральной части кадра, по краям оно оставалось нерезким и размытым, прямые линии ближе к границам кадра становились изогнутыми. Путем комбинации, подбора линз в одну цельную оптическую систему ученые со временем научились избегать этих недостатков.

Ещё на стадии планирования покупки зеркального фотоаппарата необходимо задуматься об объективе. Дело в том, что одна и та же модель фотокамеры при продаже может комплектоваться различными объективами, а может продаваться и вообще без объектива. Всё зависит от выбора производителя и фирмы-продавца. Обычно покупка фотокамеры в комплекте с объективом обходится несколько дешевле, чем приобретение собственно камеры и объектива раздельно. Но иногда особо придирчивых покупателей предлагаемый комплект по каким либо характеристикам не устраивает.

Для начала рекомендуем выбирать объектив исходя из его универсальности. Проще говоря, это объектив, подходящий для всех видов съемки. От того, как широки будут возможности вашего первого объектива, зависит, как быстро вы поймете на практике, какой ещё объектив вам необходим для тех видов съемки, которым вы будете отдавать приоритет в своей работе. Если вы, например, увлечетесь фотоохотой - то вам будет нужен объектив с большим фокусным расстоянием, если вашей страстью станет съемка портретов - то потребуется объектив, который так и называется - портретный.

Но, даже если у вас и появятся различные объективы, в основном вы будете снимать объективом универсальным. Специализированные объективы - широкоугольники, длиннофокусники и пр. применяются в повседневной практике достаточно редко. Но, тем не менее, зачастую возникают ситуации, когда без специальных объективов не обойтись. И тогда их применение становится очень даже оправданным.

Все объективы в основном выпускаются со стандартной резьбой, что позволяет легко их заменять на разных моделях фотоаппаратов.

Подведём итог. К приобретению своего первого объектива нужно отнестись достаточно серьезно. В противном случае неудачная дорогостоящая покупка так и останется лежать в ящике вашего стола невостребованной. А ведь универсальный объектив как раз тем и хорош, что использовать его можно во всех случаях жизни. Например, в путешествиях, когда любой лишний вес может оказаться в тягость. А объективы - вещь довольно тяжелая.

Диафрагма

Если присмотреться, внутри объектива можно увидеть несколько лепестков, каждый из которых имеет форму дуги. Накладываясь один на другой, они образуют круглое отверстие, диаметр которого можно регулировать. Это устройство называется диафрагма. Сам этот термин имеет греческие корни, и буквально означает «перегородка». В английском языке для обозначения диафрагмы употребляется другой термин: «апертура».

Диафрагма - это устройство, которое регулирует количество света, попадаемого на матрицу или плёнку. Изменяя диаметр отверстия диафрагмы, мы меняем соотношение яркостей создаваемого объективом фотографического изображения. Влияет диафрагма и на яркость самого объекта.

Посредством специального довольно сложного механизма лепестки диафрагмы сводятся к центру и отверстие, которое они образуют, уменьшается. При изменении значения диафрагмы на одну ступень, диаметр уменьшается или увеличивается в 1,4 раза. А вот количество света, попадаемого на пленку или матрицу, увеличивается в другой пропорции - в 2 раза.

Зачем нам необходима диафрагма? Почему без неё не обойтись? Для какой цели этот сложный конструктивный узел включен в фотоаппарат? Главное - для регулирования светового потока на матрицу или плёнку. Например, снимая при ярком освещении целесообразно отверстие диафрагмы сделать поуже. А при недостатке света, естественно, пошире. Но далеко не только для этого нужна диафрагма. Между прочим, по большому счету без нее можно и обойтись. Почему? А вот почему.

Как уже было сказано выше, и диафрагма, и затвор являются своего рода перегородками на пути светового потока, идущего к матрице или плёнке. Диафрагму вместе с выдержкой называют также экспопарой. Например, при одной конкретной съемке диафрагма может быть широко открыта, а выдержка установлена более короткой, а при другой съемке - с точностью до наоборот: выдержка длинная, а отверстие диафрагмы маленькое. Вроде бы, кажется, что значение выдержки и диафрагмы взаимозаменяемы. И та, и другая влияют на количество света, попадаемого на матрицу или плёнку. Но это не совсем так. Точнее, совсем не так. Размер отверстия диафрагмы в первую очередь влияет на глубину резкости, или, как сейчас стали говорить специалисты, глубину резко изображаемого пространства (сокращенно - ГРИП). А это как раз и является весьма значимым функциональным фактором, позволяющим создавать различные творческие и технические эффекты, при помощи которых фотограф и достигает намеченного результата, поставленной цели съемки.

Не хочется вас загружать различными сложными формулами и определениями. Все равно на данном начальном этапе вы мало что запомните и поймёте. Вам сейчас важно понять и усвоить самое главное. В книжках, справочниках и формулах диафрагма обозначается буквой f. И чем большее число будет стоять около этой буквы, тем меньшим будет диаметр отверстия диафрагмы, которое оно обозначает. Например, как на своем языке говорят фотографы, дырка 2.8 шире, чем дырка 8 или 16. Сейчас в основном самое широкое отверстие диафрагмы - это 2,8 (на старинных объективах можно встретить диафрагму 1, 4). Таким образом, на большинстве современных объективов при значении 2,8 отверстие диафрагмы максимально. То есть, смело можно сказать, что диафрагмы в этом случае попросту нет. Между прочим, некоторые мастера считают, что чем меньше значение диафрагмы, то есть чем больше дырка в объективе, тем интереснее будет кадр, тем красивее будет выглядеть объект. Многие свадебные фотографы работают именно по этому принципу - как они говорят, «на полной дырке».

Теперь про глубину резкости. На старых объективах даже была нанесена специальная шкала глубины резкости. Принцип тут простой: чем отверстие диафрагмы меньше, тем глубина резкости больше. Измеряется глубина резкости в метрах. Например, при определенной фокусировке на какой то объект и при определенной диафрагме глубина резко изображаемого пространства будет от 1,5 до 5 метров. Несмотря на то, что основным способом управления глубиной резкости является диафрагма, на ГРИП так же влияют и другие параметры: размер матрицы аппарата, фокусное расстояние объектива, которым вы снимаете, расстояние до снимаемого объекта.

Для разных сюжетов и видов съемки глубина резкости нужна так же разная. Как применять глубину резкости на практике? Например, вы фотографируете пейзаж. Тогда смело закрывайте диафрагму, делайте ее отверстие меньше. И вы получите резкое изображение как ближних, так и дальних объектов снимаемого ландшафта. А если вы решили снять портрет, то фон лучше сделать нерезким, а собственно лицо модели - резким. Как этого добиться? Снимайте с маленькой глубиной резкости, то есть с большим отверстием диафрагмы. В этом случае нерезкость фона как бы оторвет портретируемого от окружающего пространства. С маленькой глубиной резкости хорошо снимать крупным планом цветы, или ещё какие-нибудь объекты небольшого размера. Резкость можно настроить на ближний край цветка. А дальний от фотографа и зрителя край вывести в нерезкость. Это будет очень красиво. За счет маленькой глубины резкости хорошо делать акценты. Зритель сразу понимает, на что автор фотографии хочет обратить его внимание.

Регулировка глубины резко изображаемого пространства - очень важное средство в арсенале фотографа.

В компактных цифровых аппаратах, или каких ещё называют, мыльницах, глубина резкости будет большой при любом положении диафрагмы. Так уж рассчитаны их объективы разработчиками. Это очень мешает реализации многих творческих идей фотографа, но в то же время дает хорошего качества повседневные бытовые снимки для фотолюбителей. Мыльницы ведь и рассчитаны на эту категорию пользователей.

Затвор

Переходим к описанию следующего элемента фотоаппарата - затвору. Для чего они необходим?

Затвор - этот дико сложный механизм, гораздо сложнее, чем механизм диафрагмы. Его можно назвать сердцем любого фотоаппарата. Затвор отмеряет время, на протяжении которого свет действует на матрицу или на фотоплёнку, и происходит собственно процесс экспонирования. Это время, на которое затвор открыт, называется выдержкой. Затвор находится внутри фотокамеры, постороннему взгляду его не видно. Но зато его в зеркальных (как цифровых, так и плёночных) камерах хорошо слышно. Именно он издает тот самый характерный щелчок, ставший символом всей фотографии.

Что же происходит с затвором в момент фотографирования?

Затвор представляет собой механическое устройство, включающее в себя одну или две непрозрачные шторки, которые могут быть расположены как горизонтально, так и вертикально. Именно эти шторки открываются и закрываются, дозируя световой поток. Выдержка измеряется во времени. Чаще всего, это доли секунды. То есть затвор, можно сказать, работает молниеносно. Трудно даже представить себе отрезок времени, составляющий 1/250 или 1/500 долю секунды, не говоря уж о 1/1000 и менее. Но механический затвор имеет предел скорости срабатывания. Тогда каким же образом работают выдержки 15000 и 1/7000 секунды, на которые способна современная фотоаппаратура? Для этих целей инженерами разработан так называемый цифровой затвор. Тут регулировка выдержки осуществляется непосредственно на матрице, электроникой. Происходит это в таком режиме: при нажатии кнопки спуска открываются шторки физического, механического затвора, причем на минимально возможное время, затем на матрицу аппарата от его «электронной начинки» поступает цифровой сигнал, который включает экспонирование матрицы, а спустя какое то время другой сигнал отключает это экспонирование, а затем закрываются шторки и физического затвора. Величина выдержки зависит от освещенности снимаемого объекта, об общей освещенности в помещении, в котором вы снимаете, от скорости движения объекта или объектов съемки. Выдержку всегда нужно соотносить с диафрагмой.

Если в современном зеркальном цифровом фотоаппарате установлено и работает сразу два затвора, может возникнуть вопрос: а зачем в таком случае нужен тут механический затвор? Ответим. Кроме своей основной функции - отмеривания времени - он так же выполняет функцию защиты матрицы от пыли и грязи. Пыль и грязь наносят ей серьезные повреждения. А ведь матрица - самый дорогой и нежный элемент современного фотоаппарата.

Механизм любого фотоаппарата, будь то плёночного или современного зеркального цифрового фотоаппарата, немыслим без затвора. Но из-за наличия в механическом затворе шторок, в цифровых зеркалках исключена возможность визирования по дисплею. Матрица закрыта этими шторками, и изображение на дисплей передаваться просто не имеет возможности. При нажатии кнопки спуска шторки открываются (за счет или пружин, или электромагнитов), и на матрице происходит формирование изображения. В цифровых аппаратах с несъемной оптикой чаще всего стоит электронный затвор. Проще говоря, матрица сама на время проведения экспонирования включается, и по окончании этого времени отключается. Во время экспонирования и происходит запись изображения. Все остальное время на дисплей выводится сигнал для визирования, или, говоря по-другому, наводки. Преимущества электронного затвора очевидно - он может работать на несравненно более высоких скоростях, чем механический. Но, тем не менее, комбинированный электронно-механический затвор намного лучше.

Несколько слов о вспышке

О фотовспышке поговорим только в общих чертах. Причем, упор сделаем на штатную, встроенную в сам фотоаппарат вспышку, которую иногда весело называют «лягушкой» (потому что она, как лягушка, выпрыгивает из фотоаппарата). Вспышка может работать в нескольких режимах, которые соотносятся с режимами работы самого фотоаппарата.

  • Автоматический режим. Вспышка срабатывает (или не срабатывает) автоматически. В этом режиме автоматически же регулируется длительность излучаемого ей светового импульса и его мощность в зависимости от условий освещения, в которых производится съемка. Такой режим удобен тем, что при нём экономится заряд электрической батареи. Но, тем не менее, он не всегда может быть использован. Например, при съемке в контровом свете. Так уж устроен фотоаппарат.
  • Принудительный режим фотовспышки. Вспышка будет срабатывать всегда, независимо от уровня освещенности. В этом режиме недоступно регулирование длительности и мощности светового импульса. Как говорят специалисты, вспышка тут полностью использует своё ведущее число. Такой режим работы со вспышкой применим практически во всех случаях съемки, однако и расход энергии батареи тут будет более высоким, чем в предыдущем режиме.
  • Режим медленной синхронизации. При таком режиме скорость срабатывания затвора (проще говоря, выдержка), устанавливается на более продолжительное время, чем длительность светового импульса. Это делается для дополнительной проработки фона и заднего плана снимаемой сцены. Ведь встроенная в фотоаппарат вспышка достаточно слаба и зачастую ее световой поток не достаёт («не добивает») до фона.
  • Режим съемки без вспышки. Тут вспышка вообще не срабатывает. Этот режим необходим в тех ситуациях, когда съемка со вспышкой запрещена или в ней нет никакой необходимости, так как условия освещенности вполне благоприятные. А при благоприятном естественном освещении изображение всегда получается намного лучше, естественно передаются цвета объектов, теневые и освещенные его участки.

В более совершенных фотоаппаратах предусмотрены и другие режимы работы вспышки, например . В этом режиме перед основной вспышкой, во время которой срабатывает затвор, производится ещё несколько коротких вспышек. Это сделано для того, чтобы у людей, которых вы фотографируете, рефлекторно сузились зрачки глаз. Ведь что такое «красные глаза»? Не что иное, как отражение яркого света вспышки, проникающего через широко открытые зрачки на глазное дно. А если зрачки будут узкими, то и отражение сильного света в глазном дне будет практически незаметным. Такой режим нужно применять лишь при съемке людей. В противном случае - это пустая трата не только энергии батарей, но и времени.

Не нужно забывать, что использование штатной, встроенной в аппарат (как иногда называют - бортовой) фотовспышки делает лица людей на снимке довольно плоскими. Происходит это из-за того, что вспышка находится в непосредственной близости к объективу и «бьёт» прямо в лоб снимаемому человеку, лишая его лицо теней. Стало быть, со встроенной вспышкой людей лучше снимать под небольшим углом - чтобы появились хоть какие-то тени на лице. Но и под большим углом снимать тоже не надо - тени будут слишком грубыми и неестественными.


Человека всегда тянуло к прекрасному, увиденной красоте человек пытался придать форму. В поэзии это была форма слова, в музыке красота имела гармоническую звуковую основу, в живописи формы прекрасного передавались красками и цветом. Единственное, что не мог человек, это запечатлеть мгновение. Например, поймать разбивающуюся каплю воды или рассекающую грозовое небо молнию. С появлением в истории фотоаппарата и развитием фотографии это стало возможным. История фотографии знает множественные попытки изобретения фотографического процесса до создания первой фотографии и берет начало в далеком прошлом, когда математики изучая оптику преломления света обнаруживали, что изображение переворачивается, если пропустить его в темную комнату через небольшой отверстие.

В1604 г. немецкий астроном Иоганн Кеплер установил математические законы отражения света в зеркалах, которые в последствии залегли в основу теории линз по которым другой итальянский физик Галилео Галилей создал первый телескоп для наблюдения за небесными телами. Принцип преломления лучей был установлен, оставалось только научиться каким-то образом сохранять полученные изображения на отпечатках еще не раскрытым химическим путем.

В 1820-е гг.. Жозеф Нисефор Ньепс открыл способ сохранения полученного изображения путем обработки попадающего света асфальтовым лаком (аналог битума) на поверхность из стекла в, так называемой камере-обскуре. С помощью асфальтового лака изображение принимало форму и становилось видимым. В первые в истории человечества картину рисовал не художник, а падающие лучи света в преломлении.

В 1835 г. английский физик Уильям Тальбот, изучая возможности камеры-обскура Ньепса смог добиться улучшения качества фотоизображений с помощью изобретенного им отпечатка фотографии - негатива. Благодаря этой новой возможности снимки теперь можно было копировать. На своей первой фотографии Тальбот запечатлел собственное окно на котором четко просматривается оконная решетка. В будущем он написал доклад, где называл художественное фото миром прекрасного, таким образом заложив в историю фотографии будущий принцип печати фотографий. В 1861 г. фотограф из Англии Т. Сэттон изобрел первый фотоаппарат с единым зеркальным объективом. Схема работы первого фотоаппарата была следующей, на штатив закреплялся крупный ящик с крышкой сверху, через которую не проникал свет, но через которую можно было вести наблюдение. Объектив ловил фокус на стекле, где с помощью зеркал формировалось изображение.

В 1889 г. в истории фотографии закрепляется имя Джорджа Истмана Кодак, который запатентовал первую фотопленку в виде рулона, а потом и фотокамеру "Кодак", сконструированную специально для фотопленки. В последствии, название "Kodak" стало брэндом будущей крупной компании. Что интересно, название не имеет сильной смысловой нагрузки, в данном случае Истман решил придумать слово, начинающееся и заканчивающиеся на одну и ту же букву.

В 1904 г. братья Люмьер под торговой маркой "Lumiere" начали выпускаться пластины для цветного фото, которые стали основоположниками будущего цветной фотографии .

В 1923 г. появляется первый фотоаппарат в котором используется пленка 35 мм, взятая из кинематографа. Теперь можно было получать небольшие негативы, просматривая затем их выбирать наиболее подходящие для печатания крупных фотографий. Спустя 2 года фотоаппараты фирмы "Leica" запускаются в массовое производство.

В 1935 г. фотоаппараты Leica 2 комплектуются отдельным видеоискателем, мощной фокусировочной системой, совмещающие две картинки в одну. Чуть позже в новых фотоаппаратах Leica 3 появляется возможность использования регулировки длительности выдержки. Долгие годы фотоаппараты Leica оставались неотъемлимыми инструментами в области искусства фотографии в мире.

В 1935 г. компания "Kodak" выпускает в массовое производство цветные фотопленки "Кодакхром". Но еще долгое время при печати их надо было отдавать на доработку после проявки где уже накладывались цветные компоненты во время проявки.

В 1942 г. "Kodak" запускают выпуск цветных фотопленок "Kodakcolor", которые последующие полвека становятся одними из популярными фотопленками для профессиональных и любительских камер.

В 1963 г. представление о быстрой печати фотографий переворачивают фотокамеры "Polaroid", где фотография печатается мгновенно после полученного снимка одним нажатием. Достаточно было просто подождать несколько минут, чтобы на пустом отпечатке начали прорисовываться контуры изображений, а затем проступала полностью цветная фотография хорошего качества. Еще 30 лет универсальные фотоаппараты Polaroid будут занимать ведущие по популярности места в истории фото, чтобы уступить эпохе цифровой фотографии.

В 1970-х гг. фотоаппараты снабжались встроенным экспонометром, автофокусировку, автоматические режимы съемки, любительские 35 мм камеры имели встроенную фотовспышку. Чуть позже к 80-м годам фотоаппараты начали снабжаться ж/к панелями, которые показывали пользователю программные установки и режими фотокамеры. Эра цифровой техники только начиналась.

В 1974 г. с помощью электронного астрономического телескопа была получена первая цифровая фотография звездного неба.

В 1980 г. компания "Sony" готовит к выпуску на рынок цифровую видеокамеру Mavica. Снятое идео сохранялось на гибком флоппи-диске, который можно было бесконечно стирать для новой записи.

В 1988 г. компания "Fujifilm" официально выпустила в продажу первый цифровой фотоаппарат Fuji DS1P, где фотографии сохранялись на электронном носителе в цифровом виде. Фотокамера обладала 16Mb внутренней памяти.

В 1991 г. компания "Kodak" выпускает цифровую зеркальную фотокамеру Kodak DCS10, имеющую 1,3 mp разрешения и набор готовых функций для профессиональной съемки цифрой.

В 1994 г. компания "Canon" снабжает некоторые модели своих фотокамер системой оптической стабилизации изображений.

В 1995 г. компания "Kodak", следом за Canon прекращает выпуск популярных последние полвека пленочных своих фирменных фотокамер.

2000-х гг. Стремительно развивающиеся на базе цифровых технологий корпорации Sony, Samsung поглощают большую часть рынка цифровых фотоаппаратов. Новые любительские цифровые фотоаппараты быстро преодолели технологическую границу в 3Мп и по размеру матрицы легко соперничают с профессиональной фототехникой имея размер от 7 до 12 Мп. Несмотря на быстрое развитие технологий в цифровой технике, таких как: распознавание лица в кадре, исправление оттенков кожи, устранение эффекта "красных" глаз, 28-кратное "зумирование", автоматические сцены съемки и даже срабатывание камеры на момент улыбки в кадре, средняя цена на рынке цифровых фотокамер продолжает падать, тем более что в любительском сегменте фотоаппаратам начали противостоять мобильные телефоны, снабженные встроенными камерами с цифровым зумом. Спрос на пленочные фотоаппараты стремительно упал и теперь наблюдается другая тенденция повышения цены аналоговой фотографии, которая переходит в разряд раритета.



Устройство пленочного фотоаппарата

Принцип работы аналогового фотоаппарата: свет проходит через диафрагму объектива и, вступая в реакцию с химическими элементами пленки сохраняется на пленке. В зависимости от настройки оптики объектива, применения особых линз, освещенности и угла направленного света, времени раскрытия диафрагмы можно получить различный вид изображения на фотографии. От этого и многих других факторов формируется художественный стиль фотографии. Конечно, главным критерием оценки фотографии остается взгляд и художественный вкус фотографа.

Корпус.
Корпус фотоаппарата не пропускает свет, имеет крепления для объектива и фотоспышки, удобную форму ручки для захвата и место для крепления к штативу. Внутрь корпуса помещается фотопленка, которая надежно закрыта светонепропускающей крышкой.


Фильмовой канал.
В нем пленка перематывается, останавливась на нужном для съемке кадре. Счетчик механически связан с фильмовым каналом, при прокрутке которого указывает на количество отснятых кадров. Существуют камеры с моторным приводом, которые позволяют делать съемку через последовательно заданный промежуток времени, а также вести скоростную съемку до нескольких кадров в секунду.


Видоискатель.
Оптический объектив через которое фотограф видит в рамке будущий кадр. Зачастую имеет дополнительные метки для определения положения объекта и некоторые шкалы настройки светка и контрастности.

Объектив.
Объектив - мощный оптический прибор, состоящий из нескольких линз, позволяющий делать изображения на различном расстоянии со сменой фокусировки. Объективы для профессиональной фотосъемки помимо линз состоят еще из зеркал. Стандартный объектив имеет расстояние фокусаокругленно равное диагонали кадра, угол 45 градусов. Фокусное расстояние широкоугольного объектива меньшее диагонали кадра служит для съемки в небольшом пространстве, угол до 100 градусов. для удаленных и панорамных объектов применяется телескопический объектив у которого фокусное расстояние гораздо больше диагонали кадра.

Диафрагма.

Устройство регулирующее яркость оптической картинки объекта фотографирования по отношению к его яркости. Наибольшее распространение получила ирисовая диафрагма, у которой световое отверстие образуется несколькими серповидными лепестками в виде дуг, при съемке лепестки сходятся или расходятся, уменьшая или увеличивая диаметр светового отверстия.

Затвор

Затвор фотоаппарата приоткрывает шторки для попадания света на пленку, затем свет начинает действовать на пленку, вступая в химическую реакцию. От продолжительности приоткрытия затвора зависит экспозиция кадра. Так для ночной съемки ставится более длительная выдержка, для съемке на солнце или скоростной съемке максимально короткая.





Дальнометр.

Устройство с помощью которого фотограф определяет расстояние до объекта съемки. нередко дальномер бывает совмещен для удобства с видоискателем.

Кнопка спуска.

Запускает процесс фотосъемки длящийся не более секунды. В одно мгновение срабатывает затвор, раскрываются лепестки диафрагмы, свет попадает на химический состав фотопленки и кадр запечатлен. В старых пленочных фотоаппаратах кнопка спуска основана на механическом приводе, в более современных фотоаппаратах кнопка спуска, как и остальные движущиеся элементы камеры на электроприводе


Катушка фотплёнки
Катушка на которую крепится фотопленка внутри корпуса фотоаппарата.По окончании кадров на пленке в механических моделях пользователь перематывал фотопленку в обратном направлении в ручную, в более современных фотоаппаратах пленка перематывалась по окончании с помощью электромоторного привода, работающего от пальчиковых батареек.


Фотовспышка.
Плохая освещенность объектов фотосъемки приводит к использованию фотоспышки. В профессиональной съемке к этому приходится прибегать только в неотлагательных случаях когда нет других приборов освещения экранов, ламп. Фотоспышка состоит из газорязрядной лампы в виде стеклянной трубки содержащей газ ксенон. При накапливании энергии вспышка заряжается, газ в стеклянной трубке ионизируется, затем мгновенно разряжается, создавая яркую вспышку при силе света свыше сотни тысяч свечей. При работе вспышки нередко отмечается эффект "красных глаз" у людей и животных. Это происходит потому, что при недостаточной освещенности помещения где проводится фотосъемка, глаза человека расширяются и при срабатывании вспышки зрачки не успевают сузиться, отражая слишком много света от глазного яблока. Для усранения эффекта "красных глаз" используется один из методов предварительного направления светового потока на глаза человека перед срабатыванием вспышки, что вызывает сужение зрачка и меньшим отражением от него света вспышки.

Устройство цифрового фотоаппарата


Принцип работы цифрового фотоаппарата на стадии прохождения света через линзу объектива тот же, что и у пленочного. Изображение преломляется через систему оптики, но сохраняется не на химическом элементе фотопленки аналоговым путем, а преобразуется в цифровую информацию на матрице от разрешающей способности которой и будет зависеть качество снимка. Затем перекодированное изображение в цифровом виде сохраняется на сменном носителе информации. Информацию в виде изображения можно редактировать, перезаписывать и отправлять на другие носители данных.

Корпус.

Корпус цифрового фотоаппарата имеет вид по аналогии с пленочным фотоаппаратом, но за счет отсутствия необходимости фильмового канала и места для катушки с пленкой, корпус современного цифрового фотоаппарата значительно тоньше обычного пленочного и имеет место для ЖК экрана, встроенного в корпус, либо выдвижного, и слоты для карт памяти.

Видоискатель. Меню. Настройки (ЖК экран) .

Жидкокристалический экран неотъемлимая часть цифрового фотоаппарата. Он имеет совмещенную функцию видоискателя, в котором можно приближать объект, видеть результат автофокусировки, выстраивать экспозицию по границам, а также использовать его в качестве экрана меню с настройками и опциями набора функций съемки.

Объектив.

В профессиональных цифровых фотоаппаратах объектив практически ничем не отличается от аналоговых фотокамер. Он также состоит из линз и набора зеркал и имеет те же механические функции. В любительских камерах объектив стал гораздо меньших форм и помимо оптического зума (приближение объекта) имеет встроенный цифровой зум, который способен многократно приблизить отдаленный объект.

Матрица сенсор.

Главный элемент цифровой фотокамеры небольшая пластина с проводниками которая формирует качество изображения, четкость которого и зависит от разрешающей способности матрицы.

Микропроцессор.

Отвечает за все функции работы цифровой камеры. Все рычаги управления камеры ведут к процессору в котором зашита программная оболочка (прошивка), которая отвечает за действия фотокамеры: работа видоискателя, автофокус, программные сцены съемки, настройки и функции, электрический привод выдвижного объектива, работа фотовспышки.

Стабилизатор изображений.

При покачивании камеры во время нажатия на спусковой завтор или при съемке с движущейся поверхности, например, с качающегося на волнах катера, изображение может получится размытое. Оптический стабилизатор практически не ухудшает качество полученной картинки за счет дополнительной оптики, которая компенсирует отклонения изображения при покачивании, оставляя изображение неподвижным перед матрицей. Схема работы цифрового стабилизатора изображения фотоаппарата при дрожании картинки заключается в условных поправках, вносимых при расчете картинки процессором, задействовав дополнительную треть пикселей на матрице, учавствующих только в коррекции изображения.

Носители информации.

Полученное изображение сохраняется в памяти фотоаппарата в виде информации на внутренней, либо внешней памяти. Фотоаппараты имеют разъемы для карт памяти SD, MMC, CF, XD-Picture и др., а также разъемы для подключения к другим источникам храненияинформации компьютеру, HDD сменным носителям и т.п.

Цифровая фототехника сильно поменяла представления в истории фотографии о том какое должно быть художественное фото. Если в прежние времена фотографу приходилось идти на различные ухищрения, чтобы получить интересный цвет или необычный фокус для определения жанра фотографии, то теперь есть целый набор примочек, включенных в программное обеспечение цифровой фотокамеры, коррекция размеров изображения, изменение цвета, создание рамки вокруг фото. Также любую отснятую цифровую фотографию можно подвергнуть редактированию в известных фоторедакторах на компьютере и легко установить в цифровую фоторамку, которые следом за пошаговым наступлением цифровых технологий становятся все более популярными для украшения интерьера чем-то новым и необычным.

За время своего существования фотография проникла буквально во все области человеческой деятельности. Для одних людей - это профессия, для других - просто развлечение, для третьих - верный помощник в работе. Фотография оказала огромное влияние на развитие современной культуры, науки и техники. В настоящее время фотография - одна из бурно развивающихся современных информационных технологий.

К фототоварам относят фотоаппараты, светочувствительные материалы, фотопринадлежности.

Современный фотоаппарат представляет собой электронный оптико-механический прибор для создания оптического (светового) изображения объекта на поверхности светочувствительного материала (фотопленки или электронно-оптического преобразователя).

Основными конструктивными узлами фотоаппарата являются корпус, объектив, диафрагма, затвор, видоискатель, фокусировочное и экспонометрическое устройство, электронная лампа-вспышка, индикаторное устройство, счетчик кадров.

Для регистрации и хранения светового изображения в пленочных фотоаппаратах используется фотопленка. В цифровых фотоаппаратах для регистрации изображения используется электронно-оптический преобразователь (матрица, состоящая из большого количества светочувствительных элементов-пикселей), а для хранения информации об изображении - флэш-память (энергонезависимое устройство хранения оцифрованных изображений).

Пиксель является наименьшим элементом цифрового изображения. Миллион пикселей называют мегапикселем. Пиксели реагируют на свет и создают электрический заряд, величина которого пропорциональна количеству попавшего света. Для формирования сигналов о цветном изображении, микроскопические элементы (пиксели) светочувствительной матрицы покрыты микросветофильтрами красного, зеленого и синего цветов и объединены в группы, что позволяет получить электронную копию цветного изображения.

Электрические сигналы считываются с пикселей, преобразуются в аналого-цифровом преобразователе в двоичные цифровые данные и записываются во флэш-память. Электронно-оптический преобразователь (ЭОП) характеризуется разрешающей способностью (в мегапикселях) и размером по диагонали (в дюймах). Разрешающая способность определяется произведением количества пикселей по горизонтали и вертикали. Например, обозначение 2048 х 1536 пикселей соответствует разрешению в 3,2 мегапикселя. Наиболее распространены матрицы с диагональю 1/2; 1/3; 1/4 дюйма.

Корпус является несущей частью фотоаппарата, в которой монтируются все узлы и механизмы фотоаппарата и размещается светочувствительный материал.

На передней панели корпуса находится объектив. Объектив может крепиться к корпусу жестко или быть съемным. В последнем случае крепление объектива может быть резьбовым или байонетным. За объективом пленочного фотоаппарата, со стороны задней панели корпуса, имеется кадровая рамка, просвет в которой называется кадровым окном. Кадровое окно определяет размеры поля изображения (формат кадра) на светочувствительном материале.

Объектив представляет собой систему оптических линз, заключенных в общую оправу и предназначенную для формирования светового изображения объекта съемки и проецирования его на поверхность светочувствительного материала. От свойств объектива, а также светочувствительного материала, в значительной степени зависит качество получаемого изображения. В оправу объектива вводятся диафрагма, механизмы фокусировки и изменения фокусного расстояния.

Диафрагма (рис.) предназначена для изменения величины светового отверстия объектива.

Рис. Устройство и принцип действия диафрагмы

С помощью диафрагмы регулируют освещенность светочувствительного материала и изменяют глубину резкости изображаемого пространства. Отверстие диафрагмы образуется несколькими серповидными лепестками (ламелями), расположенными симметрично вокруг оптической оси объектива.

В фотоаппаратах может применяться ручное и автоматическое управление диафрагмой.

Ручное управление диафрагмой осуществляется кольцом, расположенным на внешней поверхности оправы объектива, на котором нанесена шкала диафрагменных чисел. Ряд значений диафрагм нормирован числами: 1; 1,4; 2; 2,8; 4; 5,6; 8; 11; 16; 22. Переход от одного значения диафрагменного числа к соседнему изменяет количество проходящего через объектив света вдвое - пропорционально изменению площади светового отверстия.

Автоматическое управление диафрагмой осуществляется экспонометрическим устройством фотоаппарата в зависимости от условий съемки (яркости снимаемого объекта, светочувствительности фотопленки) и выдержки.

Фокусировочное устройство объектива предназначено для совмещения создаваемого объективом оптического изображения с плоскостью светочувствительного материала при различных расстояниях до объекта съемки.

Фокусировка объектива (наводка на резкость) осуществляется путем перемещения объектива или какой-либо его части вдоль его оптической оси. В современных фотоаппаратах фокусировка объектива возможна в пределах от фотографической бесконечности до некоторого минимального расстояния, называемого ближним пределом фокусировки. Ближний предел фокусировки зависит от величины максимального выдвижения объектива.

В фотоаппаратах может использоваться ручная и автоматизированная система фокусировки. В некоторых простейших компактных фотоаппаратах объективы не имеют механизма фокусировки. Такие объективы, получившие название фикс-фокус, имеют большую глубину резкости и сфокусированы на некоторое постоянное расстояние.

Механизм изменения фокусного расстояния объектива позволяет изменять угол поля зрения объектива и масштаб изображения на светочувствительном материале посредством изменения фокусного расстояния объектива. Механизмом изменения фокусного расстояния оснащаются объективы дорогих фотоаппаратов среднего и высокого класса.

Затвор представляет собой механизм фотоаппарата, автоматически обеспечивающий пропускание световых лучей к светочувствительному материалу в течение заданного промежутка времени (выдержки) при нажатии на кнопку затвора. Ряд числовых значений выдержек, автоматически устанавливаемых затвором, нормирован следующими числами (в секундах): 1/4000; 1/2000; 1/1000; 1/500; 1/250; 1/125; 1/60; 1/30; 1/15; 1/8; 1/4; 1/2; 1; 2; 3; 4. Различают модели фотоаппаратов с постоянной, ручной и автоматической установкой выдержки. По принципу действия затворы, применяемые в современных фотоаппаратах, подразделяются на электронно-механические, электронные и электронно-оптические.

Электронно-механический затвор состоит из световых заслонок, перекрывающих световой поток, электронного реле времени, отрабатывающего установленное время экспонирования, и электромагнитного привода, обеспечивающего перемещение световых заслонок. К электронно-механическим затворам относят центральные и щелевые затворы. В центральных затворах световые заслонки в виде тонких металлических лепестков открывают световое отверстие объектива от центра (от оптической оси) к краям, а закрывают в обратном направлении, подобно диафрагме (рис.)

Рис. Схема устройства и действия центрального затвора

Центральные затворы располагаются, как правило, между линзами объектива или непосредственно за объективом и применяются в компактных пленочных и цифровых фотоаппаратах, имеющих жестко встроенный несъемный объектив.

Особую группу центральных затворов представляют затворы-диафрагмы, у которых функции затвора и диафрагмы объединены в одном механизме с регулированием величины и длительности открытия светового отверстия. Они способны отрабатывать выдержки до 1/500 с.

Щелевые затворы (рис.) пропускают световой поток к светочувствительному материалу через щель, образованную двумя световыми заслонками в виде тканевых шторок или металлических ламелей. При срабатывании затвора, шторки (или две группы ламелей) перемещаются одна за другой, с определенным интервалом времени, вдоль или поперек кадрового окна. Одна из световых заслонок открывает кадровое окно, а другая - закрывает его.

Выдержка зависит от ширины щели. Щелевые затворы способны отрабатывать более короткие выдержки (в 1/1000 с и короче) и применяются в фотоаппаратах, имеющих съемный объектив.

Рис. Схема устройства щелевого затвора

Электронный затвор применяется в цифровых фотоаппаратах. Он представляет собой электронный переключатель, который включает (или выключает) ЭОП в определенный момент времени с одновременным считыванием зафиксированной электронной информации. Электронный затвор способен отработать выдержку в 1/4000 и даже 1/8000 с. Электронный затвор срабатывает бесшумно и без вибраций.

В некоторых цифровых фотоаппаратах наряду с электронным применяется электронно-механический или электронно-оптический затвор.

Электронно-оптический (жидкокристаллический) затвор представляет собой жидкий кристалл, расположенный между двумя параллельными стеклянными поляризованными пластинами, через который свет проходит на электронно-оптический преобразователь (ЭОП). При подаче напряжения через тонкое прозрачное электропроводное напыление к внутренней поверхности стеклянных пластин возникает электрическое поле, изменяющее на 90° плоскость поляризации жидкого кристалла и соответственно обеспечивающее его максимальную непрозрачность. Таким образом, путем подачи напряжения жидкокристаллический затвор закрывается, а при отсутствии напряжения (выключении) - открывается. Электронно-оптический затвор отличается простотой и надежностью, так как отсутствуют механические компоненты.

Видоискатель служит для визуальной компоновки кадра. Для правильного определения границ кадра необходимо, чтобы угловое поле зрения видоискателя соответствовало угловому полю зрения съемочного объектива, а оптическая ось видоискателя совпадала с оптической осью съемочного объектива.

При несовпадении оптической оси видоискателя с оптической осью съемочного объектива границы изображения, наблюдаемого в видоискателе, не совпадают с границами кадра на светочувствительном материале (явление параллакса). При фотографировании удаленных объектов параллакс незаметен, но возрастает по мере уменьшения дистанции съемки.

Современные фотоаппараты могут иметь телескопический, зеркальный (перископический) видоискатель или жидкокристаллическую панель.

Компактные фотоаппараты оснащаются телескопическим видоискателем, который располагается в корпусе фотоаппарата рядом с объективом.

Идентификационным признаком фотоаппаратов с телескопическим видоискателем является наличие на передней панели корпуса фотоаппарата окна видоискателя.

В зеркальных видоискателях (рис.) съемочный объектив является одновременно и объективом видоискателя. Такая схема видоискателя обеспечивает беспараллаксное визирование. Оптическое изображение объекта съемки, видимое в окуляре видоискателя и получаемое на светочувствительном материале, идентичны друг другу.

Рис. Схема устройства фотоаппарата с зеркальным видоискателем: а - с убирающимся зеркалом; б - с призмой-делителем

Фотоаппараты, имеющие зеркальный видоискатель, получили название зеркальных (SLR - Single Lens Reflex). Идентификационным признаком однообъективного зеркального фотоаппарата (видоискателя) является отсутствие на передней панели корпуса фотоаппарата окна видоискателя и призматическая форма верхней панели корпуса.

Экспонометрическое устройство в современных фотоаппаратах обеспечивает автоматическое или полуавтоматическое определение и установку экспозиционных параметров - выдержки и диафрагменного числа в зависимости от светочувствительности фотопленки и освещенности (яркости) объекта съемки.

Экспонометрическое устройство состоит из светоприемника, электронной системы управления, индикатора, а также исполнительных органов, управляющих работой затвора, диафрагмы объектива и согласующих работу затвора и лампы-вспышки. В качестве светоприемника в большинстве современных фотоаппаратов используют кремниевые фото-диоды. В компактных фотоаппаратах, светоприемник экспонометрического устройства располагается на передней панели корпуса, рядом с объективом.

В зеркальных фотоаппаратах высокого класса светоприемник размещают внутри корпуса фотоаппарата, за объективом, что позволяет автоматически учитывать реальное светопропускание объектива (реальную освещенность светочувствительного материала). Фотоаппараты с замером освещенности внутри корпуса за съемочным объективом имеют международное обозначение TTL или TEE.

Механизм транспортировки пленки служит для перемещения пленки на один кадр, точной ее установки перед объективом и обратной перемотки пленки в кассету после экспонирования. Механизм транспортировки пленки связан со счетчиком кадров, который предназначен для отсчета экспонированных или неэкспонированных кадров.

Фотовспышка предназначена для кратковременного освещения объекта съемки при фотографировании в условиях недостаточной естественной освещенности, съемке объекта против света, а также подсветки теневых участков объекта при ярком солнце.

Индикаторное устройство служит для индикации режимов съемки и контроля за работой фотоаппарата. В качестве индикаторных устройств в фотоаппаратах используются жидкокристаллические дисплеи (LCD - индикаторы), светодиоды и стрелочные индикаторы.

Впервые ощутив в своих руках фотоаппарат и попробовав сделать несколько кадров, у любого новичка возникает вполне логичный вопрос: «Как это работает?», «Из чего состоит современный фотоаппарат?». В этой статье мы постараемся как можно детальней описать устройство камеры и сделать это легко и интересно. Поехали!

Так из чего состоит цифровой фотоаппарат?

  • Тушка или как многие профессионалы говорят body (англ. «тело») – корпус, состоящий из пластика или сплава магния, не пропускает свет.
  • Байонет – к нему прикрепляют объективы.
  • Объектив – состоит из системы линз (1). С помощью него изображение объектов съемки проецируется на матрицу.
  • Диафрагма – это перегородка (2), которая находится внутри объектива, а также имеет вид лепестков. Они образуют отверстие, диаметр которого можно регулировать.
  • Зеркало (3) – важнейшая вещь. Оно направляет изображение, которое создает объектив, к фокусировочному экрану (6), а затем через пентапризму (7) в видоискатель (8).
  • Экран фокусировки – матовая пластина, с помощью которой фотограф видит изображение через видоискатель.
  • Пентапризма – элемент, который переворачивает изображение.
  • Видоискатель – своего рода «глазок», через который фотограф видит будущий снимок.
  • Сенсор – электронная матрица (5), которая, чувствуя свет, заменяет в устройстве зеркального фотоаппарата пленку.
  • Процессор – считывает и обрабатывает изображения, возникающие на матрице.
  • Карта памяти – бережно хранит наши фотографии.
  • Затвор – это механические шторки (4), которые находятся между сенсором и зеркалом фотокамеры. В момент съемки они временно открываются таким образом, чтобы свет, попал на матрицу.
  • Аккумулятор – питание камеры и всех ее элементов.
  • Штативное гнездо (11) – разъем для штатива.
  • «Горячий башмак» (10) – к нему подключается внешняя вспышка.
  • Дисплей (9) – для просмотра фотографий, а также для настройки необходимых параметров съемки.
  • Управление – различные кнопочки, колесики и диски для управления и настройки фотокамеры.

Мы перечислили далеко не все части, но лучше ограничится этим набором, дабы при разборе принципов действия в дальнейшем не запутаться.

Устройство цифрового фотоаппарата: принцип действия

Всем начинающим фотографам (особенно мальчикам) наверняка интересно, что происходит внутри фотоаппарата в тот момент, когда вы решаете сделать кадр и нажимаете на кнопку. А происходит следующее:

  1. При съемке в автоматическом режиме объектив самостоятельно фокусируется на предмете.
  2. Затем механический или оптический стабилизатор изображение делает свое дело, а именно – стабилизирует изображение.
  3. Опять же при съемке в авто-режиме, камера сама подбирает параметры: выдержку, диафрагму, ISO, а также баланс белого.
  4. После чего зеркало(3) поднимается.
  5. А затвор(4) открывается.
  6. Свет, который проходит через объектив, формирует изображение на матрице, которое потом считывается процессором и сохраняется в карту.
  7. Затвор закрыт.
  8. Зеркало опущено.

Из чего состоит объектив фотоаппарата

Сейчас существует столько различных видов и марок объективов, что разобраться в составе каждого в рамках небольшой информативной статьи просто не реально. Устройство объектива зеркального фотоаппарата может насчитывать разное количество оптических элементов или линз. Они могут соединяться друг с другом или же, напротив, разделяться небольшим пространством. В простых объективах обычно используют систему, которая может состоять от одной - до трех линз. Что касается дорогих качественных объективов, то количество линз в системе может быть около десятка и больше.

Устройство вспышки фотоаппарата

Самый главный элемент любой электронной вспышки – это импульсная ксеноновая лампочка. Это запаянная стеклянная трубка (дугообразная, спиральная, прямая или кольцевая), которая наполнена ксеноном. На концах трубки имеются впаянные электроды, снаружи располагается зажигательный электрод, который представляет собой полосочку мастики или отрезок проволоки, проводящей ток.

Вспышки бывают:

  • Встроенные – не особо мощные, дают плоское изображение, создают резкие контрастные тени. Не способны выделить структуры объекта съемки. Отлично подходят для использования при ярком естественном освещении, подсвечивают резкие тени. Но стоит отметить, что профессиональные фотографы не советуют использовать встроенную вспышку при съемке.
  • Закрепленные – мощнее, чем встроенные, также их можно настраивать как в ручном режиме, так и в автоматическом.
  • Не прикрепленные к фотоаппарату – обычно такие устанавливают на штатив. С помощью них можно изменять условия освещения, играть со светом.
  • Макровспышки – применяются для макросъемки. Выглядят как небольшое кольцо, которое устанавливается на объективе камеры.

Устройство затвора фотоаппарата

Как мы уже писали выше, затвор в фотоаппарате используется для того, чтобы перекрыть поток света, который проецирует объектив на матрицу или пленку. Открывая затвора на заданное время выдержки, количество света дозируется – так регулируют экспозицию.

Типы затворов:

  1. дисковой секторный затвор;
  2. затовры-жалюзи;
  3. центральный затвор;
  4. диафрагменный затвор;
  5. фокальный затвор.

Устройство матрицы фотоаппарата

Современная матрица представляет собой небольшую микросхему. Поверхность этой микросхемы составляет множество светочувствительных элементов, каждый из которых представляет собой самостоятельный светоприемник. Он преобразует свет в некий сигнал, который после обработки сохраняется на карте памяти. Снимок, который получает фотограф, состоит из комплекса записанных электронных сигналов с каждого светочувствительного элемента. Интересно, правда?

Устройство фотоаппарата зенит

Из чего состоит зеркальный фотоаппарат, мы уже выяснили, теперь пришел черед пленочной камеры «Зенит». Он состоит из:

  • объектива;
  • зеркала;
  • затвора;
  • фотопленки;
  • матового стекла;
  • конденсор (линза);
  • пентапризма или пентазеркало;
  • окуляр.

Конечно, мы перечислили далеко не все. Для того чтобы подробней узнать из чего состоит фотоаппарат (как цифровой, так и пленочный) вам необходимо записать в нашу , где опытный преподаватель расскажет вам о каждой гаечке и продемонстрирует все на наглядном примере.

Устройство зеркальной камеры .

Как могут видеть мир? Что делает снимки резкими в наших камерах? Как вообще работает камера и фиксирует на пленку то что мы хотим сфотографировать? Конечно это вопросы утрированные. Камеры не могут видеть, камеры лишь отображают картинку через механизм фокусировки, которую в свою очередь уже видим мы. Так что давайте разберемся, что есть механизм фокусировки , как работают , каким образом происходит фокусировка на объекте съемки, какие камеры бывают по типу фокусировки и внутреннего устройства, разберемся в устройстве фотоаппаратов , и определим в чем плюсы, и в чем минусы, того или иного варианта устройства фотоаппарата .

Механизм фокусировки, это некое устройство в фотокамере , позволяющее нам правильно определять расстояние до снимаемого нами на камеру объекта. Этот механизм позволяет нам с вами видеть и в последствии фиксировать фотографируемую сцену в резкости на фотоноситель. Я конечно понимаю, что понятие резкость может быть весьма, и весьма, относительным. Тем не менее, при разных установках параметров съемки, именно это устройство в камере дает нам возможность:

    Определить расстояние до объекта

    Оценить масштабность сцены

    Задать правильные параметры съемки, чтоб не пролететь в ГРИП-е (для тех тко не знает что такое ГРИП, ждите следующий выпусков, мы будем рассматривать и это понятие.)

Одним из самых распространенных на сегодняшний день вариантов устройств фотокамер , это механизм зеркальной камеры(или правильней сказать устройство зеркальной камеры) . Да, да, наших с вами зеркалок, которые мы так любим и лелеем.

Итак, что есть зеркальный фотоаппарат? Это в первую очередь, фото камера, в которой объектив видоискателя, и объектив для захвата изображения один и тот же. Ниже я выкладываю рисунок, посредством которого, очень легко понять, по какому принципу устроены все зеркальные . При всем при этом, стоит отметить так же и тот факт, что с момента создания первого устройство фотоаппарата , его принципиальная схема ни как не изменилась. Свет проходит через отверстие, масштабируется и попадает на светочувствительный элемент внутри устройства фотоаппарата . Все блоки пропускающие свет к фотоносителю остались теми же. Единственным исключением стала замена фотопленки на цифровую фотоматрицу.

Итак по пунктам:

    Свет проходит через объектив устройства фотокамеры.

    После диафрагмы свет достигает зеркала, где по закону отражения уходит дальше.

    От зеркала свет отражаясь попадает через информационный экран (хотя он бывает не во всех зеркалках) в пентапризму.

    В пентапризме, отразившись о ее грани свет находит выход и попадает на линзу видоискателя, где мы собственно его видим нашим глазом.

(а вот вам картинка для прицельно общего представления устройства фотоаппарата зеркального )

Ну а теперь немного отличий пленочного и цифрового устройства зеркальных фотоаппаратов :

    Первое и самое что называется на виду лежащее, это носитель. В цифровой камере, это матрица электронная, а в пленочной — соответственно пленка.

    Второе, на сегодняшний день не настолько явное, но имеющее место быть в большинстве случаев, это площадь фотоносителя. В большинстве любительских и продвинутых, но не профессиональных камер, площадь матрицы существенно меньше, чем площадь пленочного кадра.

    Цифровой фотоаппарат позволяет после сделанного снимка, сразу его поглядеть и оценить, устройство пленочной камеры - зеркальной, этого сделать не позволяет, поскольку пленка это лишь носитель и одна из нескольких ступеней получения изображения кадра.

    Еще одним явным отличием, назову то, что большинство пленочных моделей зеркальных камер, это исключительно механические устройства, а вот камера цифровая работает за счет электропитания.

    Пункт из опыта съемки, на пленочный носитель, кадр лучше переэкспонировать, а вот для цифрового фотоаппарата, лучше будет недоэкспонированный кадр.

Ну что же, по устройству зеркальных камер пожалуй и все. В следующей части статьи мы рассмотрим устройство дальномерных камер.

P.S. Друзья, если статья понравилась вам или стала вам полезной. Сделайте и мне взаимное добро. Поделитесь ссылкой на статью на своих страничках «Вконтакте», «Одноклассниках», «Facebook», «Tweeter» и других страничках. Для этого нужно всего лишь нажать кнопки внизу страницы и следовать простым шагам инструкции. Так же приглашаю вас подписаться на мою рассылку, тогда вы точно не пропустите следующую, надеюсь интересную и полезную, статью. Форма подписки находится в верхнем правом углу страницы.