Направление вектора скорости при криволинейном движении. Скорость и ускорение при криволинейном движении

  • 30.09.2019

С прямолинейным движением мы более или менее научились работать на предыдущих уроках, а именно, решать главную задачу механики для такого вида движения.

Однако ясно, что в реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца, и даже траектория движения ваших глаз, следящих сейчас за этим конспектом.

Вопросу о том, как решается главная задача механики в случае криволинейного движения, и будет посвящен этот урок.

Для начала определимся, какие принципиальные отличия есть у криволинейного движения (Рис. 1) относительно прямолинейного, и к чему эти отличия приводят.

Рис. 1. Траектория криволинейного движения

Поговорим о том, как удобно описывать движение тела при криволинейном движении.

Можно разбить движение на отдельные участки, на каждом из которых движение можно считать прямолинейным (Рис. 2).

Рис. 2. Разбиение криволинейного движения на поступательные движения

Однако более удобным является следующий подход. Мы представим это движение как совокупность нескольких движений по дугам окружностей (см. Рис. 3.). Обратите внимание, что таких разбиений меньше, чем в предыдущем случае, кроме того, движение по окружности является криволинейным. Кроме того, примеров движения по окружности в природе встречается очень часто. Из этого можно сделать вывод:

Для того чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Рис. 3. Разбиение криволинейного движения на движения по дугам окружностей

Итак, начнем изучение криволинейного движения с изучения равномерного движения по окружности. Давайте разберемся, каковы принципиальные отличия криволинейного движения от прямолинейного. Для начала вспомним, что в девятом классе мы изучили тот факт, что скорость тела при движении по окружности направлена по касательной к траектории. Кстати, этот факт вы можете пронаблюдать на опыте, если посмотрите, как движутся искры при использовании точильного камня.

Рассмотрим движение тела по окружности (Рис. 4).

Рис. 4. Скорость тела при движении по окружности

Обратите внимание, что в данном случае модуль скорости тела в точке А равен модулю скорости тела в точке B.

Однако, вектор не равен вектору . Итак, у нас появляется вектор разности скоростей (см. Рис. 5).

Рис. 5. Разность скоростей в точках A и B.

Причем изменение скорости произошло через некоторое время . Таким образом, мы получаем знакомую комбинацию:

,

это не что иное, как изменение скорости за промежуток времени, или ускорение тела. Можно сделать очень важный вывод:

Движение по криволинейной траектории является ускоренным. Природа этого ускорения – непрерывное изменение направление вектора скорости.

Еще раз отметим, что даже если говорится, что тело равномерно движется по окружности, имеется в виду, что модуль скорости тела не изменяется, однако такое движение всегда является ускоренным, поскольку изменяется направление скорости.

В девятом классе вы изучали, чему равно такое ускорение и как оно направлено (см. Рис. 6). Центростремительное ускорение всегда направлено к центру окружности, по которой движется тело.

Рис. 6.Центростремительное ускорение

Модуль центростремительного ускорения может быть рассчитан по формуле

Переходим к описанию равномерного движения тела по окружности. Договоримся, что скорость , которой вы пользовались по время описания поступательного движения, теперь будет называться линейной скоростью. И под линейной скоростью мы будем понимать мгновенную скорость в точке траектории вращающегося тела.

Рис. 7. Движение точек диска

Рассмотрим диск, который для определенности вращается по часовой стрелке. На его радиусе отметим две точки A и B. И рассмотрим их движение. За некоторое время эти точки переместятся по дугам окружности и станут точками A’ и B’. Очевидно, что точка А совершила большее перемещение, чем точка B. Из этого можно сделать вывод, что чем дальше от оси вращения находится точка, тем с большей линейной скоростью она движется.

Однако, если внимательно посмотреть на точки А и В, можно сказать, что неизменным остался угол , на который они повернулись относительно оси вращения О. Именно угловые характеристики мы и будем использовать для описания движения по окружности. Отметим, что для описания движения по окружности, можно использовать угловые характеристики. Прежде всего, напомним понятие о радианной мере углов.

Угол в 1 радиан – это такой центральный угол, длина дуги которого равна радиусу окружности.

Таким образом, легко заметить, что например угол в равен радиан. И, соответственно, можно перевести любой угол, заданный в градусах, в радианы, умножив его на и поделив на . Угол поворота при вращательном движении аналогичен перемещению при поступательном движении. Заметим, что радиан – это безразмерная величина:

поэтому обозначение «рад» часто опускают.

Начнем рассмотрение движения по окружности с самого простого случая – равномерного движения по окружности. Напомним, что равномерным поступательным движением называется движение, при котором за любые равные промежутки времени тело совершает одинаковые перемещения. Аналогично,

Равномерным движением по окружности называется движение, при котором за любые равные промежутки времени тело поворачивается на одинаковые углы.

Аналогично понятию линейной скорости вводится понятие угловой скорости.

Угловой скоростью называется физическая величина, равная отношению угла, на который повернулось тело ко времени, за которое произошел этот поворот.

Измеряется угловая скорость в радианах в секунду, или просто в обратных секундах.

Найдем связь между угловой скоростью вращения точки и линейной скоростью этой точки.

Рис. 9. Связь между угловой и линейной скоростью

Точка А проходит при вращении дугу длиной S, поворачиваясь при этом на угол φ. Из определения радианной меры угла можно записать, что

Разделим левую и правую части равенства на промежуток времени , за который было совершено перемещение, затем воспользуемся определением угловой и линейной скоростей

.

Обратим внимание, что чем дальше точка находится от оси вращения, тем выше ее угловая и линейная скорость. А точки, расположенные на самой оси вращения, неподвижны. Примером этого может служить карусель: чем ближе вы находитесь к центру карусели, тем легче вам на ней удержаться.

Вспомним, что ранее мы вводили понятия периода и частоты вращения.

Период вращения – время одного полного оборота. Период вращения обозначается буквой и измеряется в секундах в системе СИ:

Частота вращения – число оборотов в единицу времени. Частота обозначается буквой и измеряется в обратных секундах:

Они связаны соотношением:

Существует связь между угловой скоростью и частотой вращения тела. Если вспомнить, что полный оборот равен , легко увидеть, что угловая скорость:

Кроме того, если вспомнить, каким образом мы определили понятие радиана, станет ясно, как связать линейную скорость тела с угловой:

.

Запишем также связь между центростремительным ускорением и этими величинами:

.

Таким образом, мы знаем связь между всеми характеристиками равномерного движения по окружности.

Подытожим. На этом уроке мы начали описывать криволинейное движение. Мы поняли, каким образом можно связать криволинейное движение с движением по окружности. Движение по окружности всегда является ускоренным, а наличие ускорения обуславливает тот факт, что скорость всегда меняет свое направление. Такое ускорение называется центростремительным. Наконец, мы вспомнили некоторые характеристики движения по окружности (линейную скорость, угловую скорость, период и частоту вращения), и нашли соотношения между ними.

Список литературы:

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. Физика 10. – М.: Просвещение, 2008.
  2. А. П. Рымкевич. Физика. Задачник 10-11. – М.: Дрофа, 2006.
  3. О. Я. Савченко. Задачи по физике. – М.: Наука, 1988.
  4. А. В. Пёрышкин, В. В. Крауклис. Курс физики. Т. 1. – М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Энциклопедия ().
  2. Аyp.ru ().
  3. Википедия ().

Домашнее задание:

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 1 ГИА и вопросам А1, А2 ЕГЭ.

  1. Задачи 92, 94, 98, 106, 110 сб. задач А. П. Рымкевич изд. 10 ()
  2. Вычислите угловую скорость движения минутной, секундной и часовой стрелок часов. Вычислите центростремительное ускорение, действующее на кончики этих стрелок, если радиус каждой из них равен одному метру.
  3. Рассмотрите следующие вопросы и ответы на них:
  4. Вопрос: Есть ли на поверхности Земли точки, в которых угловая скорость, связанная с суточным вращением Земли, равна нулю?

    Ответ: Есть. Такими точками являются географические полюсы Земли. Скорость в этих точках равна нулю, потому что в этих точках вы будете находиться на оси вращения.

В зависимости от формы траектории, движение делится на прямолинейное и криволинейное. В реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца движение планет, конца стрелки часов по циферблату и т.д.

Рисунок 1. Траектория и перемещение при криволинейном движении

Определение

Криволинейное движение -- это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). При движении по криволинейной траектории вектор перемещения $\overrightarrow{s}$ направлен по хорде (рис. 1), а l -- длина траектории. Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 2).

Рисунок 2. Мгновенная скорость при криволинейном движении

Однако более удобным является следующий подход. Можно представить это движение как совокупность нескольких движений по дугам окружностей (см. рис. 4.). Таких разбиений получится меньше, чем в предыдущем случае, кроме того, движение по окружности само является криволинейным.

Рисунок 4. Разбиение криволинейного движения на движения по дугам окружностей

Вывод

Для того, чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Задачей исследования криволинейного движения материальной точки является составление кинематического уравнения, описывающего это движение и позволяющего по заданным начальным условиям определить все характеристики этого движения.

6. Криволинейное движение. Угловое перемещение, угловые скорость и ускорение тела. Путь и перемещение при криволинейном движении тела.

Криволинейное движение – это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д. В общем случае скорость при криволинейном движении изменяется по величине и по направлению.

Криволинейное движение материальной точки считается равномерным движением, если модульскорости постоянен (например, равномерное движение по окружности), и равноускоренным, если модуль и направление скорости изменяется (например, движение тела, брошенного под углом к горизонту).

Рис. 1.19. Траектория и вектор перемещения при криволинейном движении.

При движении по криволинейной траектории вектор перемещения направлен по хорде (рис. 1.19), аl – длина траектории . Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 1.20).

Рис. 1.20. Мгновенная скорость при криволинейном движении.

Криволинейное движение – это всегда ускоренное движение. То есть ускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости. Изменение величины скорости за единицу времени – это тангенциальное ускорение :

или

Где v τ , v 0 – величины скоростей в момент времени t 0 + Δt и t 0 соответственно.

Тангенциальное ускорение в данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

Нормальное ускорение - это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Центростремительное ускорение – это нормальное ускорение при равномерном движении по окружности.

Полное ускорение при равнопеременном криволинейном движении тела равно:

Движение тела по криволинейной траектории можно приближённо представить как движение по дугам некоторых окружностей (рис. 1.21).

Рис. 1.21. Движение тела при криволинейном движении.

Криволинейное движение

Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение – это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции v x и v y ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времениt определяется по формулам

Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением где r – радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих:

Нормальное (центростремительное) ускорение, направлено к центру кривизны траектории и характеризует изменение скорости по направлению:

v – мгновенное значение скорости, r – радиус кривизна траектории в данной точке.

Тангенциальное (касательное) ускорение, направлено по касательной к траектории и характеризует изменение скорости по модулю.

Полное ускорение, с которым движется материальная точка, равно:

Кроме центростремительного ускорения, важнейшими характе­ристиками равномерного движения по окружности являются период и частота обращения.

Период обращения - это время, за которое тело совершается один оборот.

Обозначается период буквой Т (с) и определяется по формуле:

где t - время обращения, п - число оборотов, совершенных за это время.

Частота обращения - это величина, численно равная числу оборотов, совершенных за единицу времени.

Обозначается частота греческой буквой (ню) и находится по формуле:

Измеряется частота в 1/с.

Период и частота - величины взаимно обратные:

Если тело, двигаясь по окружности со скоростью v, делает один оборот, то пройденный этим телом путь можно найти, умножив ско­рость v на время одного оборота:

l = vT. С другой стороны, этот путь равен длине окружности 2πr . Поэтому

vT = r,

где w (с -1) - угловая скорость.

При неизменной частоте обращения центростремительное ускорение прямо пропорционально расстоянию от движущейся частицы до центра вращения.

Угловая скорость (w ) – величина, равная отношению угла поворота радиуса, на котором находится вращающаяся точка, к промежутку времени, за который произошел этот поворот:

.

Связь между линейной и угловой скоростями:

Движение тела можно считать известным лишь тогда, когда известно, как движется каждая его точка. Самое простое движение твердых тел – поступательное. Поступательным называется движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается параллельно самой себе.

Мы знаем, что при прямолинейном движении направление вектора скорости всегда совпадает с направлением перемещения. Что можно сказать о направлении скорости и перемещения при криволинейном движении? Чтобы ответить на этот вопрос, мы воспользуемся тем же приемом, которым пользовались в предыдущей главе при изучении мгновенной скорости прямолинейного движения.

На рисунке 56 представлена некоторая криволинейная траектория. Допустим, что тело движется по ней из точки А в точку В.

При этом пройденный телом путь - это дуга А В, а его перемещение это вектор Конечно, нельзя считать, что скорость тела во время движения направлена вдоль вектора перемещения. Проведем между точками А и В ряд хорд (рис. 57) и представим себе, что движение тела происходит именно по этим хордам. На каждой из них тело движется прямолинейно и вектор скорости направлен вдоль хорды.

Сделаем теперь наши прямолинейные участки (хорды) более короткими (рис. 58). По-прежнему на каждом из них вектор скорости направлен вдоль хорды. Но видно, что ломаная линия на рисунке 58 уже более похожа на плавную кривую.

Ясно поэтому, что, продолжая уменьшать длину прямолинейных участков, мы их как бы стянем в точки и ломаная линия превратится в плавную кривую. Скорость же в каждой точке этой кривой будет направлена но касательной к кривой в этой точке (рис. 59).

Скорость движения тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке.

В том, что скорость точки при криволинейном движении действительно направлена по касательной, убеждает нас, например, наблюдение за работой гочнла (рис. 60). Если прижать к вращающемуся точильному камню концы стального прутка, то раскаленные частицы, отрывающиеся от камня, будут видны в виде искр. Эти частицы летят с той скоростью, которой

они обладали в момент отрыва от камня. Хорошо видно, что направление вылета искр всегда совпадает с касательной к окружности в той точке, где пруток касается камня. По касательной к окружности движутся и брызги от колес буксующего автомобиля (рис. 61).

Таким образом, мгновенная скорость тела в разных точках криволинейной траектории имеет различные направления, как это показано на рисунке 62. Модуль же скорости может быть во всех точках траектории одинаковым (см. рис. 62) или изменяться от точки к точке, от одного момента времени к другому (рис. 63).

В зависимости от формы траектории, движение делится на прямолинейное и криволинейное. В реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца движение планет, конца стрелки часов по циферблату и т.д.

Рисунок 1. Траектория и перемещение при криволинейном движении

Определение

Криволинейное движение -- это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). При движении по криволинейной траектории вектор перемещения $\overrightarrow{s}$ направлен по хорде (рис. 1), а l -- длина траектории. Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 2).

Рисунок 2. Мгновенная скорость при криволинейном движении

Однако более удобным является следующий подход. Можно представить это движение как совокупность нескольких движений по дугам окружностей (см. рис. 4.). Таких разбиений получится меньше, чем в предыдущем случае, кроме того, движение по окружности само является криволинейным.

Рисунок 4. Разбиение криволинейного движения на движения по дугам окружностей

Вывод

Для того, чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Задачей исследования криволинейного движения материальной точки является составление кинематического уравнения, описывающего это движение и позволяющего по заданным начальным условиям определить все характеристики этого движения.