Неравномерное движение. Средняя скорость

  • 30.09.2019

Для того, чтобы охарактеризовать насколько быстро изменяется в пространстве положение движущегося тела, используют специальное понятие скорость.

Средней скоростью тела на данном участке траектории называется отношение пройденного пути ко времени движения:

(3.1)
Если на всех участках траектории средняя скорость одинакова, то движение называется равномерным.

Вопрос о скорости бега является важным в спортивной биомеханике. Известно, что скорость бега на определенную дистанцию зависит от величины этой дистанции. Бегун может поддерживать максимальную скорость только в течение ограниченного времени. Средняя скорость стайеров обычно меньше, чем спринтеров. На рис. 3.8. показана зависимость средней скорости (V) от длины дистанции (S).

Рис. 3.8. Зависимость средней скорости бега от длины дистанции
График зависимости проведен через точки, соответствующие средним скоростям для всех рекордных результатов у мужчин на дистанциях от 50 до 2000 м. Средняя скорость растет с увеличением дистанции до 200 м, а затем убывает.

В табл. 3.1 приведены мировые рекорды скорости.

Для удобства проведения вычислений среднюю скорость можно записать и через изменение координат тела. При прямолинейном движении пройденный путь равен разности координат конечной и начальной точек. Так, если в момент времени t 0 тело находилось в точке с координатой x 0 , а в момент времени t 1 - в точке с координатой x 1 , то пройденный путь Δх = х 1 - х 0 , а время движения Δ t = t 1 - t 0 (в физике и математике принято использовать символ Δ для обозначения разности однотипных величин или для обозначения очень маленьких интервалов). В этом случае

^ Таблица 3.1

Мировые спортивные рекорды


Вид состязаний и дистанция

Мужчины

Женщины


средняя скорость, м/с

время, показанное на дистанции

средняя скорость, м/с

Бег

100 м


9,83с

10,16

10,49 с

9,53

200 м

19,72 с

10,14

21,34 с

9,37

400м

43,29 с

9,24

47,60 с

8,40

800м

1 мин 41,73 с

7,86

1 мин 53,28 с

7,06

1500м

3 мин 29,46 с

7,16

3 мин 52,47 с

6,46

5000 м

12 мин 58,39 с

6,42

14 мин 37,33 с

5,70

10000 м

27 мин 13,81 с

6,12

30 мин 13,75 с

5,51

Марафон (42 км 195 м)

2 ч 6 мин 50 с

5,5

2 ч 21 мин 0,6 с

5,0

Бег на коньках

36,45 с

13,72

39,10 с

12,78

1500м

1 мин 52,06 с

13,39

1 мин 59,30 с

12,57

5000м

6 мин 43,59 с

12,38

7 мин 14,13 с

11,35

10000 м

13 мин 48,20 с

12,07

Плавание

100 м (вольный стиль)


48,74 с

2,05

54,79 с

1,83

200 м (вольный стиль)

1 мин 47,25 с

1,86

1 мин 57,55 с

1,70

400 м (вольный стиль)

3 мин 46,95 с

1,76

4 мин 3,85 с

1,64

100 м (брасс)

1 мин 1,65 с

1,62

1 мин 7,91 с

1,47

200 м (брасс)

2 мин 13,34 с

1,50

2 мин 26,71 с

1,36

100 м (баттерфляй)

52,84 с

1,89

57,93 с

1,73

200 м (баттерфляй)

1 мин 56,24 с

1,72

2 мин 5,96 с

1,59

В общем случае средние скорости на различных участках пути могут отличаться. На рис. 3.9 представлены координаты падающего тела, моменты времени, в которые тело проходит через эти точки, а также средние скорости для выделенных интервалов.

Рис. 3.9. Зависимость средней скорости от участка пути
Из данных, приведенных на рис. 3.9 видно, что средняя скорость на всем пути (от 0 м до 5 м) равна

Средняя скорость на интервале от 2 м до 3 м равна

Движение, при котором средняя скорость изменяется, называется неравномерным.

Мы вычисляли среднюю скорость в окрестности одной и той же точки х = 2,5 м. На рис. 3.9 видно, что по мере уменьшения интервала, по которому проводятся вычисления, средняя скорость стремится к некоторому пределу (в нашем случае это 7 м/с). Этот предел называется мгновенной скоростью или скоростью в данной точке траектории.

Мгновенной скоростью движения, или скоростью в данной точке траектории называется предел, к которому стремится отношение перемещения тела в окрестности этой точки ко времени при неограниченном уменьшении интервала:

Размерность скорости в СИ - м/с.

Часто скорость указывают в других единицах (например, в км/ч). При необходимости такие значения можно перевести в СИ. Например, 54 км/ч = 54000 м/3600 с =15 м/с.

Для одномерного случая мгновенная скорость равна производной от координаты тела по времени:

При равномерном движении величины средней и мгновенной скорости совпадают и остаются неизменными.

Мгновенная скорость - величина векторная. Направление вектора мгновенной скорости показано на рис. 3.10.

Рис. 3.10. Направление вектора мгновенной скорости
Во время забега мгновенная скорость бегуна меняется. Особенно существенны такие изменения в спринте. На рис. 3.11 приводится пример такого изменения для дистанции 200 м.

Бегун начинает движение из состояния покоя и разгоняется, пока не достигнет максимальной скорости. Для бегуна-мужчины время ускорения приблизительно 2 с, а максимальная скорость приближается к 10,5 м/с. Средняя скорость на всей дистанции меньше этого значения.


Рис. 3.11. Зависимость мгновенной скорости от времени бега для дистанции 200 м, мужчины
Причина того, что бегун не может долго поддерживать свою максимальную скорость движения, состоит в том, что он начинает испытывать недостаток кислорода. Тело содержит кислород, запасенный в мышцах, а в дальнейшем получает его при дыхании. Поэтому спринтер может поддерживать свою максимальную скорость только до тех пор, пока не израсходует запас кислорода. Это кислородное истощение наступает на дистанции около 300 м. Следовательно, для больших дистанций бегун должен ограничивать себя скоростью меньше максимальной. Чем длиннее дистанция, тем меньше должна быть скорость, чтобы кислорода хватило на весь забег. Только спринтеры бегут на максимальной скорости всю дистанцию.

На соревнованиях бегун обычно стремиться либо победить соперника, либо установить рекорд. От этого зависит стратегия забега. При установлении рекорда оптимальной стратегией будет та, при которой выбирается скорость, соответствующая полному истощению запаса кислорода к моменту пересечения финиша.

В спорте используются специальные временные характеристики.

Момент времени (t) - это временная мера положения точки, тела или системы. Момент времени определяют промежутком времени до него от начала отсчета.

Моментами времени обозначают, например, начало и окончание движения или какой-либо его части (фазы). По моментам времени определяют длительность движения.

Длительность движения (Δt) - это его временная мера, которая измеряется разностью моментов времени окончания и начала движения:

Δt = t кон - t нач .

Длительность движения представляет собой количество времени, прошедшее между двумя ограничивающими его моментами времени. Сами моменты длительности не имеют. Зная путь точки и длительность ее движения, можно определять ее среднюю скорость.

Темп движения (N) - это временная мера повторности движений. Он измеряется количеством движений, повторяющихся в единицу времени (частота движений):

В повторных движениях одинаковой длительности темп характеризует их протекание во времени. Темп - величина, обратная длительности движений. Чем больше длительность каждого движения, тем меньше темп, и наоборот.

Ритм движений - это временная мера соотношения частей движений. Он определяется по соотношению промежутков времени - длительностей частей движений: Δt 2-1: Δt 2-3: Δt 4- 3 ...

Различный ритм движений для лыжников при скользящем шаге (для пяти фаз шага) показан на рис. 3.12.

Рис. 3.12. Различный ритм в скользящем шаге на лыжах: а) у высококвалифицированных лыжников;

б) у сильнейших лыжников мира;

фазы /-/// - скольжение, фазы скольжения,

фазы IV- V - стояние лыжи

Быстрота - это темп, в котором преодолевается расстояние без учета направления.

Быстрота - скалярная величина. Пусть между двумя пунктами при движении по одному шоссе одновременно движутся автомобилист, мотоциклист, велосипедист, бегун. У всех четверых одинаковы траектории, пути, перемещения. Однако их движение отличается быстротой (стремительностью), для характеристики которой и вводится понятие «скорость».

Изменяются ее координаты. Координаты могут изменяться быстро или медленно. Физическая величина, которая характеризует быстроту изменения координаты, называется скоростью.

Пример

Средняя скорость -- это вектор ная величина, численно равная перемещению в единицу времени, и сонаправленная с вектором перемещения:$\left\langle v\right\rangle =\frac{\triangle r}{\triangle t}$ ; $\left\langle v\right\rangle \uparrow \uparrow \triangle r$

Рисунок 1. Средняя скорость сонаправлена перемещению

Mодуль средней скорости по пути равен: $\left\langle v\right\rangle =\frac{S}{\triangle t}$

Мгновенная скорость дает точную информацию о движении в определенный момент времени. Выражение «скорость тела в данный момент времени» с точки зрения физики не является корректным. Однако понятие мгновенной скорости очень удобно в математических расчетах, и им постоянно пользуются.

Мгновенная скорость (или просто скорость) есть предел, к которому стремится средняя скорость $\left\langle v\right\rangle $ при стремлении промежутка времени $\triangle t$ к нулю:

$v={\mathop{lim}_{\triangle t} \frac{\triangle r}{\triangle t}\ }=\frac{dr}{dt}=\dot{r}$ (1)

Вектор $v$ направлен по касательной к криволинейной траектории, так как бесконечно малое (элементарное) перемещение dr совпадает с бесконечно малым элементом траектории ds.

Рисунок 2. Вектор мгновенной скорости $v$

В декартовых координатах уравнение (1) эквивалентно трем уравнениям

$\left\{ \begin{array}{c} v_x=\frac{dx}{dt}=\dot{x} \\ v_y=\frac{dy}{dt}=\dot{y} \\ v_z=\frac{dz}{dt}=\dot{z} \end{array} \right.$ (2)

Модуль вектора $v$ в этом случае равен:

$v=\left|v\right|=\sqrt{v^2_x+v^2_y+v^2_z}=\sqrt{x^2+y^2+z^2}$ (3)

Переход от декартовых прямоугольных координат к криволинейным осуществляется по правилам дифференцирования сложных функций. Пусть радиус-вектор r есть функция криволинейных координат: $r=r\left(q_1,q_2,q_3\right)\ $. Тогда скорость $v=\frac{dr}{dt}=\sum^3_{i=1}{\frac{\partial r}{\partial q_i}\frac{\partial q_i}{\partial t}}=\sum^3_{i=1}{\frac{\partial r}{\partial q_i}}\dot{q_i}$

Рисунок 3. Перемещение и мгновенная скорость в системах криволинейных координат

В сферических координатах, полагая $q_1=r;\ \ q_2=\varphi ;\ \ q_3=\theta $, получаем представление $v$ в следующий форме:

$v=v_re_r+v_{\varphi }e_{\varphi }+v_{\theta }e_{\theta }$, где $v_r=\dot{r};\ \ v_{\varphi }=r\dot{\varphi }sin\theta ;;\ \ v_{\theta }=r\dot{\theta }\ ;;$ \[\dot{r}=\frac{dr}{dt};;\ \ \dot{\varphi }=\frac{d\varphi }{dt};;\ \ \dot{\theta }=\frac{d\theta }{dt}; v=r\sqrt{1+{\varphi }^2sin^2\theta +{\theta }^2}\]

Мгновенная скорость - это значение производной от функции перемещения по времени в заданный момент времени, и связана с элементарным перемещением следующим соотношением: $dr=v\left(t\right)dt$

Задача 1

Закон движения точки по прямой: $x\left(t\right)=0,15t^2-2t+8$. Найти мгновенную скорость точки через 10 секунд после начала движения.

Мгновенная скорость точки -- это первая производная радиус-вектора по времени. Поэтому для мгновенной скорости можно записать:

Ответ: Через 10 с после начала движения мгновенная скорость точки 1 м/с.

Задача 2

Движение материальной точки задано уравнением~ $x=4t-0,05t^2$. Определить момент времени $t_{ост.}$, в который точка остановится, и среднюю путевую скорость $\left\langle v\right\rangle $.

Найдем уравнение мгновенной скорости: $v\left(t\right)=\dot{x}\left(t\right)=4-0,1t$

Ответ: Точка остановится через 40 секунд после начала движения. Средняя скорость её движения 0,1 м/с.

К примеру, автомобиль, который трогается с места, движется ускоренно, так как наращивает скорость движения. В точке начала движения скорость автомобиля равняется нулю. Начав движение, автомобиль разгоняется до некоторой скорости. При необходимости затормозить, автомобиль не сможет остановиться мгновенно, а за какое-то время. То есть скорость автомобиля будет стремиться к нулю - автомобиль начнет двигаться замедленно до тех пор, пока не остановится полностью. Но физика не имеет термина «замедление». Если тело двигается, уменьшая скорость, этот процесс тоже называется ускорением , но со знаком «-».

Средним ускорением называется отношение изменения скорости к промежутку времени, за который это изменении произошло. Вычисляют среднее ускорение при помощи формулы:

где - это . Направление вектора ускорения такое же, как у направления изменения скорости Δ = - 0

где 0 является начальной скоростью. В момент времени t 1 (см. рис. ниже) у тела 0 . В момент времени t 2 тело имеет скорость . Исходя из правила вычитания векторов, определим вектор изменения скорости Δ = - 0 . Отсюда вычисляем ускорение:

.

В системе СИ единицей ускорения называется 1 метр в секунду за секунду (либо метр на секунду в квадрате):

.

Метр на секунду в квадрате - это ускорение прямолинейно движущейся точки, при котором за 1 с скорость этой точки растет на 1 м/с. Другими словами, ускорение определяет степень изменения скорости тела за 1 с. К примеру, если ускорение составляет 5 м/с 2 , значит, скорость тела ежесекундно растет на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени - это физическая величина , которая равна пределу, к которому стремится среднее ускорение при стремлении промежутка времени к 0. Другими словами - это ускорение, развиваемое телом за очень маленький отрезок времени:

.

Ускорение имеет такое же направление, как и изменение скорости Δ в крайне маленьких промежутках времени, за которые скорость изменяется. Вектор ускорения можно задать при помощи проекций на соответствующие оси координат в заданной системе отсчета (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела увеличивается по модулю, т.е. v 2 > v 1 , а вектор ускорения имеет такое же направление, как и у вектора скорости 2 .

Если скорость тела по модулю уменьшается (v 2 < v 1), значит, у вектора ускорения направление противоположно направлению вектора скорости 2 . Другими словами, в таком случае наблюдаем замедление движения (ускорение отрицательно, а < 0). На рисунке ниже изображено направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Если происходит движение по криволинейной траектории, то изменяется модуль и направление скорости. Значит, вектор ускорения изображают в виде 2х составляющих.

Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.


У вектора тангенциального ускорения τ (см. рис. выше) направление такое же, как и у линейной скорости либо противоположно ему. Т.е. вектор тангенциального ускорения находится в одной оси с касательной окружности, являющейся траекторией движения тела.