Area of ​​the figure under the graph online. Definite integral

  • 29.09.2019

How to insert mathematical formulas on a website?

If you ever need to add one or two mathematical formulas to a web page, then the easiest way to do this is as described in the article: mathematical formulas are easily inserted onto the site in the form of pictures that are automatically generated by Wolfram Alpha. In addition to simplicity, this universal method will help improve the visibility of the site in search engines. It has been working for a long time (and, I think, will work forever), but is already morally outdated.

If you regularly use mathematical formulas on your site, then I recommend you use MathJax - a special JavaScript library that displays mathematical notation in web browsers using MathML, LaTeX or ASCIIMathML markup.

There are two ways to start using MathJax: (1) using a simple code, you can quickly connect a MathJax script to your website, which will be automatically loaded from a remote server at the right time (list of servers); (2) download the MathJax script from a remote server to your server and connect it to all pages of your site. The second method - more complex and time-consuming - will speed up the loading of your site's pages, and if the parent MathJax server becomes temporarily unavailable for some reason, this will not affect your own site in any way. Despite these advantages, I chose the first method as it is simpler, faster and does not require technical skills. Follow my example, and in just 5 minutes you will be able to use all the features of MathJax on your site.

You can connect the MathJax library script from a remote server using two code options taken from the main MathJax website or on the documentation page:

One of these code options needs to be copied and pasted into the code of your web page, preferably between tags and or immediately after the tag. According to the first option, MathJax loads faster and slows down the page less. But the second option automatically monitors and loads the latest versions of MathJax. If you insert the first code, it will need to be updated periodically. If you insert the second code, the pages will load more slowly, but you will not need to constantly monitor MathJax updates.

The easiest way to connect MathJax is in Blogger or WordPress: in the site control panel, add a widget designed to insert third-party JavaScript code, copy the first or second version of the download code presented above into it, and place the widget closer to the beginning of the template (by the way, this is not at all necessary , since the MathJax script is loaded asynchronously). That's all. Now learn the markup syntax of MathML, LaTeX, and ASCIIMathML, and you are ready to insert mathematical formulas into your site's web pages.

Any fractal is constructed according to a certain rule, which is consistently applied an unlimited number of times. Each such time is called an iteration.

The iterative algorithm for constructing a Menger sponge is quite simple: the original cube with side 1 is divided by planes parallel to its faces into 27 equal cubes. One central cube and 6 cubes adjacent to it along the faces are removed from it. The result is a set consisting of the remaining 20 smaller cubes. Doing the same with each of these cubes, we get a set consisting of 400 smaller cubes. Continuing this process endlessly, we get a Menger sponge.

Let's move on to consider applications of integral calculus. In this lesson we will look at the typical and most common problem of calculating the area of ​​a plane figure using a definite integral. Finally, let all those who seek meaning in higher mathematics find it. You never know. In real life, you will have to approximate a dacha plot using elementary functions and find its area using a definite integral.

To successfully master the material, you must:

1) Understand the indefinite integral at least at an intermediate level. Thus, dummies should first familiarize themselves with the lesson of He.

2) Be able to apply the Newton-Leibniz formula and calculate the definite integral. You can establish warm friendly relations with definite integrals on the Definite Integral page. Examples of solutions. The task “calculate the area using a definite integral” always involves constructing a drawing, so your knowledge and drawing skills will also be an important issue. At a minimum, you need to be able to construct a straight line, parabola and hyperbola.

Let's start with a curved trapezoid. A curved trapezoid is a flat figure bounded by the graph of some function y = f(x), axis OX and lines x = a; x = b.

The area of ​​a curvilinear trapezoid is numerically equal to a definite integral

Any definite integral (that exists) has a very good geometric meaning. In the lesson Definite Integral. Examples of solutions we said that a definite integral is a number. And now it’s time to state another useful fact. From the point of view of geometry, the definite integral is AREA. That is, a certain integral (if it exists) geometrically corresponds to the area of ​​a certain figure. Consider the definite integral

Integrand

defines a curve on the plane (it can be drawn if desired), and the definite integral itself is numerically equal to the area of ​​the corresponding curvilinear trapezoid.



Example 1

, , , .

This is a typical assignment statement. The most important point in the decision is the construction of the drawing. Moreover, the drawing must be constructed CORRECTLY.

When constructing a drawing, I recommend the following order: first, it is better to construct all the straight lines (if any) and only then – parabolas, hyperbolas, and graphs of other functions. The technique of pointwise construction can be found in the reference material Graphs and properties of elementary functions. There you can also find very useful material for our lesson - how to quickly build a parabola.

In this problem, the solution might look like this.

Let's do the drawing (note that the equation y= 0 specifies the axis OX):

We will not shade the curved trapezoid; here it is obvious what area we are talking about. The solution continues like this:

On the segment [-2; 1] function graph y = x 2 + 2 located above the axis OX, That's why:

Answer: .

Who has difficulties with calculating the definite integral and applying the Newton-Leibniz formula

,

refer to the lecture Definite Integral. Examples of solutions. After the task is completed, it is always useful to look at the drawing and figure out whether the answer is real. In this case, we count the number of cells in the drawing “by eye” - well, there will be about 9, it seems to be true. It is absolutely clear that if we got, say, the answer: 20 square units, then it is obvious that a mistake was made somewhere - 20 cells obviously do not fit into the figure in question, at most a dozen. If the answer is negative, then the task was also solved incorrectly.

Example 2

Calculate the area of ​​a figure bounded by lines xy = 4, x = 2, x= 4 and axis OX.

This is an example for you to solve on your own. Full solution and answer at the end of the lesson.

What to do if a curved trapezoid is located under the axis OX?

Example 3

Calculate the area of ​​a figure bounded by lines y = e-x, x= 1 and coordinate axes.

Solution: Let's make a drawing:

If a curved trapezoid is completely located under the axis OX, then its area can be found using the formula:

In this case:

.

Attention! The two types of tasks should not be confused:

1) If you are asked to solve simply a definite integral without any geometric meaning, then it may be negative.

2) If you are asked to find the area of ​​a figure using a definite integral, then the area is always positive! That is why the minus appears in the formula just discussed.

In practice, most often the figure is located in both the upper and lower half-plane, and therefore, from the simplest school problems we move on to more meaningful examples.

Example 4

Find the area of ​​a plane figure bounded by lines y = 2xx 2 , y = -x.

Solution: First you need to make a drawing. When constructing a drawing in area problems, we are most interested in the points of intersection of lines. Let's find the intersection points of the parabola y = 2xx 2 and straight y = -x. This can be done in two ways. The first method is analytical. We solve the equation:

This means that the lower limit of integration a= 0, upper limit of integration b= 3. It is often more profitable and faster to construct lines point by point, and the limits of integration become clear “by themselves.” Nevertheless, the analytical method of finding limits still sometimes has to be used if, for example, the graph is large enough, or the detailed construction did not reveal the limits of integration (they can be fractional or irrational). Let's return to our task: it is more rational to first construct a straight line and only then a parabola. Let's make the drawing:

Let us repeat that when constructing pointwise, the limits of integration are most often determined “automatically”.

And now the working formula:

If on the segment [ a; b] some continuous function f(x) is greater than or equal to some continuous function g(x), then the area of ​​the corresponding figure can be found using the formula:

Here you no longer need to think about where the figure is located - above the axis or below the axis, but what is important is which graph is HIGHER (relative to another graph) and which is BELOW.

In the example under consideration, it is obvious that on the segment the parabola is located above the straight line, and therefore from 2 xx 2 must be subtracted – x.

The completed solution might look like this:

The desired figure is limited by a parabola y = 2xx 2 on top and straight y = -x below.

On segment 2 xx 2 ≥ -x. According to the corresponding formula:

Answer: .

In fact, the school formula for the area of ​​a curvilinear trapezoid in the lower half-plane (see example No. 3) is a special case of the formula

.

Because the axis OX given by the equation y= 0, and the graph of the function g(x) located below the axis OX, That

.

And now a couple of examples for your own solution

Example 5

Example 6

Find the area of ​​a figure bounded by lines

When solving problems involving calculating area using a definite integral, a funny incident sometimes happens. The drawing was completed correctly, the calculations were correct, but due to carelessness... the area of ​​the wrong figure was found.

Example 7

First let's make a drawing:

The figure whose area we need to find is shaded in blue (look carefully at the condition - how the figure is limited!). But in practice, due to inattention, people often decide that they need to find the area of ​​the figure that is shaded in green!

This example is also useful because it calculates the area of ​​a figure using two definite integrals. Really:

1) On the segment [-1; 1] above the axis OX the graph is located straight y = x+1;

2) On a segment above the axis OX the graph of a hyperbola is located y = (2/x).

It is quite obvious that the areas can (and should) be added, therefore:

Answer:

Example 8

Calculate the area of ​​a figure bounded by lines

Let’s present the equations in “school” form

and make a point-by-point drawing:

It is clear from the drawing that our upper limit is “good”: b = 1.

But what is the lower limit?! It is clear that this is not an integer, but what is it?

May be, a=(-1/3)? But where is the guarantee that the drawing is made with perfect accuracy, it may well turn out that a=(-1/4). What if we built the graph incorrectly?

In such cases, you have to spend additional time and clarify the limits of integration analytically.

Let's find the intersection points of the graphs

To do this, we solve the equation:

.

Hence, a=(-1/3).

The further solution is trivial. The main thing is not to get confused in substitutions and signs. The calculations here are not the simplest. On the segment

, ,

according to the appropriate formula:

To conclude the lesson, let's look at two more difficult tasks.

Example 9

Calculate the area of ​​a figure bounded by lines

Solution: Let's depict this figure in the drawing.

To construct a point-by-point drawing, you need to know the appearance of a sinusoid. In general, it is useful to know the graphs of all elementary functions, as well as some sine values. They can be found in the table of values ​​of trigonometric functions. In some cases (for example, in this case), it is possible to construct a schematic drawing, on which the graphs and limits of integration should be fundamentally correctly displayed.

There are no problems with the limits of integration here; they follow directly from the condition:

– “x” changes from zero to “pi”. Let's make a further decision:

On a segment, the graph of a function y= sin 3 x located above the axis OX, That's why:

(1) You can see how sines and cosines are integrated in odd powers in the lesson Integrals of trigonometric functions. We pinch off one sinus.

(2) We use the main trigonometric identity in the form

(3) Let's change the variable t=cos x, then: is located above the axis, therefore:

.

.

Note: note how the integral of the tangent cubed is taken; a corollary of the basic trigonometric identity is used here

.

Problem 1 (about calculating the area of ​​a curved trapezoid).

In the Cartesian rectangular coordinate system xOy, a figure is given (see figure) bounded by the x axis, straight lines x = a, x = b (a by a curvilinear trapezoid. It is required to calculate the area of ​​a curvilinear trapezoid.
Solution. Geometry gives us recipes for calculating the areas of polygons and some parts of a circle (sector, segment). Using geometric considerations, we can only find an approximate value of the required area, reasoning as follows.

Let's split the segment [a; b] (base of a curved trapezoid) into n equal parts; this partition is carried out using points x 1, x 2, ... x k, ... x n-1. Let us draw straight lines through these points parallel to the y-axis. Then the given curvilinear trapezoid will be divided into n parts, into n narrow columns. The area of ​​the entire trapezoid is equal to the sum of the areas of the columns.

Let us consider the k-th column separately, i.e. a curved trapezoid whose base is a segment. Let's replace it with a rectangle with the same base and height equal to f(x k) (see figure). The area of ​​the rectangle is equal to \(f(x_k) \cdot \Delta x_k \), where \(\Delta x_k \) is the length of the segment; It is natural to consider the resulting product as an approximate value of the area of ​​the kth column.

If we now do the same with all the other columns, we will come to the following result: the area S of a given curvilinear trapezoid is approximately equal to the area S n of a stepped figure made up of n rectangles (see figure):
\(S_n = f(x_0)\Delta x_0 + \dots + f(x_k)\Delta x_k + \dots + f(x_(n-1))\Delta x_(n-1) \)
Here, for the sake of uniformity of notation, we assume that a = x 0, b = x n; \(\Delta x_0 \) - length of the segment, \(\Delta x_1 \) - length of the segment, etc.; in this case, as we agreed above, \(\Delta x_0 = \dots = \Delta x_(n-1) \)

So, \(S \approx S_n \), and this approximate equality is more accurate, the larger n.
By definition, it is believed that the required area of ​​a curvilinear trapezoid is equal to the limit of the sequence (S n):
$$ S = \lim_(n \to \infty) S_n $$

Problem 2 (about moving a point)
A material point moves in a straight line. The dependence of speed on time is expressed by the formula v = v(t). Find the movement of a point over a period of time [a; b].
Solution. If the movement were uniform, then the problem would be solved very simply: s = vt, i.e. s = v(b-a). For uneven movement, you have to use the same ideas on which the solution to the previous problem was based.
1) Divide the time interval [a; b] into n equal parts.
2) Consider a period of time and assume that during this period of time the speed was constant, the same as at time t k. So we assume that v = v(t k).
3) Let’s find the approximate value of the point’s movement over a period of time; we’ll denote this approximate value as s k
\(s_k = v(t_k) \Delta t_k \)
4) Find the approximate value of displacement s:
\(s \approx S_n \) where
\(S_n = s_0 + \dots + s_(n-1) = v(t_0)\Delta t_0 + \dots + v(t_(n-1)) \Delta t_(n-1) \)
5) The required displacement is equal to the limit of the sequence (S n):
$$ s = \lim_(n \to \infty) S_n $$

Let's summarize. Solutions to various problems were reduced to the same mathematical model. Many problems from various fields of science and technology lead to the same model in the process of solution. This means that this mathematical model must be specially studied.

The concept of a definite integral

Let us give a mathematical description of the model that was built in the three considered problems for the function y = f(x), continuous (but not necessarily non-negative, as was assumed in the considered problems) on the interval [a; b]:
1) split the segment [a; b] into n equal parts;
2) make up the sum $$ S_n = f(x_0)\Delta x_0 + f(x_1)\Delta x_1 + \dots + f(x_(n-1))\Delta x_(n-1) $$
3) calculate $$ \lim_(n \to \infty) S_n $$

In the course of mathematical analysis it was proven that this limit exists in the case of a continuous (or piecewise continuous) function. It is called the definite integral of the function y = f(x) over the segment [a; b] and denoted as follows:
\(\int\limits_a^b f(x) dx \)
The numbers a and b are called the limits of integration (lower and upper, respectively).

Let's return to the tasks discussed above. The definition of area given in Problem 1 can now be rewritten as follows:
\(S = \int\limits_a^b f(x) dx \)
here S is the area of ​​the curved trapezoid shown in the figure above. This is the geometric meaning of the definite integral.

The definition of the displacement s of a point moving in a straight line with a speed v = v(t) over the period of time from t = a to t = b, given in Problem 2, can be rewritten as follows:

Newton - Leibniz formula

First, let's answer the question: what is the connection between the definite integral and the antiderivative?

The answer can be found in Problem 2. On the one hand, the displacement s of a point moving in a straight line with a speed v = v(t) over the period of time from t = a to t = b is calculated by the formula
\(S = \int\limits_a^b v(t) dt \)

On the other hand, the coordinate of a moving point is an antiderivative for speed - let's denote it s(t); This means that the displacement s is expressed by the formula s = s(b) - s(a). As a result we get:
\(S = \int\limits_a^b v(t) dt = s(b)-s(a) \)
where s(t) is the antiderivative of v(t).

The following theorem was proven in the course of mathematical analysis.
Theorem. If the function y = f(x) is continuous on the interval [a; b], then the formula is valid
\(S = \int\limits_a^b f(x) dx = F(b)-F(a) \)
where F(x) is the antiderivative of f(x).

The above formula is usually called the Newton-Leibniz formula in honor of the English physicist Isaac Newton (1643-1727) and the German philosopher Gottfried Leibniz (1646-1716), who obtained it independently of each other and almost simultaneously.

In practice, instead of writing F(b) - F(a), they use the notation \(\left. F(x)\right|_a^b \) (sometimes called double substitution) and, accordingly, rewrite the Newton-Leibniz formula in this way form:
\(S = \int\limits_a^b f(x) dx = \left. F(x)\right|_a^b \)

When calculating a definite integral, first find the antiderivative, and then carry out a double substitution.

Based on the Newton-Leibniz formula, we can obtain two properties of the definite integral.

Property 1. The integral of the sum of functions is equal to the sum of the integrals:
\(\int\limits_a^b (f(x) + g(x))dx = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx \)

Property 2. The constant factor can be taken out of the integral sign:
\(\int\limits_a^b kf(x)dx = k \int\limits_a^b f(x)dx \)

Calculating the areas of plane figures using a definite integral

Using the integral, you can calculate the areas not only of curved trapezoids, but also of plane figures of a more complex type, for example, the one shown in the figure. The figure P is limited by straight lines x = a, x = b and graphs of continuous functions y = f(x), y = g(x), and on the segment [a; b] the inequality \(g(x) \leq f(x) \) holds. To calculate the area S of such a figure, we will proceed as follows:
\(S = S_(ABCD) = S_(aDCb) - S_(aABb) = \int\limits_a^b f(x) dx - \int\limits_a^b g(x) dx = \)
\(= \int\limits_a^b (f(x)-g(x))dx \)

So, the area S of a figure bounded by straight lines x = a, x = b and graphs of functions y = f(x), y = g(x), continuous on the segment and such that for any x from the segment [a; b] the inequality \(g(x) \leq f(x) \) is satisfied, calculated by the formula
\(S = \int\limits_a^b (f(x)-g(x))dx \)

Table of indefinite integrals (antiderivatives) of some functions $$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac(x^(n +1))(n+1) +C \;\; (n \neq -1) $$ $$ \int \frac(1)(x) dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac(a^x)(\ln a) +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $ $ \int \frac(dx)(\cos^2 x) = \text(tg) x +C $$ $$ \int \frac(dx)(\sin^2 x) = -\text(ctg) x +C $$ $$ \int \frac(dx)(\sqrt(1-x^2)) = \text(arcsin) x +C $$ $$ \int \frac(dx)(1+x^2 ) = \text(arctg) x +C $$ $$ \int \text(ch) x dx = \text(sh) x +C $$ $$ \int \text(sh) x dx = \text(ch ) x +C $$ Problem No. 3. Make a drawing and calculate the area of ​​the figure bounded by the lines

Application of the integral to the solution of applied problems

Area calculation

The definite integral of a continuous non-negative function f(x) is numerically equal to the area of ​​a curvilinear trapezoid bounded by the curve y = f(x), the O x axis and the straight lines x = a and x = b. In accordance with this, the area formula is written as follows:

Let's look at some examples of calculating the areas of plane figures.

Task No. 1. Calculate the area bounded by the lines y = x 2 +1, y = 0, x = 0, x = 2.

Solution. Let's construct a figure whose area we will have to calculate.

y = x 2 + 1 is a parabola whose branches are directed upward, and the parabola is shifted upward by one unit relative to the O y axis (Figure 1).

Figure 1. Graph of the function y = x 2 + 1

Task No. 2. Calculate the area bounded by the lines y = x 2 – 1, y = 0 in the range from 0 to 1.


Solution. The graph of this function is a parabola of branches that are directed upward, and the parabola is shifted relative to the O y axis down by one unit (Figure 2).

Figure 2. Graph of the function y = x 2 – 1


Task No. 3. Make a drawing and calculate the area of ​​the figure bounded by the lines

y = 8 + 2x – x 2 and y = 2x – 4.

Solution. The first of these two lines is a parabola with its branches directed downward, since the coefficient of x 2 is negative, and the second line is a straight line intersecting both coordinate axes.

To construct a parabola, we find the coordinates of its vertex: y’=2 – 2x; 2 – 2x = 0, x = 1 – abscissa of the vertex; y(1) = 8 + 2∙1 – 1 2 = 9 is its ordinate, N(1;9) is the vertex.

Now let’s find the intersection points of the parabola and the straight line by solving the system of equations:

Equating the right sides of an equation whose left sides are equal.

We get 8 + 2x – x 2 = 2x – 4 or x 2 – 12 = 0, whence .

So, the points are the intersection points of a parabola and a straight line (Figure 1).


Figure 3 Graphs of functions y = 8 + 2x – x 2 and y = 2x – 4

Let's construct a straight line y = 2x – 4. It passes through the points (0;-4), (2;0) on the coordinate axes.

To construct a parabola, you can also use its intersection points with the 0x axis, that is, the roots of the equation 8 + 2x – x 2 = 0 or x 2 – 2x – 8 = 0. Using Vieta’s theorem, it is easy to find its roots: x 1 = 2, x 2 = 4.

Figure 3 shows a figure (parabolic segment M 1 N M 2) bounded by these lines.

The second part of the problem is to find the area of ​​this figure. Its area can be found using a definite integral according to the formula .

In relation to this condition, we obtain the integral:

2 Calculation of the volume of a body of rotation

The volume of the body obtained from the rotation of the curve y = f(x) around the O x axis is calculated by the formula:

When rotating around the O y axis, the formula looks like:

Task No. 4. Determine the volume of the body obtained from the rotation of a curved trapezoid bounded by straight lines x = 0 x = 3 and curve y = around the O x axis.

Solution. Let's draw a picture (Figure 4).

Figure 4. Graph of the function y =

The required volume is


Task No. 5. Calculate the volume of the body obtained from the rotation of a curved trapezoid bounded by the curve y = x 2 and straight lines y = 0 and y = 4 around the O y axis.

Solution. We have:

Review questions

In the previous section, devoted to the analysis of the geometric meaning of a definite integral, we received a number of formulas for calculating the area of ​​a curvilinear trapezoid:

Yandex.RTB R-A-339285-1

S (G) = ∫ a b f (x) d x for a continuous and non-negative function y = f (x) on the interval [ a ; b ] ,

S (G) = - ∫ a b f (x) d x for a continuous and non-positive function y = f (x) on the interval [ a ; b ] .

These formulas are applicable to solving relatively simple problems. In reality, we will often have to work with more complex figures. In this regard, we will devote this section to an analysis of algorithms for calculating the area of ​​figures that are limited by functions in explicit form, i.e. like y = f(x) or x = g(y).

Theorem

Let the functions y = f 1 (x) and y = f 2 (x) be defined and continuous on the interval [ a ; b ] , and f 1 (x) ≤ f 2 (x) for any value x from [ a ; b ] . Then the formula for calculating the area of ​​the figure G, bounded by the lines x = a, x = b, y = f 1 (x) and y = f 2 (x) will look like S (G) = ∫ a b f 2 (x) - f 1 (x) d x .

A similar formula will be applicable for the area of ​​a figure bounded by the lines y = c, y = d, x = g 1 (y) and x = g 2 (y): S (G) = ∫ c d (g 2 (y) - g 1 (y) d y .

Proof

Let's look at three cases for which the formula will be valid.

In the first case, taking into account the property of additivity of area, the sum of the areas of the original figure G and the curvilinear trapezoid G 1 is equal to the area of ​​the figure G 2. It means that

Therefore, S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) dx.

We can perform the last transition using the third property of the definite integral.

In the second case, the equality is true: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x

The graphic illustration will look like:

If both functions are non-positive, we get: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x . The graphic illustration will look like:

Let's move on to consider the general case when y = f 1 (x) and y = f 2 (x) intersect the O x axis.

We denote the intersection points as x i, i = 1, 2, . . . , n - 1 . These points split the segment [a; b ] into n parts x i - 1 ; x i, i = 1, 2, . . . , n, where α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

Hence,

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

We can make the last transition using the fifth property of the definite integral.

Let us illustrate the general case on the graph.

The formula S (G) = ∫ a b f 2 (x) - f 1 (x) d x can be considered proven.

Now let's move on to analyzing examples of calculating the area of ​​figures that are limited by the lines y = f (x) and x = g (y).

We will begin our consideration of any of the examples by constructing a graph. The image will allow us to represent complex shapes as unions of simpler shapes. If constructing graphs and figures on them is difficult for you, you can study the section on basic elementary functions, geometric transformation of graphs of functions, as well as constructing graphs while studying a function.

Example 1

It is necessary to determine the area of ​​the figure, which is limited by the parabola y = - x 2 + 6 x - 5 and straight lines y = - 1 3 x - 1 2, x = 1, x = 4.

Solution

Let's draw the lines on the graph in the Cartesian coordinate system.

On the segment [ 1 ; 4 ] the graph of the parabola y = - x 2 + 6 x - 5 is located above the straight line y = - 1 3 x - 1 2. In this regard, to obtain the answer we use the formula obtained earlier, as well as the method of calculating the definite integral using the Newton-Leibniz formula:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 4 3 + 19 6 4 2 - 9 2 4 - - 1 3 1 3 + 19 6 1 2 - 9 2 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Answer: S(G) = 13

Let's look at a more complex example.

Example 2

It is necessary to calculate the area of ​​the figure, which is limited by the lines y = x + 2, y = x, x = 7.

Solution

In this case, we have only one straight line located parallel to the x-axis. This is x = 7. This requires us to find the second limit of integration ourselves.

Let's build a graph and plot on it the lines given in the problem statement.

Having the graph in front of our eyes, we can easily determine that the lower limit of integration will be the abscissa of the point of intersection of the graph of the straight line y = x and the semi-parabola y = x + 2. To find the abscissa we use the equalities:

y = x + 2 O DZ: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 1 (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ O DZ x 2 = 1 - 9 2 = - 1 ∉ O DZ

It turns out that the abscissa of the intersection point is x = 2.

We draw your attention to the fact that in the general example in the drawing, the lines y = x + 2, y = x intersect at the point (2; 2), so such detailed calculations may seem unnecessary. We have provided such a detailed solution here only because in more complex cases the solution may not be so obvious. This means that it is always better to calculate the coordinates of the intersection of lines analytically.

On the interval [ 2 ; 7] the graph of the function y = x is located above the graph of the function y = x + 2. Let's apply the formula to calculate the area:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Answer: S (G) = 59 6

Example 3

It is necessary to calculate the area of ​​the figure, which is limited by the graphs of the functions y = 1 x and y = - x 2 + 4 x - 2.

Solution

Let's plot the lines on the graph.

Let's define the limits of integration. To do this, we determine the coordinates of the points of intersection of the lines by equating the expressions 1 x and - x 2 + 4 x - 2. Provided that x is not zero, the equality 1 x = - x 2 + 4 x - 2 becomes equivalent to the third degree equation - x 3 + 4 x 2 - 2 x - 1 = 0 with integer coefficients. To refresh your memory of the algorithm for solving such equations, we can refer to the section “Solving cubic equations.”

The root of this equation is x = 1: - 1 3 + 4 1 2 - 2 1 - 1 = 0.

Dividing the expression - x 3 + 4 x 2 - 2 x - 1 by the binomial x - 1, we get: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

We can find the remaining roots from the equation x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3; x 2 = 3 - 13 2 ≈ - 0 . 3

We found the interval x ∈ 1; 3 + 13 2, in which the figure G is contained above the blue and below the red line. This helps us determine the area of ​​the figure:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 3 + 13 2 2 - 2 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 1 2 - 2 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Answer: S (G) = 7 + 13 3 - ln 3 + 13 2

Example 4

It is necessary to calculate the area of ​​the figure, which is limited by the curves y = x 3, y = - log 2 x + 1 and the abscissa axis.

Solution

Let's plot all the lines on the graph. We can get the graph of the function y = - log 2 x + 1 from the graph y = log 2 x if we position it symmetrically about the x-axis and move it up one unit. The equation of the x-axis is y = 0.

Let us mark the points of intersection of the lines.

As can be seen from the figure, the graphs of the functions y = x 3 and y = 0 intersect at the point (0; 0). This happens because x = 0 is the only real root of the equation x 3 = 0.

x = 2 is the only root of the equation - log 2 x + 1 = 0, so the graphs of the functions y = - log 2 x + 1 and y = 0 intersect at the point (2; 0).

x = 1 is the only root of the equation x 3 = - log 2 x + 1 . In this regard, the graphs of the functions y = x 3 and y = - log 2 x + 1 intersect at the point (1; 1). The last statement may not be obvious, but the equation x 3 = - log 2 x + 1 cannot have more than one root, since the function y = x 3 is strictly increasing, and the function y = - log 2 x + 1 is strictly decreasing.

The further solution involves several options.

Option #1

We can imagine the figure G as the sum of two curvilinear trapezoids located above the x-axis, the first of which is located below the midline on the segment x ∈ 0; 1, and the second is below the red line on the segment x ∈ 1; 2. This means that the area will be equal to S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Option No. 2

Figure G can be represented as the difference of two figures, the first of which is located above the x-axis and below the blue line on the segment x ∈ 0; 2, and the second between the red and blue lines on the segment x ∈ 1; 2. This allows us to find the area as follows:

S (G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

In this case, to find the area you will have to use a formula of the form S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y. In fact, the lines that bound the figure can be represented as functions of the argument y.

Let's solve the equations y = x 3 and - log 2 x + 1 with respect to x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

We get the required area:

S (G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Answer: S (G) = 1 ln 2 - 1 4

Example 5

It is necessary to calculate the area of ​​the figure, which is limited by the lines y = x, y = 2 3 x - 3, y = - 1 2 x + 4.

Solution

With a red line we plot the line defined by the function y = x. We draw the line y = - 1 2 x + 4 in blue, and the line y = 2 3 x - 3 in black.

Let's mark the intersection points.

Let's find the intersection points of the graphs of the functions y = x and y = - 1 2 x + 4:

x = - 1 2 x + 4 O DZ: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20) 2 - 4 1 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 - 144 2 = 4 Check: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 16 + 4 = - 4 ⇒ x 1 = 16 not Is the solution to the equation x 2 = 4 = 2, - 1 2 x 2 + 4 = - 1 2 4 + 4 = 2 ⇒ x 2 = 4 is the solution to the equation ⇒ (4; 2) point of intersection i y = x and y = - 1 2 x + 4

Let's find the intersection point of the graphs of the functions y = x and y = 2 3 x - 3:

x = 2 3 x - 3 O DZ: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 4 81 = 729 x 1 = 45 + 729 8 = 9, x 2 45 - 729 8 = 9 4 Check: x 1 = 9 = 3, 2 3 x 1 - 3 = 2 3 9 - 3 = 3 ⇒ x 1 = 9 is the solution to the equation ⇒ (9 ; 3) point a s y = x and y = 2 3 x - 3 x 2 = 9 4 = 3 2, 2 3 x 1 - 3 = 2 3 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 There is no solution to the equation

Let's find the point of intersection of the lines y = - 1 2 x + 4 and y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 6 + 4 = 2 3 6 - 3 = 1 ⇒ (6 ; 1) point of intersection y = - 1 2 x + 4 and y = 2 3 x - 3

Method No. 1

Let us imagine the area of ​​the desired figure as the sum of the areas of individual figures.

Then the area of ​​the figure is:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 6 3 2 + 6 2 4 - 4 6 - 2 3 4 3 2 + 4 2 4 - 4 4 + + 2 3 9 3 2 - 9 2 3 + 3 9 - 2 3 6 3 2 - 6 2 3 + 3 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Method No. 2

The area of ​​the original figure can be represented as the sum of two other figures.

Then we solve the equation of the line relative to x, and only after that we apply the formula for calculating the area of ​​the figure.

y = x ⇒ x = y 2 red line y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 black line y = - 1 2 x + 4 ⇒ x = - 2 y + 8 s i n i a l i n e

So the area is:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = 7 4 y 2 - 7 4 y 1 2 + - y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 2 2 - 7 4 2 - 7 4 1 2 - 7 4 1 + + - 3 3 3 + 3 3 2 4 + 9 2 3 - - 2 3 3 + 3 2 2 4 + 9 2 2 = = 7 4 + 23 12 = 11 3

As you can see, the values ​​are the same.

Answer: S (G) = 11 3

Results

To find the area of ​​a figure that is limited by given lines, we need to construct lines on a plane, find their intersection points, and apply the formula to find the area. In this section, we examined the most common variants of tasks.

If you notice an error in the text, please highlight it and press Ctrl+Enter