Законы излучения абсолютно черного тела. Абсолютно черное тело – проблема ньютоновской физики

  • 30.09.2019

Называется абсолютно черное тело таковым потому, что оно поглощает все попадающее на него (а точнее, в него) излучение как в видимом спектре, так и за его пределами. Но если тело не нагревается, энергия переизлучается обратно. Это излучение, испускаемое абсолютно черным телом, представляет особый интерес. Первые попытки по изучению его свойств были проделаны еще до возникновения самой модели.

В начале 19 века Джон Лесли проводил эксперименты с различными веществами. Как оказалось, черная сажа не только поглощает весь падающий на нее видимый свет. Она излучала в инфракрасном диапазоне значительно сильнее, чем другие, более светлые, вещества. Это было тепловое излучение, которое отличается от всех других видов несколькими свойствами. Излучение абсолютно черного тела равновесное, однородное, происходит без переноса энергии и зависит только от

При достаточно высокой температуре объекта тепловое излучение становится видимым, и тогда любое тело, в том числе и абсолютно черное, приобретает цвет.

Такой уникальный объект, который излучает исключительно определенный не мог не привлечь внимание. Поскольку речь идет о тепловом излучении, первые формулы и теории относительно того, как должен выглядеть спектр, были предложены в рамках термодинамики. Классическая термодинамика смогла определить, на какой должен находиться максимум излучения при данной температуре, в какую сторону и насколько он сместится при нагревании и охлаждении. Однако не удалось предсказать, каково распределение энергии в спектре абсолютно черного тела на всех длинах волн и, в частности, в ультрафиолетовом диапазоне.

По представлениям классической термодинамики, энергия может излучаться любыми порциями, в том числе сколь угодно малыми. Но чтобы абсолютно черное тело могло излучать на коротких длинах волн, энергия некоторых его частиц должна быть очень большой, а в области ультракоротких волн она ушла бы в бесконечность. В реальности это невозможно, бесконечность появилась в уравнениях и получила название Только о том, что энергия может излучаться дискретными порциями - квантами - помогла разрешить затруднение. Сегодняшние уравнения термодинамики являются частными случаями уравнений

Первоначально абсолютно черное тело представляли как полость с узким отверстием. Излучение извне попадает в такую полость и поглощается стенками. На спектр излучения, которым должно обладать абсолютно черное тело, в таком случае похож спектр излучения из входа в пещеру, отверстия колодца, окна в темную комнату солнечным днем и т.д. Но больше всего с ним совпадают спектры Вселенной и звезд, в том числе Солнца.

Можно с уверенностью утверждать, что чем больше в том или ином объекте частиц, обладающих разными энергиями, тем сильнее его излучение будет напоминать чернотельное. Кривая распределения энергии в спектре абсолютно черного тела отражает статистические закономерности в системе этих частиц, с той лишь поправкой, что передаваемая при взаимодействиях энергия дискретна.

Абсолютно черное тело - это тело, для которого поглощательная способность тождественно равна единице для всех частот или длин волн и для любой температуры, т.е.:

Из определения абсолютно черного тела следует, что оно должно поглощать все падающее на него излучение.

Понятие "абсолютно черное тело" - это модельное понятие. В природе абсолютно черных тел не существует, но можно создать устройство, являющееся хорошим приближением к абсолютно черному телу - модель абсолютно черного тела .

Модель абсолютно черного тела - это замкнутая полость с маленьким, по сравнению с ее размерами, отверстием (рис. 1.2). Полость изготавливают из материала, достаточно хорошо поглощающего излучение. Излучение, попавшее в отверстие, прежде чем выйти из отверстия, многократно отражается от внутренней поверхности полости.

При каждом отражении часть энергии поглощается, в результате из отверстия выходит отраженный поток dФ", являющийся очень малой частью попавшего в него потока излучения dФ. В результате поглощательная способность отверстия в полости будет близка к единице.

Если внутренние стенки полости поддерживать при температуре Т, то из отверстия будет выходить излучение, свойства которого будут очень близки к свойствам излучения абсолютно черного тела. Внутри полости это излучение будет находиться в термодинамическом равновесии с веществом полости.

По определению плотности энергии, объемная плотность энергии w(Т) равновесного излучения в полости - это:

где dЕ - энергия излучения в объеме dV. Спектральное распределение объемной плотности дается функциями u(λ,T) (или u(ω,T)), которые вводятся аналогично спектральной плотности энергетической светимости ((1.6) и (1.9)), т.е.:

Здесь dw λ и dw ω - объемная плотность энергии в соответствующем интервале длин волн dλ или частот dω.

Закон Кирхгофа утверждает, что отношение испускательной способности тела ((1.6) и (1.9)) к его поглощательной способности (1.14) одинаково для всех тел и является универсальной функцией частоты ω (или длины волны λ) и температуры Т, т.е.:

Очевидно, что поглощательная способность a ω (или a λ ) для разных тел разная, то из закона Кирхгофа следует, что чем сильнее тело поглощает излучение, тем сильнее оно должно это излучение испускать. Так как для абсолютного черного тела a ω ≡ 1 (или a λ ≡ 1), то отсюда следует, что в случае абсолютночерного тела:

Иными словами, f(ω,T) либо φ(λ,T), есть не что иное как, спектральная плотность энергетической светимости (или испускательная способность) абсолютно черного тела.

Функция φ(λ,T) и f(ω,T) связаны со спектральной плотностью энергии излучения абсолютно черного тела следующими соотношениями:

где c - скорость света в вакууме.

Схема установки для опытного определения зависимости φ(λ,T) приведена на рисунке 1.3.

Излучение испускается из отверстия замкнутой полости, нагретой до температуры Т, затем попадает на спектральный прибор (призменный или решеточный монохроматор), который выделяет излучение в интервале частот от λ до λ + dλ. Это излучение попадает на приемник, который позволяет измерить падающую на него мощность излучения. Поделив эту приходящуюся на интервал от λ до λ + dλ мощность на площадь излучателя (площадь отверстия в полости!), мы получим значение функции φ(λ,T) для данной длины волны λ и температуры Т. Полученные экспериментальные результаты воспроизведены на рисунке 1.4.

Итоги лекции N 1

1. Немецкий физик Макс Планк в 1900 г. выдвинул гипотезу, согласно которой электромагнитная энергия излучается порциями, квантами энергии. Величина кванта энергии (см. (1.2):

ε = hv ,

где h=6,6261·10 -34 Дж·с - постоянная Планка, v - частота колебаний электромагнитной волны, излучаемой телом.

Эта гипотеза позволила Планку решить проблему излучения абсолютно черного тела.

2. А Эйнштейн, развивая понятие Планка о квантах энергии ввел в 1905 г. понятие "квант света" или фотон. Согласно Эйнштейну квант электромагнитной энергии ε = hv движется в виде фотона, локализованного в малой области пространства. Представление о фотонах позволило Эйнштейну решить проблему фотоэффекта.

3. Английский физик Э. Резерфорд, основываясь на экспериментальных исследованиях, проведенных в 1909-1910 гг., построил планетарную модель атома. Согласно этой модели в центре атома расположено очень маленькое ядро (r я ~ 10 -15 м), в котором сосредоточена почти вся масса атома. Заряд ядра положителен. Отрицательно заряженные электроны движутся вокруг ядра наподобие планет солнечной системы по орбитам, размер которых ~ 10 -10 м.

4. Атом в модели Резерфорда оказался неустойчивым: согласно электродинамике Максвелла электроны, двигаясь по круговым орбитам, должны непрерывно излучать энергию, в результате чего за время ~ 10 -8 с они должны упасть на ядро. Но весь наш опыт свидетельствует о стабильности атома. Так возникла проблема стабильности атома.

5. Решил проблему стабильности атома в 1913 г. датский физик Нильс Бор на основе выдвинутых им двух постулатов. В теории атома водорода, развитой Н. Бором, существенную роль играет постоянная Планка.

6. Тепловым называется электромагнитное излучение, испускаемое веществом за счет его внутренней энергии. Тепловое излучение может находиться в термодинамическом равновесии с окружающими телами.

7. Энергетическая светимость тела R - это отношение энергии dE, испускаемой за время dt поверхностью dS по всем направлениям, к dt и dS (см. (1.5)):

8. Спектральная плотность энергетической светимости r λ (или испускательная способность тела) - это отношение энергетической светимости dR, взятой в бесконечно малом интервале длин волн dλ, к величине dλ (см. (1.6)):

9. Поток излучения Ф - это отношение энергии dЕ, переносимой электромагнитным излучением через какую-либо поверхность ко времени переноса dt, значительно превышающему период электромагнитных колебаний (см. (1.13)):

10. Поглощательная способность тела a λ - это отношение поглощаемого телом потока излучения dФ λ " в интервале длин волн dλ к падающему на него потоку dФ λ в том же интервале dλ, (см. (1.14):

11. Абсолютно черное тело - это тело, для которого поглощательная способность тождественно равна единице для всех длин волн и для любой температуры, т.е.

Абсолютно черное тело - это модельное понятие.

12. Закон Кирхгофа утверждает, что отношение испускательной способности тела r λ к его поглощательной способности а λ одинаково для всех тел и является универсальной функцией длины волны λ (или частоты ω) и температуры Т (см. (1.17)):


ЛЕКЦИЯ N 2

Проблема излучения абсолютно черного тела. Формула Планка. Закон Стефана-Больцмана, закон Вина

§ 1. Проблема излучения абсолютно черного тела . Формула Планка

Проблема излучения абсолютно черного тела состояла в том, чтобы теоретически получить зависимость φ(λ,Т) - спектральную плотность энергетической светимости абсолютно черного тела.

Казалось, что ситуация ясна: при заданной температуре Т молекулы вещества излучающей полости имеют максвелловское распределение по скоростям и излучают электромагнитные волны в соответствии с законами классической электродинамики. Излучение находится в термодинамическом равновесии с веществом, значит для нахождения спектральной плотности энергии излучения u(λ,T) и связанной с ней функции φ(λ,Т) можно использовать законы термодинамики и классической статистики.

Однако, все попытки теоретиков получить на основе классической физики закон излучения абсолютно черного тела потерпели неудачу.

Частичный вклад в решение этой проблемы внесли Густав Кирхгоф, Вильгельм Вин, Иозеф Стефан, Людвиг Больцман, Джон Уильям Релей, Джеймс Хонвуд Джинс.

Проблема излучения абсолютно черного тела была решена Максом Планком. Для этого ему пришлось отказаться от классических представлений и сделать предположение о том, что заряд, совершающий колебания с частотой v , может получать или отдавать энергию порциями, или квантами.

Величина кванта энергии в соответствии с (1.2) и (1.4):

где h - постоянная Планка; v - частота колебаний электромагнитной волны, излученной колеблющемся зарядом; ω = 2πv - круговая частота.

На основе представления о квантах энергии М. Планк, используя методы статистической термодинамики, получил выражение для функции u(ω,Т), дающей распределение плотности энергии в спектре излучения абсолютного черного тела:

Вывод этой формулы будет дан в лекции N 12, § 3 после того, как мы познакомимся с основами квантовой статистики.

Для перехода к спектральной плотности энергетической светимости f(ω,Т) запишем вторую формулу (1.19):

Используя это соотношение и формулу Планка (2.1) для u(ω,T), получим, что:

Это и есть формула Планка для спектральной плотности энергетической светимости f(ω,T) .

Теперь мы получим формулу Планка для φ(λ,Т).Как мы знаем из (1.18), в случае абсолютно черного тела f(ω,T) = r ω , а φ(λ,Т) = r λ .

Связь между r λ и r ω дает формула (1.12), применяя ее мы получим:

Здесь мы аргумент ω функции f(ω,Т) выразили через длину волны λ. Подставляя сюда формулу Планка для f(ω,Т)из (2.2), получим формулу Планка для φ(λ,Т) - спектральной плотности энергетической светимости в зависимости от длины волны λ:

График этой функции хорошо совпадает с экспериментальными графиками φ(λ,Т) для всех длин волн и температур.

Это и означает, что проблем излучения абсолютно черного тела решена.

§ 2. Закон Стефана-Больцмана и закон Вина

Из (1.11) для абсолютно черного тела, когда r ω = f(λ,Т), получим энергетическую светимость R(T), интегрируя функцию f(ω,Т) (2.2) во всем интервале частот.

Интегрирование дает:

Введем обозначение:

тогда выражение для энергетической светимости R примет следующий вид:

Это и есть закон Стефана-Больцмана .

М. Стефан на основе анализа опытных данных пришел в 1879 г. к выводу, что энергетическая светимость любого тела пропорциональна четвертой степени температуры.

Л. Больцман в 1884 г. нашел из термодинамических соображений, что такая зависимость энергетической светимости от температуры справедлива лишь для абсолютно черного тела.

Постоянная σ носит название постоянной Стефана-Больцмана . Ее экспериментальное значение:

Вычисления по теоретической формуле дают для σ результат очень хорошо согласующийся с экспериментальным.

Отметим, что графически энергетическая светимость равна площади, ограниченной графиком функции f(ω,Т), это иллюстрирует рисунок 2.1.

Максимум графика спектральной плотности энергетической светимости φ(λ,Т) при повышении температуры смещается в область более коротких волн (рис. 2.2). Для нахождения закона, по которому происходит смещение максимума φ(λ,Т) в зависимости от температуры, надо исследовать функцию φ(λ,Т) на максимум. Определив положение этого максимума, мы получим закон его перемещения с изменением температуры.

Как известно из математики, для исследования функции на максимум надо найти ее производную и приравнять к нулю:

Подставив сюда φ(λ,Т) из (1.23) и взяв производную, получим три корня алгебраического уравнения относительно переменной λ. Два из них (λ = 0 и λ = ∞) соответствуют нулевым минимумам функции φ(λ,Т). Для третьего корня получается приближенное выражение:

Введем обозначение:

тогда положение максимума функции φ(λ,Т) будет определятся простой формулой:

Это и есть закон смещения Вина .

Он назван так в честь В. Вина, теоретически получившим в 1894 г. это соотношение. Постоянная в законе смещения Вина имеет следующее численное значение:

Итоги лекции N 2

1. Проблема излучения абсолютно черного тела состояла в том, что все попытки получить на основе классической физики зависимость φ(λ,Т) - спектральную плотность энергетической светимости абсолютно черного тела потерпели неудачу.

2. Эту проблему решил в 1900 г. М. Планк на основе своей гипотезы квантов: заряд, совершающий колебания с частотой v , может получить или отдавать энергию порциями или квантами. Величина кванта энергии:

здесь h = 6,626 ·10 -34 - постоянная Планка, величина Дж·с также называется постоянной Планка ["аш" с чертой], ω - круговая (циклическая) частота.

3. Формула Планка для спектральной плотности энергетической светимости абсолютно черного тела имеет следующий вид (см. (2.4):

здесь λ - длина волны электромагнитного излучения, Т - абсолютная температура, h - постоянная Планка, с - скорость света в вакууме, k - постоянная Больцмана.

4. Из формулы Планка следует выражение для энергетической светимости R абсолютно черного тела:

которое позволяет теоретически вычислить постоянную Стефана-Больцмана (см. (2.5)):

теоретическое значение которой хорошо совпадает с ее экспериментальным значением:

в законе Стефана-Больцмана (см.(2.6)):

5. Из формулы Планка следует закон смещения Вина, определяющий λ max - положение максимума функции φ(λ,Т) в зависимости от абсолютной температуры (см. (2.9):

Для b - постоянной Вина - из формулы Планка получается следующее выражение (см. (2.8)):

Постоянная Вина имеет следующее значение b = 2,90 ·10 -3 м·К.


ЛЕКЦИЯ N 3

Проблема фотоэффекта . Уравнение Эйнштейна для фотоэффекта

§ 1. Проблема фотоэффект а

Фотоэффект - это испускание электронов веществом под действием электромагнитного излучения.

Такой фотоэффект называют внешним. Именно о нем мы будем говорить в этой главе. Есть еще и внутренний фотоэффект . (см. лекцию 13, § 2).

В 1887 г. немецкий физик Генрих Герц обнаружил, что ультрафиолетовый свет, освещающий отрицательный электрод в разряднике, облегчает прохождение разряда. В 1888-89 гг. русский физик А. Г. Столетов занимается систематическим исследованием фотоэффекта (схема его установки приведена на рисунке). Исследования проводились в атмосфере газа, что сильно усложняло происходившие процессы.

Столетов обнаружил, что:

1) наибольшее воздействие оказывают ультрафиолетовые лучи;

2) сила тока возрастает с увеличением интенсивности света, освещающего фотокатод;

3) испущенные под действием света заряды имеют отрицательный знак.

Дальнейшие исследования фотоэффекта производились в 1900-1904 гг. немецким физиком Ф. Ленардом в наивысшем достигнутом в то время вакууме.

Ленарду удалось установить, что скорость вылетающих из фотокатода электронов не зависит от интенсивности света и прямо пропорционально его частоте . Так родилась проблема фотоэффекта . Объяснить результаты опытов Ленарда на основе электродинамики Максвелла было невозможно!

На рисунке 3.2 изображена установка, позволяющая детально изучать фотоэффект.

Электроды, фотокатод и анод , помещены в баллон, из которого откачан воздух. Свет на фотокатод подается через кварцевое окошко . Кварц, в отличие от стекла, хорошо пропускает ультрафиолетовые лучи. Разность потенциалов (напряжение) между фотокатодом и анодом измеряет вольтметр . Ток в цепи анода измеряется чувствительным микроамперметром . Для регулировки напряжения батарея питания подключена к реостату со средней точкой. Если движок реостата стоит против средней точки, подсоединенной через микроамперметр к аноду, то разность потенциалов между фотокатодом и анодом равна нулю. При смещении движка влево, потенциал анода становится отрицательным относительно катода. Если движок реостата сдвигать вправо от средней точки, то потенциал анода становится положительным.

Вольт-амперная характеристика установки по изучению фотоэффекта позволяет получить информацию об энергии электронов, испускаемых фотокатодом.

Вольт-амперная характеристика - это зависимость фототока i от напряжения между катодом и анодом U. При освещении светом, частота v которого достаточна для возникновения фотоэффекта, вольт-амперная характеристика имеет вид графика, изображенного на рис. 3.3:

Из этой характеристики следует, что при некотором положительном напряжении на аноде фототок i достигает насыщения. При этом все электроны, испущенные фотокатодом в единицу времени, попадают за это же время на анод.

При U = 0 часть электронов долетает до анода и создает фототок i 0 . При некотором отрицательном напряжении на аноде - U зад - фототок прекращается. При этом значении напряжения максимальная кинетическая энергия фотоэлектрона у фотокатода (mv 2 max)/2 полностью расходуется на совершение работы против сил электрического поля:

В этой формуле m e - масса электрона; v max - его максимальная скорость у фотокатода; e - абсолютное значение заряда электрона.

Таким образом, измерив задерживающее напряжение U зад, можно найти кинетическую энергию (и скорость электрона) сразу после его вылета из фотокатода.

Опыт показал, что

1) энергия вылетевших из фотокатода электронов (и их скорость) не зависела от интенсивности света! При изменении частоты света v меняется и U зад, т.е. максимальная кинетическая энергия электронов, покидающих фотокатод;

2) максимальная кинетическая энергия электронов, у фотокатода, (mv 2 max)/2, прямо пропорциональна частоте v света, освещающего фотокатод.

Проблема , как и в случае с излучением абсолютно черного тела, состояла в том, что теоретические предсказания, сделанные для фотоэффекта на основе классической физики (электродинамики Максвелла), противоречили результатам опытов. Интенсивность света I в классической электродинамике является плотностью потока энергии световой волны. Во-первых, с этой точки зрения, энергия, передаваемая световой волной электрону, должна быть пропорциональна интенсивности света. Опыт не подтверждает это предсказание. Во-вторых, в классической электродинамике нет никаких объяснений прямой пропорциональности кинетической энергии электронов, (mv 2 max)/2, частоте света v.

Абсолютно черное тело

Излучение нагретого чёрного тела в видимом диапазоне

Абсолютно чёрное тело - физическая абстракция, применяемая в термодинамике , тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь . Спектр излучения абсолютно чёрного тела определяется только его температурой .

Наиболее чёрные реальные вещества, например, сажа , поглощают до 99 % падающего излучения (т. е. имеют альбедо , равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце . Термин был введён Густавом Кирхгофом в .

Практическая модель

Модель абсолютно черного тела

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель. Она представляет из себя замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение.

Законы излучения абсолютно чёрного тела

Классический подход

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики .

Первый закон излучения Вина

Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка , которая будет совпадать с формулой Рэлея - Джинса при .

Этот факт является прекрасной иллюстрацией действия принципа соответствия , согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Зависимость мощности излучения чёрного тела от длины волны

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка :

где I (ν)d ν - мощность излучения на единицу площади излучающей поверхности в диапазоне частот от ν до ν + d ν .

Эквивалентно,

,

где u (λ)d λ - мощность излучения на единицу площади излучающей поверхности в диапазоне длин волн от λ до λ + d λ .

Закон Стефана - Больцмана

Общая энергия теплового излучения определяется законом Стефана - Больцмана :

,

где j - мощность на единицу площади излучающей поверхности, а

Вт/(м²·К 4) - постоянная Стефана - Больцмана .

Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина :

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36°C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна , его

Для записи законов излучения и поглощения вводится понятие абсолютно черного тела. Абсолютно черным телом называется воображаемое тело, которое поглощает всю падающую на него энергию при любой температуре. Испускательная и поглощательная способности связаны между собой, эта связь выражается законом Кирхгофа .

Для всех тел при данной температуре отношение испускаемой способности к поглощательной способности есть величина постоянная и равная испускательной способности абсолютно черного тела.

R зависит от температуры, эта зависимость выражается законом Стефана-Больцмана:

Постоянная Стефана-Больцмана

Зависимость длины волны излучения от температуры тела выражается законом Вина .

Длина волны, соответствующая max излучению абсолютно черного тела, обратно пропорциональна его термодинамической температуре.

b=, постоянная Вина

Вопросы для самоконтроля

1. Что называется фотоэффектом?

2. Сформулировать законы внешнего фотоэффекта.

3. Что называется люминесценцией?

4. В чем заключается правило Стокса?

5. Записать массу и импульс фотона.

6. Что называется абсолютно черным телом?

7. Сформулировать законы излучения абсолютно черного тела.

8. В чем заключается двойственность природы света?

9. Сформулировать основные законы геометрической оптики.

10. В чем заключается явление дифракции?

11. В чем заключается явление интерференции?

12. Какой свет называется поляризованным?

13. Что называется дисперсией света?

14. Назвать основные фотометрические характеристики.

К концу XIX века ученые, исследуя взаимодействие электромагнитного излучения (в частности, света) с атомами вещества, столкнулись с серьезными проблемами, решить которые удалось только в рамках квантовой механики , которая, во многом, и зародилась благодаря тому, что эти проблемы возникли. Чтобы понять первую и, пожалуй, самую серьезную из этих проблем, представьте себе большой черный ящик с зеркальной внутренней поверхностью, в одной из стенок которого проделана маленькая дырочка. Луч света, проникающий в ящик через микроскопическое отверстие, навсегда остается внутри, бесконечно отражаясь от стенок. Объект, не отражающий света, а полностью поглощающий его, выглядит черным, поэтому его и принято называть черным телом . (Абсолютно чёрное тело — подобно многим другим концептуальным физическим явлениям — объект чисто гипотетический, хотя, например, полая, равномерно разогревающаяся зеркальная изнутри сфера, свет в которую проникает через единственное крохотное отверстие, является хорошим приближением.)

Вам, однако, наверняка доводилось и в реальности видеть достаточно близкие аналоги черного тела. В очаге, например, случается, что несколько поленьев сложатся практически вплотную, а внутри них выгорит довольно большая полость. Снаружи поленья остаются темными и не светятся, в то время как внутри выгоревшей полости накапливаются жар (инфракрасное излучение) и свет, и, прежде чем вырваться наружу, эти лучи многократно отражаются от стен полости. Если заглянуть в щель между такими поленьями, вы увидите яркое желто-оранжевое высокотемпературное свечение и, оттуда на вас буквально полыхнет жаром. Просто лучи на какое-то время оказались пойманными в ловушку между поленьями подобно тому, как свет полностью улавливается и поглощается вышеописанным черным ящиком.

Модель такого черного ящика помогает нам понять, как ведет себя поглощенный черным телом свет, взаимодействуя с атомами его вещества. Тут важно понять, что свет поглощается атомом, тут же испускается им и поглощается другим атомом, снова испускается и поглощается, и так будет происходить до момента достижения состояния равновесного насыщения. При нагревании черного тела до равновесного состояния интенсивность испускания и поглощения лучей внутри черного тела уравниваются: при поглощении некоего количества света определенной частоты одним атомом другой атом где-то внутри одновременно испускает такое же количество света той же частоты. Таким образом, количество поглощенного света каждой частоты внутри черного тела остается неизменной, хотя поглощают и испускают его разные атомы тела.

До этого момента поведение черного тела остается достаточно понятным. Проблемы в рамках классической физики (под «классической» здесь имеется в виду физика до появления квантовой механики) начались при попытках подсчитать энергию излучения, сохраняемую внутри абсолютно черного тела в равновесном состоянии. И скоро выяснились две вещи:

  • чем выше волновая частота лучей, тем больше их накапливается внутри черного тела (то есть, чем короче длины волн исследуемой части спектра волн излучения, тем больше лучей этой части спектра внутри черного тела предсказывает классическая теория);
  • чем выше частота волны, тем большую энергию она несет и, соответственно, тем больше ее сохраняется внутри черного тела.

По совокупности два этих заключения привели к немыслимому результату: энергия излучения внутри черного тела должна быть бесконечной! Эта злая насмешка над законами классической физики была окрещена ультрафиолетовой катастрофой , поскольку высокочастотное излучение лежит в ультрафиолетовой части спектра.

Порядок удалось восстановить немецкому физику Максу Планку (см. Постоянная Планка) — он показал, что проблема снимается, если допустить, что атомы могут поглощать и излучать свет только порциями и только на определенных частотах. (Позже Альберт Эйнштейн обобщил эту идею, введя понятие фотонов — строго определенных порций светового излучения.) По такой схеме многие частоты излучения, предсказываемые классической физикой, просто не могут существовать внутри черного тела, поскольку атомы не способны ни поглощать, ни испускать их; соответственно, эти частоты выпадают из рассмотрения при расчете равновесного излучения внутри черного тела. Оставив только допустимые частоты, Планк предотвратил ультрафиолетовую катастрофу и направил науку по пути верного понимания устройства мира на субатомном уровне. Кроме того, он рассчитал характерное распределение равновесного излучения черного тела по частотам.

Это распределение получило всемирную известность через многие десятилетия после его публикации самим Планком, когда ученые-космологи выяснили, что открытое ими реликтовое микроволновое излучение (см. Большой взрыв) в точности подчиняется распределению Планка по своим спектральным характеристикам и соответствует излучению абсолютно черного тела при температуре около трех градусов выше абсолютного нуля.