Când derivata unei funcții este egală cu. Derivată a unei funcții

  • 17.10.2019

Demonstrarea și derivarea formulelor pentru derivata exponențialului (e la puterea x) și a funcției exponențiale (a la puterea x). Exemple de calculare a derivatelor lui e^2x, e^3x și e^nx. Formule pentru derivate de ordin superior.

Derivata unui exponent este egală cu exponentul însuși (derivata lui e la puterea x este egală cu e la puterea x):
(1) (e x )′ = e x.

Derivata unei functii exponentiale cu baza a este egala cu functia insasi inmultita cu logaritmul natural al lui a:
(2) .

Derivarea formulei pentru derivata exponențialului, e la puterea x

O exponențială este o funcție exponențială a cărei bază este egală cu numărul e, care este următoarea limită:
.
Aici poate fi fie un număr natural, fie un număr real. În continuare, derivăm formula (1) pentru derivata exponențialului.

Derivarea formulei derivate exponenţiale

Luați în considerare exponențialul, e la puterea x:
y = e x .
Această funcție este definită pentru toată lumea.
(3) .

Să găsim derivata ei în raport cu variabila x.
Prin definiție, derivata este următoarea limită: Să transformăm această expresie pentru a o reduce la proprietăți și reguli matematice cunoscute. Pentru a face acest lucru avem nevoie de următoarele fapte:
(4) ;
O) Proprietatea exponentului:
(5) ;
B) Proprietatea logaritmului:
(6) .
ÎN)
Continuitatea logaritmului și proprietatea limitelor pentru o funcție continuă: Iată o funcție care are o limită și această limită este pozitivă.
(7) .

G)
;
.

Semnificația celei de-a doua limite remarcabile:
Să aplicăm aceste fapte la limita noastră (3). Folosim proprietatea (4):
.
Să facem o înlocuire.
.

Apoi ; .
.

Datorită continuităţii exponenţialului,
Prin urmare, când , .
.

Ca rezultat obținem:
.
Să facem o înlocuire.
.

Apoi . La , . Și avem:

Să aplicăm proprietatea logaritmului (5):

.
(8)
Apoi

Să aplicăm proprietatea (6). Deoarece există o limită pozitivă și logaritmul este continuu, atunci: Aici am folosit și a doua limită remarcabilă (7). Apoi Astfel, am obţinut formula (1) pentru derivata exponenţialului.
;
.
Derivarea formulei pentru derivata unei funcții exponențiale
.

Acum derivăm formula (2) pentru derivata funcției exponențiale cu o bază de gradul a.

Noi credem că și .
(14) .
(1) .

Vedem că derivata funcției (14) este egală cu funcția (14) însăși. Diferențiând (1), obținem derivate de ordinul doi și trei:
;
.

Aceasta arată că derivata de ordinul n-lea este, de asemenea, egală cu funcția originală:
.

Derivate de ordin superior ale funcției exponențiale

Acum considerăm o funcție exponențială cu o bază de grad a:
.
Am găsit derivata sa de ordinul întâi:
(15) .

Diferențiând (15), obținem derivate de ordinul doi și trei:
;
.

Vedem că fiecare diferențiere duce la înmulțirea funcției originale cu .
.

Prin urmare, derivata de ordinul n-a are următoarea formă:

Derivatul unei funcții este unul dintre subiectele dificile din programa școlară. Nu fiecare absolvent va răspunde la întrebarea ce este un derivat. Acest articol explică într-un mod simplu și clar ce este un derivat și de ce este necesar.

. Nu ne vom strădui acum pentru rigoare matematică în prezentare. Cel mai important lucru este să înțelegeți sensul.

Să ne amintim definiția:

Derivata este rata de schimbare a unei functii.

Figura prezintă grafice a trei funcții. Care crezi că crește mai repede?

Răspunsul este evident - al treilea. Are cea mai mare rată de schimbare, adică cea mai mare derivată.

Iată un alt exemplu.

Kostya, Grisha și Matvey au primit locuri de muncă în același timp. Să vedem cum s-au schimbat veniturile lor în cursul anului: Graficul arată totul deodată, nu-i așa? Venitul lui Kostya s-a dublat în șase luni. Și venitul lui Grisha a crescut, dar doar puțin. Și venitul lui Matvey a scăzut la zero. Condițiile de pornire sunt aceleași, dar rata de schimbare a funcției, adică derivat

, - diferit. În ceea ce privește Matvey, derivatul său de venit este în general negativ.

Intuitiv, estimăm cu ușurință rata de schimbare a unei funcții. Dar cum facem asta?

Ceea ce ne uităm cu adevărat este cât de abrupt urcă (sau jos) graficul unei funcții. Cu alte cuvinte, cât de repede se schimbă y pe măsură ce x se schimbă? Evident, aceeași funcție în puncte diferite poate avea valori derivate diferite - adică se poate schimba mai repede sau mai lent.

Derivata unei functii se noteaza .

Vă vom arăta cum să-l găsiți folosind un grafic. A fost desenat un grafic al unei anumite funcții. Să luăm un punct cu o abscisă pe el. Să desenăm o tangentă la graficul funcției în acest punct. Vrem să estimăm cât de abrupt crește graficul unei funcții. O valoare convenabilă pentru aceasta este.

tangenta unghiului tangentei

Vă rugăm să rețineți că ca unghi de înclinare al tangentei luăm unghiul dintre tangentă și direcția pozitivă a axei.

Uneori, elevii întreabă ce este o tangentă la graficul unei funcții. Aceasta este o linie dreaptă care are un singur punct comun cu graficul din această secțiune și așa cum se arată în figura noastră. Arată ca o tangentă la un cerc.

Să-l găsim. Ne amintim că tangenta unui unghi ascuțit într-un triunghi dreptunghic este egală cu raportul dintre latura opusă și latura adiacentă. Din triunghi:

Am găsit derivata folosind un grafic fără să știm măcar formula funcției. Astfel de probleme se găsesc adesea în examenul de stat unificat la matematică sub numărul.

Există o altă relație importantă. Amintiți-vă că linia dreaptă este dată de ecuație

Mărimea din această ecuație se numește panta unei drepte. Este egală cu tangenta unghiului de înclinare a dreptei la axă.

.

Înțelegem asta

Să ne amintim această formulă. Exprimă semnificația geometrică a derivatei.

Derivata unei functii intr-un punct este egala cu panta tangentei trasate la graficul functiei in acel punct.

Cu alte cuvinte, derivata este egală cu tangentei unghiului tangentei.

Am spus deja că aceeași funcție poate avea derivate diferite în puncte diferite. Să vedem cum este legată derivata de comportamentul funcției.

Să desenăm un grafic al unei funcții. Lăsați această funcție să crească în unele zone și să scadă în altele și în ritmuri diferite. Și lasă această funcție să aibă puncte maxime și minime.

La un moment dat funcția crește. O tangentă la graficul desenat într-un punct formează un unghi ascuțit; cu direcția pozitivă a axei. Aceasta înseamnă că derivata din punct este pozitivă.

În momentul în care funcția noastră scade. Tangenta în acest punct formează un unghi obtuz; cu direcția pozitivă a axei. Deoarece tangenta unui unghi obtuz este negativă, derivata din punct este negativă.

Iată ce se întâmplă:

Dacă o funcție este în creștere, derivata ei este pozitivă.

Dacă scade, derivata sa este negativă.

Ce se va întâmpla la punctele maxime și minime? Vedem ca in punctele (punctul maxim) si (punctul minim) tangenta este orizontala. Prin urmare, tangentei tangentei în aceste puncte este zero, iar derivata este, de asemenea, zero.

Punct - punct maxim. În acest moment, creșterea funcției este înlocuită cu o scădere. În consecință, semnul derivatei se schimbă în punctul „plus” în „minus”.

În punctul - punctul minim - derivata este, de asemenea, zero, dar semnul său se schimbă de la „minus” la „plus”.

Concluzie: folosind derivata, putem afla tot ce ne intereseaza despre comportamentul unei functii.

Dacă derivata este pozitivă, atunci funcția crește.

Dacă derivata este negativă, atunci funcția scade.

În punctul maxim, derivata este zero și își schimbă semnul din „plus” în „minus”.

La punctul minim, derivata este, de asemenea, zero și își schimbă semnul din minus în plus.

Să scriem aceste concluzii sub forma unui tabel:

crește punct maxim scade punct minim crește
+ 0 - 0 +

Să facem două mici precizări. Veți avea nevoie de unul dintre ele când rezolvați problema. Un altul - în primul an, cu un studiu mai serios al funcțiilor și derivatelor.

Este posibil ca derivata unei funcții la un moment dat să fie egală cu zero, dar funcția nu are nici un maxim, nici un minim în acest punct. Acesta este așa-numitul :

Într-un punct, tangenta la grafic este orizontală, iar derivata este zero. Cu toate acestea, înainte de punct funcția a crescut - și după punct continuă să crească. Semnul derivatului nu se schimbă - rămâne pozitiv așa cum a fost.

De asemenea, se întâmplă ca în punctul de maxim sau minim derivata să nu existe. Pe grafic, aceasta corespunde unei ruperi ascuțite, când este imposibil să desenați o tangentă într-un punct dat.

Cum să găsiți derivata dacă funcția este dată nu de un grafic, ci de o formulă? În acest caz se aplică

Fie definită funcția y = f(x) în intervalul X. Derivat funcția y = f(x) în punctul x o se numește limită

= .

Dacă această limită finit, atunci se apelează funcția f(x). diferentiabil la punct x o;

Mai mult, se dovedește a fi neapărat continuu în acest moment. Dacă limita luată în considerare este egală cu  (sau - ), atunci cu condiția ca funcția la punctul o X Dacă limita luată în considerare este egală cu  (sau - ), atunci cu condiția ca funcția la punctul o este continuă, vom spune că funcția f(x) o are în punct.

derivat infinit

Derivatul este notat prin simboluri

y , f (x o), , . Găsirea derivatei se numește diferenţiere funcții. Sensul geometric al derivatului Dacă limita luată în considerare este egală cu  (sau - ), atunci cu condiția ca funcția la punctul o ; este că derivata este panta tangentei la curba y=f(x) într-un punct dat sens fizic -

este că derivata traseului în raport cu timpul este viteza instantanee a unui punct în mișcare în timpul mișcării rectilinie s = s(t) în momentul t o . Dacă Cu

este un număr constant și u = u(x), v = v(x) sunt câteva funcții diferențiabile, atunci următoarele reguli de diferențiere sunt valabile:

1) (c) " = 0, (cu) " = cu";

2) (u+v)" = u"+v";

3) (uv)" = u"v+v"u;

4) (u/v)" = (u"v-v"u)/v 2; 5) dacă y = f(u), u = (x), adică. y = f((x)) - functie complexa sau suprapunere

6) dacă pentru o funcție y = f(x) există o funcție diferențiabilă inversă x = g(y), și  0, atunci .

Pe baza definiției derivatei și a regulilor de diferențiere, este posibil să se întocmească o listă de derivate tabelare ale principalelor funcții elementare.

1. (u )" =  u  1 u" (  R).

2. (a u)" = a u lna u".

3. (e u)" = e u u".

4. (log a u)" = u"/(u ln a).

5. (ln u)" = u"/u.

6. (sin u)" = cos u u".

7. (cos u)" = - sin u u".

8. (tg u)" = 1/ cos 2 u u".

9. (ctg u)" = - u" / sin 2 u.

10. (arcsin u)" = u" / .

11. (arccos u)" = - u" / .

12. (arctg u)" = u"/(1 + u 2).

13. (arcctg u)" = - u"/(1 + u 2).

Să calculăm derivata expresiei exponențiale putere y=u v , (u>0), unde uŞi v esenţa funcţiei din Dacă limita luată în considerare este egală cu  (sau - ), atunci cu condiția ca funcția la punctul, având derivate la un punct dat tu",v".

Luând logaritmi ai egalității y=u v , obținem ln y = v ln u.

Echivalarea derivatelor cu privire la Dacă limita luată în considerare este egală cu  (sau - ), atunci cu condiția ca funcția la punctul din ambele părți ale egalității rezultate folosind regulile 3, 5 și formula pentru derivata unei funcții logaritmice, vom avea:

y"/y = vu"/u +v" ln u, de unde y" = y (vu"/u +v" ln u).

(u v)"=u v (vu"/u+v" ln u), u > 0.

De exemplu, dacă y = x sin x, atunci y" = x sin x (sin x/x + cos x ln x).

Dacă funcția y = f(x) este diferențiabilă în punct x, adică are o derivată finită în acest punct y", atunci = y"+, unde 0 la х 0; deci  y = y" х +  x.

Partea principală a incrementului funcției, liniară în raport cu x, este numită diferenţial funcțiiși se notează cu dy: dy = y" х. Dacă punem y=x în această formulă, obținem dx = x"х = 1х =х, deci dy=y"dx, adică simbolul pentru Notația derivată poate fi gândită ca o fracție.

Creșterea funcției  y este incrementul ordonatei curbei și diferența d y este incrementul de ordonată a tangentei.

Să găsim pentru funcția y=f(x) derivata ei y = f (x). Derivata acestei derivate se numeste derivată de ordinul doi funcțiile f(x), sau derivata a doua, .

si este desemnat

Următoarele sunt definite și desemnate în același mod: - ,

derivată de ordinul trei

derivată de ordinul al patrulea - si in general - .

derivată de ordinul al n-lea.15. Exemplul 3

Calculați derivata funcției y=(3x 3 -2x+1)sin x. Soluţie.

După regula 3, y"=(3x 3 -2x+1)"sin x + (3x 3 -2x+1)(sin x)" = = (9x 2 -2)sin x + (3x 3 -2x +1)cos x. 3.16 Exemplu

Calculați derivata funcției y=(3x 3 -2x+1)sin x.. = .

derivată de ordinul al n-lea.17. Găsiți y", y = tan x + .

Calculați derivata funcției y=(3x 3 -2x+1)sin x. Conform regulii de diferențiere a unei funcții complexe, obținem: y" x =y " u u" x =()" u (x 4 +1)" x =(2u +. Deoarece u=x 4 +1, atunci (2 x 4 + 2+ .

Nivel de intrare

Derivată a unei funcții. Ghidul suprem (2019)

Să ne imaginăm un drum drept care trece printr-o zonă deluroasă. Adică urcă și coboară, dar nu se întoarce la dreapta sau la stânga. Dacă axa este îndreptată orizontal de-a lungul drumului și vertical, atunci linia drumului va fi foarte similară cu graficul unei funcții continue:

Axa este un anumit nivel de altitudine zero în viață, folosim nivelul mării.

Pe măsură ce avansăm pe un astfel de drum, ne deplasăm și în sus sau în jos. Mai putem spune: atunci când argumentul se schimbă (deplasare de-a lungul axei absciselor), se modifică valoarea funcției (deplasare de-a lungul axei ordonatelor). Acum să ne gândim cum să determinăm „abrupta” drumului nostru? Ce fel de valoare ar putea fi aceasta? Este foarte simplu: cât de mult se va schimba înălțimea atunci când înaintezi o anumită distanță. Într-adevăr, pe diferite secțiuni ale drumului, deplasându-ne înainte (de-a lungul axei x) cu un kilometru, vom crește sau coborî cu un număr diferit de metri față de nivelul mării (de-a lungul axei y).

Să notăm progresul (a se citi „delta x”).

Litera greacă (delta) este folosită în mod obișnuit în matematică ca prefix care înseamnă „schimbare”. Adică - aceasta este o schimbare în cantitate, - o schimbare; atunci ce este? Așa e, o schimbare de amploare.

Important: o expresie este un singur întreg, o variabilă. Nu separa niciodată „delta” de „x” sau de orice altă literă!

Adică, de exemplu, .

Deci, ne-am înaintat, pe orizontală, cu. Dacă comparăm linia drumului cu graficul funcției, atunci cum notăm creșterea? Cu siguranță, . Adică, pe măsură ce avansăm, ne ridicăm mai sus.

Valoarea este ușor de calculat: dacă la început eram la înălțime, iar după mutare ne-am trezit la înălțime, atunci. Dacă punctul final este mai jos decât punctul de plecare, va fi negativ - asta înseamnă că nu urcăm, ci coborăm.

Să revenim la „abrupte”: aceasta este o valoare care arată cât de mult (abrupt) crește înălțimea atunci când avansăm cu o unitate de distanță:

Acum să ne uităm la vârful unui deal. Dacă luați începutul tronsonului cu jumătate de kilometru înainte de vârf, iar sfârșitul cu jumătate de kilometru după acesta, puteți vedea că înălțimea este aproape aceeași.

Adică, conform logicii noastre, se dovedește că panta aici este aproape egală cu zero, ceea ce în mod clar nu este adevărat. Puțin peste o distanță de kilometri se pot schimba multe. Este necesar să se ia în considerare suprafețe mai mici pentru o evaluare mai adecvată și mai precisă a abruptului. De exemplu, dacă măsurați modificarea înălțimii pe măsură ce vă deplasați cu un metru, rezultatul va fi mult mai precis. Dar chiar și această precizie poate să nu fie suficientă pentru noi - la urma urmei, dacă există un stâlp în mijlocul drumului, putem pur și simplu să-l depășim. Ce distanță ar trebui să alegem atunci? Centimetru? Milimetru? Mai puțin înseamnă mai mult!

În viața reală, măsurarea distanțelor la cel mai apropiat milimetru este mai mult decât suficientă. Dar matematicienii luptă întotdeauna spre perfecțiune. Prin urmare, conceptul a fost inventat infinitezimal, adică valoarea absolută este mai mică decât orice număr pe care îl putem numi. De exemplu, spui: o trilionime! Cu cât mai puțin? Și împărțiți acest număr la - și va fi și mai puțin. Și așa mai departe. Dacă vrem să scriem că o mărime este infinitezimală, scriem astfel: (citim „x tinde spre zero”). Este foarte important să înțelegeți ca acest numar nu este zero! Dar foarte aproape de ea. Aceasta înseamnă că puteți împărți cu el.

Conceptul opus infinitezimal este infinit de mare (). Probabil l-ați întâlnit deja când lucrați la inegalități: acest număr este modulo mai mare decât orice număr la care vă puteți gândi. Dacă găsiți cel mai mare număr posibil, înmulțiți-l cu doi și veți obține un număr și mai mare. Iar infinitul este chiar mai mare decât ceea ce se întâmplă. De fapt, infinit de mare și infinit de mic sunt invers unul față de celălalt, adică la și invers: la.

Acum să ne întoarcem la drumul nostru. Panta calculată în mod ideal este panta calculată pentru un segment infinitezimal al traseului, adică:

Observ că, cu o deplasare infinitezimală, modificarea înălțimii va fi și ea infinitezimală. Dar permiteți-mi să vă reamintesc că infinitezimal nu înseamnă egal cu zero. Dacă împărțiți numere infinitezimale între ele, puteți obține un număr complet obișnuit, de exemplu, . Adică, o valoare mică poate fi de exact ori mai mare decât alta.

Pentru ce sunt toate acestea? Drumul, abruptul... Nu mergem la un raliu de mașini, dar predăm matematică. Și în matematică totul este exact la fel, doar numit diferit.

Conceptul de derivat

Derivata unei funcții este raportul dintre incrementul funcției și incrementul argumentului pentru o creștere infinitezimală a argumentului.

Treptatîn matematică ei numesc schimbare. Se numește măsura în care argumentul () se schimbă pe măsură ce se mișcă de-a lungul axei increment de argumentși este desemnat cât de mult s-a schimbat funcția (înălțimea) când se deplasează înainte de-a lungul axei cu o distanță creșterea funcției si este desemnat.

Deci, derivata unei funcții este raportul față de când. Notăm derivata cu aceeași literă ca și funcția, doar cu un prim în dreapta sus: sau pur și simplu. Deci, să scriem formula derivată folosind aceste notații:

Ca și în analogia cu drumul, aici când funcția crește, derivata este pozitivă, iar când scade, este negativă.

Derivata poate fi egala cu zero? Cu siguranţă. De exemplu, dacă conducem pe un drum orizontal plat, abruptul este zero. Și este adevărat, înălțimea nu se schimbă deloc. Așa este și cu derivata: derivata unei funcții constante (constante) este egală cu zero:

deoarece incrementul unei astfel de funcții este egal cu zero pentru oricare.

Să ne amintim exemplul de pe deal. S-a dovedit că este posibil să se aranjeze capetele segmentului pe părți opuse ale vârfului astfel încât înălțimea la capete să fie aceeași, adică segmentul este paralel cu axa:

Dar segmentele mari sunt un semn de măsurare inexactă. Ne vom ridica segmentul paralel cu el însuși, apoi lungimea acestuia va scădea.

În cele din urmă, când suntem infinit aproape de vârf, lungimea segmentului va deveni infinitezimală. Dar, în același timp, a rămas paralel cu axa, adică diferența de înălțimi la capete este egală cu zero (nu tinde, dar este egală). Deci derivata

Acest lucru poate fi înțeles astfel: când stăm în vârf, o mică deplasare la stânga sau la dreapta ne schimbă neglijabil înălțimea.

Există și o explicație pur algebrică: la stânga vârfului funcția crește, iar la dreapta scade. După cum am aflat mai devreme, atunci când o funcție crește, derivata este pozitivă, iar când scade, este negativă. Dar se schimbă lin, fără sărituri (întrucât drumul nu își schimbă brusc panta nicăieri). Prin urmare, trebuie să existe între valori negative și pozitive. Acesta va fi acolo unde funcția nici nu crește, nici nu scade - în punctul de vârf.

Același lucru este valabil și pentru jgheab (zona în care funcția din stânga scade și din dreapta crește):

Mai multe despre creșteri.

Deci schimbăm argumentul în mărime. Ne schimbăm de la ce valoare? Ce a devenit (argumentul) acum? Putem alege orice punct, iar acum vom dansa din el.

Luați în considerare un punct cu o coordonată. Valoarea funcției din ea este egală. Apoi facem aceeași creștere: creștem coordonatele cu. Care este argumentul acum? Foarte usor: . Care este valoarea funcției acum? Unde merge argumentul, la fel merge și funcția: . Cum rămâne cu creșterea funcției? Nimic nou: aceasta este încă suma cu care funcția s-a schimbat:

Exersați găsirea incrementelor:

  1. Găsiți incrementul funcției într-un punct în care incrementul argumentului este egal cu.
  2. Același lucru este valabil și pentru funcția la un punct.

Solutii:

În puncte diferite cu același argument increment, incrementul funcției va fi diferit. Aceasta înseamnă că derivata în fiecare punct este diferită (am discutat despre asta chiar de la început - abruptul drumului este diferit în puncte diferite). Prin urmare, atunci când scriem o derivată, trebuie să indicăm în ce moment:

Funcția de putere.

O funcție de putere este o funcție în care argumentul este într-o anumită măsură (logic, nu?).

Mai mult – în orice măsură: .

Cel mai simplu caz este când exponentul este:

Să-i găsim derivata la un punct. Să ne amintim definiția unei derivate:

Deci argumentul se schimbă de la la. Care este incrementul funcției?

Incrementul este acesta. Dar o funcție în orice punct este egală cu argumentul său. De aceea:

Derivata este egala cu:

Derivata lui este egala cu:

b) Acum considerăm funcția pătratică (): .

Acum să ne amintim asta. Aceasta înseamnă că valoarea incrementului poate fi neglijată, deoarece este infinitezimală și, prin urmare, nesemnificativă pe fondul celuilalt termen:

Deci, am venit cu o altă regulă:

c) Continuăm seria logică: .

Această expresie poate fi simplificată în diferite moduri: deschideți prima paranteză folosind formula de înmulțire abreviată a cubului sumei sau factorizați întreaga expresie folosind formula diferenței cuburilor. Încercați să o faceți singur folosind oricare dintre metodele sugerate.

Deci, am primit următoarele:

Și din nou să ne amintim asta. Aceasta înseamnă că putem neglija toți termenii care conțin:

Primim: .

d) Reguli similare pot fi obținute pentru puteri mari:

e) Rezultă că această regulă poate fi generalizată pentru o funcție de putere cu un exponent arbitrar, nici măcar un număr întreg:

(2)

Regula poate fi formulată în cuvintele: „gradul este prezentat ca coeficient și apoi redus cu ”.

Vom demonstra această regulă mai târziu (aproape la sfârșit). Acum să ne uităm la câteva exemple. Aflați derivata funcțiilor:

  1. (în două moduri: prin formulă și folosind definiția derivatei - prin calcularea incrementului funcției);
  1. . Credeți sau nu, aceasta este o funcție de putere. Dacă aveți întrebări precum „Cum este asta? Unde este gradul?”, amintiți-vă subiectul „”!
    Da, da, rădăcina este și ea un grad, doar fracțional: .
    Aceasta înseamnă că rădăcina noastră pătrată este doar o putere cu un exponent:
    .
    Căutăm derivata folosind formula recent învățată:

    Dacă în acest moment devine din nou neclar, repetați subiectul „”!!! (aproximativ un grad cu exponent negativ)

  2. . Acum exponentul:

    Și acum prin definiție (ai uitat încă?):
    ;
    .
    Acum, ca de obicei, neglijăm termenul care conține:
    .

  3. . Combinație de cazuri anterioare: .

Funcții trigonometrice.

Aici vom folosi un fapt din matematica superioară:

Cu expresie.

Dovada o vei învăța în primul an de institut (și pentru a ajunge acolo, trebuie să treci bine Examenul Unificat de Stat). Acum o voi arăta doar grafic:

Vedem că atunci când funcția nu există - punctul de pe grafic este tăiat. Dar cu cât este mai aproape de valoare, cu atât funcția este mai aproape de aceasta.

În plus, puteți verifica această regulă folosind un calculator. Da, da, nu fi timid, ia un calculator, nu suntem încă la examenul de stat unificat.

Deci, să încercăm: ;

Nu uitați să comutați calculatorul în modul Radians!

etc. Vedem că cu cât este mai mic, cu atât valoarea raportului este mai aproape de.

a) Luați în considerare funcția. Ca de obicei, să-i găsim incrementul:

Să transformăm diferența de sinusuri într-un produs. Pentru a face acest lucru, folosim formula (rețineți subiectul „”): .

Acum derivata:

Să facem un înlocuitor: . Atunci pentru infinitezimal este și infinitezimal: . Expresia pentru ia forma:

Și acum ne amintim asta cu expresia. Și, de asemenea, ce se întâmplă dacă o cantitate infinitezimală poate fi neglijată în sumă (adică la).

Deci, obținem următoarea regulă: derivata sinusului este egală cu cosinusul:

Acestea sunt derivate de bază („tabulare”). Iată-le într-o singură listă:

Mai târziu le vom adăuga câteva, dar acestea sunt cele mai importante, deoarece sunt folosite cel mai des.

Practica:

  1. Aflați derivata funcției într-un punct;
  2. Aflați derivata funcției.

Solutii:

  1. Mai întâi, să găsim derivata în formă generală și apoi să îi înlocuim valoarea:
    ;
    .
  2. Aici avem ceva similar cu o funcție de putere. Să încercăm să o aducem la
    vedere normală:
    .
    Grozav, acum poți folosi formula:
    .
    .
  3. . Eeeeeee….. Ce este asta????

Bine, ai dreptate, încă nu știm cum să găsim astfel de derivate. Aici avem o combinație de mai multe tipuri de funcții. Pentru a lucra cu ei, trebuie să înveți mai multe reguli:

Exponent și logaritm natural.

Există o funcție în matematică a cărei derivată pentru orice valoare este egală cu valoarea funcției însăși în același timp. Se numește „exponent” și este o funcție exponențială

Baza acestei funcții - o constantă - este o fracție zecimală infinită, adică un număr irațional (cum ar fi). Se numește „numărul Euler”, motiv pentru care este notat cu o literă.

Deci, regula:

Foarte ușor de reținut.

Ei bine, să nu mergem departe, să luăm imediat în considerare funcția inversă. Care funcție este inversul funcției exponențiale? Logaritm:

În cazul nostru, baza este numărul:

Un astfel de logaritm (adică un logaritm cu bază) se numește „natural” și folosim o notație specială pentru el: scriem în schimb.

Cu ce ​​este egal? Desigur.

Derivata logaritmului natural este, de asemenea, foarte simplă:

Exemple:

  1. Aflați derivata funcției.
  2. Care este derivata functiei?

Raspunsuri: Logaritmul exponențial și natural sunt funcții unice simple dintr-o perspectivă derivată. Funcțiile exponențiale și logaritmice cu orice altă bază vor avea o derivată diferită, pe care o vom analiza mai târziu, după ce vom parcurge regulile de diferențiere.

Reguli de diferențiere

Reguli de ce? Din nou un nou termen, din nou?!...

Diferenţiere este procesul de găsire a derivatei.

Asta e tot. Ce altceva poți numi acest proces într-un singur cuvânt? Nu este derivată... Diferenţialul matematicienilor este acelaşi increment al unei funcţii la. Acest termen provine din latinescul diferentia - diferenta. Aici.

Când derivăm toate aceste reguli, vom folosi două funcții, de exemplu, și. De asemenea, vom avea nevoie de formule pentru incrementele lor:

Sunt 5 reguli în total.

Constanta este scoasă din semnul derivatului.

Dacă - un număr constant (constant), atunci.

Evident, această regulă funcționează și pentru diferența: .

Să demonstrăm. Lasă-l, sau mai simplu.

Exemple.

Aflați derivatele funcțiilor:

  1. la un punct;
  2. la un punct;
  3. la un punct;
  4. la punct.

Solutii:

  1. (derivata este aceeași în toate punctele, deoarece este o funcție liniară, vă amintiți?);

Derivat al produsului

Totul este similar aici: haideți să introducem o nouă funcție și să găsim incrementul acesteia:

Derivat:

Exemple:

  1. Aflați derivatele funcțiilor și;
  2. Aflați derivata funcției într-un punct.

Solutii:

Derivată a unei funcții exponențiale

Acum cunoștințele tale sunt suficiente pentru a învăța cum să găsești derivata oricărei funcții exponențiale și nu doar exponenți (ai uitat încă ce este asta?).

Deci, unde este un număr.

Știm deja derivata funcției, așa că să încercăm să aducem funcția noastră la o nouă bază:

Pentru a face acest lucru, vom folosi o regulă simplă: . Apoi:

Ei bine, a funcționat. Acum încercați să găsiți derivata și nu uitați că această funcție este complexă.

A funcționat?

Iată, verifică-te:

Formula s-a dovedit a fi foarte asemănătoare cu derivata unui exponent: așa cum a fost, rămâne aceeași, a apărut doar un factor, care este doar un număr, dar nu o variabilă.

Exemple:
Aflați derivatele funcțiilor:

Raspunsuri:

Acesta este doar un număr care nu poate fi calculat fără un calculator, adică nu poate fi scris într-o formă mai simplă. Prin urmare, îl lăsăm în această formă în răspuns.

Derivată a unei funcții logaritmice

Este similar aici: cunoașteți deja derivata logaritmului natural:

Prin urmare, pentru a găsi un logaritm arbitrar cu o bază diferită, de exemplu:

Trebuie să reducem acest logaritm la bază. Cum schimbi baza unui logaritm? Sper să vă amintiți această formulă:

Abia acum vom scrie în schimb:

Numitorul este pur și simplu o constantă (un număr constant, fără o variabilă). Derivata se obține foarte simplu:

Derivate ale funcțiilor exponențiale și logaritmice nu se găsesc aproape niciodată în examenul de stat unificat, dar nu va fi de prisos să le cunoaștem.

Derivată a unei funcții complexe.

Ce este o „funcție complexă”? Nu, acesta nu este un logaritm și nu o arctangentă. Aceste funcții pot fi greu de înțeles (deși dacă ți se pare dificil logaritmul, citește subiectul „Logaritmi” și vei fi bine), dar din punct de vedere matematic, cuvântul „complex” nu înseamnă „dificil”.

Imaginați-vă o bandă transportoare mică: două persoane stau și fac niște acțiuni cu unele obiecte. De exemplu, primul învelește un baton de ciocolată într-un ambalaj, iar al doilea îl leagă cu o panglică. Rezultatul este un obiect compozit: un baton de ciocolată înfășurat și legat cu o panglică. Pentru a mânca un baton de ciocolată, trebuie să faceți pașii inversi în ordine inversă.

Să creăm o conductă matematică similară: mai întâi vom găsi cosinusul unui număr, apoi vom pătrat numărul rezultat. Așadar, ni se dă un număr (ciocolată), îi găsesc cosinus (înveliș), iar apoi pătrați ce am primit (legați-l cu o panglică). Ce s-a întâmplat? Funcţie. Acesta este un exemplu de funcție complexă: când, pentru a-i găsi valoarea, executăm prima acțiune direct cu variabila, iar apoi o a doua acțiune cu ceea ce a rezultat din prima.

Putem face cu ușurință aceiași pași în ordine inversă: mai întâi îl pătrați, iar apoi caut cosinusul numărului rezultat: . Este ușor de ghicit că rezultatul va fi aproape întotdeauna diferit. O caracteristică importantă a funcțiilor complexe: atunci când ordinea acțiunilor se schimbă, funcția se schimbă.

Cu alte cuvinte, o funcție complexă este o funcție al cărei argument este o altă funcție: .

Pentru primul exemplu, .

Al doilea exemplu: (același lucru). .

Acțiunea pe care o facem ultima va fi numită funcția „externă”., iar acțiunea efectuată prima - în consecință funcția „internă”.(acestea sunt nume informale, le folosesc doar pentru a explica materialul într-un limbaj simplu).

Încercați să determinați singur ce funcție este externă și care este internă:

Raspunsuri: Separarea funcțiilor interioare și exterioare este foarte asemănătoare cu schimbarea variabilelor: de exemplu, într-o funcție

  1. Ce acțiune vom efectua mai întâi? Mai întâi, să calculăm sinusul și abia apoi să-l cubăm. Aceasta înseamnă că este o funcție internă, dar una externă.
    Iar funcția inițială este compoziția lor: .
  2. Intern: ; extern: .
    Examinare: .
  3. Intern: ; extern: .
    Examinare: .
  4. Intern: ; extern: .
    Examinare: .
  5. Intern: ; extern: .
    Examinare: .

Schimbăm variabilele și obținem o funcție.

Ei bine, acum ne vom extrage batonul de ciocolată și vom căuta derivatul. Procedura este întotdeauna inversată: mai întâi căutăm derivata funcției exterioare, apoi înmulțim rezultatul cu derivata funcției interioare. În raport cu exemplul original, arată astfel:

Un alt exemplu:

Deci, să formulăm în sfârșit regula oficială:

Algoritm pentru găsirea derivatei unei funcții complexe:

Pare simplu, nu?

Să verificăm cu exemple:

Solutii:

1) Intern: ;

Extern: ;

2) Intern: ;

(doar nu încercați să o tăiați până acum! Nu iese nimic de sub cosinus, vă amintiți?)

3) Intern: ;

Extern: ;

Este imediat clar că aceasta este o funcție complexă pe trei niveluri: la urma urmei, aceasta este deja o funcție complexă în sine și extragem și rădăcina din ea, adică executăm a treia acțiune (punem ciocolata într-un ambalaj și cu o panglică în servietă). Dar nu există niciun motiv să ne fie frică: vom „despacheta” această funcție în aceeași ordine ca de obicei: de la sfârșit.

Adică mai întâi diferențiem rădăcina, apoi cosinusul și abia apoi expresia dintre paranteze. Și apoi înmulțim totul.

În astfel de cazuri, este convenabil să numerotați acțiunile. Adică să ne imaginăm ce știm. În ce ordine vom efectua acțiuni pentru a calcula valoarea acestei expresii? Să ne uităm la un exemplu:

Cu cât acțiunea este efectuată mai târziu, cu atât funcția corespunzătoare va fi mai „externă”. Secvența acțiunilor este aceeași ca înainte:

Aici cuibărirea este în general pe 4 niveluri. Să stabilim ordinea acțiunii.

1. Exprimarea radicală. .

2. Rădăcină. .

3. Sine. .

4. Pătrat. .

5. Punând totul împreună:

DERIVAT. SCURT DESPRE LUCRURILE PRINCIPALE

Derivată a unei funcții- raportul dintre incrementul funcției și incrementul argumentului pentru o creștere infinitezimală a argumentului:

Derivate de bază:

Reguli de diferentiere:

Constanta este scoasă din semnul derivat:

Derivată a sumei:

Derivat al produsului:

Derivată a coeficientului:

Derivata unei functii complexe:

Algoritm pentru găsirea derivatei unei funcții complexe:

  1. Definim funcția „internă” și găsim derivata ei.
  2. Definim funcția „externă” și găsim derivata ei.
  3. Înmulțim rezultatele primului și celui de-al doilea punct.

Ei bine, subiectul s-a terminat. Dacă citești aceste rânduri, înseamnă că ești foarte cool.

Pentru că doar 5% dintre oameni sunt capabili să stăpânească ceva pe cont propriu. Și dacă citești până la capăt, atunci ești în acest 5%!

Acum cel mai important lucru.

Ați înțeles teoria pe această temă. Și, repet, asta... asta este pur și simplu super! Ești deja mai bun decât marea majoritate a colegilor tăi.

Problema este că acest lucru poate să nu fie suficient...

Pentru ce?

Pentru promovarea cu succes a Examenului Unificat de Stat, pentru intrarea la facultate cu buget redus și, CEL MAI IMPORTANT, pe viață.

Nu te voi convinge de nimic, o să spun doar un lucru...

Oamenii care au primit o educație bună câștigă mult mai mult decât cei care nu au primit-o. Aceasta este statistica.

Dar acesta nu este principalul lucru.

Principalul lucru este că sunt MAI FERICIȚI (există astfel de studii). Poate pentru că mai multe oportunități se deschid în fața lor și viața devine mai strălucitoare? nu stiu...

Dar gandeste-te singur...

Ce este nevoie pentru a fi sigur că ești mai bun decât alții la examenul de stat unificat și, în cele din urmă, fii... mai fericit?

CĂGAȚI-VĂ MÂNĂ REZOLVÂND PROBLEME PE ACEST TEMA.

Nu ți se va cere teorie în timpul examenului.

vei avea nevoie rezolva problemele in timp.

Și, dacă nu le-ați rezolvat (MULTE!), cu siguranță veți face o greșeală stupidă undeva sau pur și simplu nu veți avea timp.

Este ca în sport - trebuie să o repeți de multe ori pentru a câștiga cu siguranță.

Găsiți colecția oriunde doriți, neaparat cu solutii, analiza detaliatași decide, decide, decide!

Puteți folosi sarcinile noastre (opțional) și noi, bineînțeles, le recomandăm.

Pentru a folosi mai bine sarcinile noastre, trebuie să contribuiți la prelungirea duratei de viață a manualului YouClever pe care îl citiți în prezent.

Cum? Există două opțiuni:

  1. Deblocați toate sarcinile ascunse din acest articol - 299 rub.
  2. Deblocați accesul la toate sarcinile ascunse din toate cele 99 de articole ale manualului - 499 rub.

Da, avem 99 de astfel de articole în manualul nostru și accesul la toate sarcinile și toate textele ascunse din ele poate fi deschis imediat.

Accesul la toate sarcinile ascunse este asigurat pe toată durata de viață a site-ului.

Si in concluzie...

Dacă nu vă plac sarcinile noastre, găsiți altele. Doar nu te opri la teorie.

„Înțeles” și „Pot rezolva” sunt abilități complet diferite. Ai nevoie de amândouă.

Găsiți probleme și rezolvați-le!

Dacă urmați definiția, atunci derivata unei funcții într-un punct este limita raportului de creștere a funcției Δ y la argumentul increment Δ x:

Totul pare a fi clar. Dar încercați să utilizați această formulă pentru a calcula, să zicem, derivata funcției f(x) = x 2 + (2x+ 3) · e x păcat x. Dacă faci totul prin definiție, atunci după câteva pagini de calcule vei adormi pur și simplu. Prin urmare, există modalități mai simple și mai eficiente.

Pentru început, observăm că din întreaga varietate de funcții putem distinge așa-numitele funcții elementare. Acestea sunt expresii relativ simple, ale căror derivate au fost mult timp calculate și tabulate. Astfel de funcții sunt destul de ușor de reținut - împreună cu derivatele lor.

Derivate ale funcţiilor elementare

Funcțiile elementare sunt toate cele enumerate mai jos. Derivatele acestor funcții trebuie cunoscute pe de rost. În plus, nu este deloc dificil să le memorezi - de aceea sunt elementare.

Deci, derivate ale funcțiilor elementare:

Nume Funcţie Derivat
Constant f(x) = C, CR 0 (da, zero!)
Putere cu exponent rațional f(x) = x n n · x n − 1
Sinusul f(x) = păcat x cos x
Cosinus f(x) = cos x −păcat x(minus sinus)
Tangentă f(x) = tg x 1/cos 2 x
Cotangentă f(x) = ctg x − 1/sin 2 x
Logaritmul natural f(x) = jurnal x 1/x
Logaritmul arbitrar f(x) = jurnal o x 1/(x ln o)
Funcția exponențială f(x) = e x e x(nu s-a schimbat nimic)

Dacă o funcție elementară este înmulțită cu o constantă arbitrară, atunci derivata noii funcție este de asemenea ușor de calculată:

(C · f)’ = C · f ’.

În general, constantele pot fi scoase din semnul derivatei. De exemplu:

(2x 3)’ = 2 · ( x 3)’ = 2 3 x 2 = 6x 2 .

Evident, funcțiile elementare pot fi adăugate între ele, multiplicate, împărțite - și multe altele. Așa vor apărea funcții noi, nu mai ales elementare, dar și diferențiate după anumite reguli. Aceste reguli sunt discutate mai jos.

Derivată a sumei și diferenței

Să fie date funcțiile f(x) Și g(x), ale căror derivate ne sunt cunoscute. De exemplu, puteți lua funcțiile elementare discutate mai sus. Apoi puteți găsi derivata sumei și diferenței acestor funcții:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Deci, derivata sumei (diferența) a două funcții este egală cu suma (diferența) derivatelor. Pot exista mai mulți termeni. De exemplu, ( f + g + h)’ = f ’ + g ’ + h ’.

Strict vorbind, nu există un concept de „scădere” în algebră. Există un concept de „element negativ”. Prin urmare diferența fg poate fi rescris ca o sumă f+ (−1) g, iar apoi rămâne o singură formulă - derivata sumei.

f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Funcţie f(x) este suma a două funcții elementare, prin urmare:

f ’(x) = (x 2 + păcat x)’ = (x 2)’ + (păcat x)’ = 2x+ cos x;

Raționăm în mod similar pentru funcție g(x). Numai că există deja trei termeni (din punct de vedere al algebrei):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Răspuns:
f ’(x) = 2x+ cos x;
g ’(x) = 4x · ( x 2 + 1).

Derivat al produsului

Matematica este o știință logică, așa că mulți oameni cred că, dacă derivata unei sume este egală cu suma derivatelor, atunci derivata produsului grevă„>egal cu produsul derivatelor. Dar stricați-vă! Derivata unui produs se calculează folosind o formulă complet diferită. Și anume:

(f · g) ’ = f ’ · g + f · g

Formula este simplă, dar este adesea uitată. Și nu numai școlari, ci și elevi. Rezultatul este probleme rezolvate incorect.

Sarcină. Găsiți derivate ale funcțiilor: f(x) = x 3 cos x; g(x) = (x 2 + 7x− 7) · e x .

Funcţie f(x) este produsul a două funcții elementare, deci totul este simplu:

f ’(x) = (x 3 cos x)’ = (x 3)’ cos x + x 3 (cos x)’ = 3x 2 cos x + x 3 (−sin x) = x 2 (3cos xx păcat x)

Funcţie g(x) primul multiplicator este puțin mai complicat, dar schema generală nu se schimbă. Evident, primul factor al funcției g(x) este un polinom și derivata sa este derivata sumei. Avem:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)’ · e x + (x 2 + 7x− 7) ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Răspuns:
f ’(x) = x 2 (3cos xx păcat x);
g ’(x) = x(x+ 9) · e x .

Vă rugăm să rețineți că în ultimul pas derivata este factorizată. În mod formal, acest lucru nu trebuie făcut, dar majoritatea derivatelor nu sunt calculate singure, ci pentru a examina funcția. Aceasta înseamnă că în continuare derivata va fi egalată cu zero, semnele sale vor fi determinate și așa mai departe. Pentru un astfel de caz, este mai bine să aveți o expresie factorizată.

Dacă există două funcții f(x) Și g(x), și g(x) ≠ 0 pe mulțimea care ne interesează, putem defini o nouă funcție h(x) = f(x)/g(x). Pentru o astfel de funcție puteți găsi și derivata:

Nu slab, nu? De unde a venit minusul? De ce g 2? Și așa! Aceasta este una dintre cele mai complexe formule - nu vă puteți da seama fără o sticlă. Prin urmare, este mai bine să-l studiați cu exemple specifice.

Sarcină. Găsiți derivate ale funcțiilor:

Numătorul și numitorul fiecărei fracții conțin funcții elementare, deci tot ce ne trebuie este formula pentru derivata coeficientului:


Conform tradiției, să factorizăm numărătorul - acest lucru va simplifica foarte mult răspunsul:

O funcție complexă nu este neapărat o formulă lungă de jumătate de kilometru. De exemplu, este suficient să luați funcția f(x) = păcat xși înlocuiți variabila x, să zicem, pe x 2 + ln x. Se va rezolva f(x) = păcat ( x 2 + ln x) - aceasta este o funcție complexă. Are și un derivat, dar nu va fi posibil să îl găsiți folosind regulile discutate mai sus.

Ce ar trebuii să fac? În astfel de cazuri, înlocuirea unei variabile și a unei formule pentru derivata unei funcții complexe ajută:

f ’(x) = f ’(t) · t', Dacă x este înlocuit cu t(x).

De regulă, situația cu înțelegerea acestei formule este și mai tristă decât cu derivata coeficientului. Prin urmare, este mai bine să-l explicați folosind exemple specifice, cu o descriere detaliată a fiecărui pas.

Sarcină. Găsiți derivate ale funcțiilor: f(x) = e 2x + 3 ; g(x) = păcat ( x 2 + ln x)

Rețineți că dacă în funcție f(x) în loc de expresia 2 x+ 3 va fi ușor x, atunci obținem o funcție elementară f(x) = e x. Prin urmare, facem o înlocuire: fie 2 x + 3 = t, f(x) = f(t) = e t. Căutăm derivata unei funcții complexe folosind formula:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

Și acum - atenție! Efectuăm înlocuirea inversă: t = 2x+ 3. Obținem:

f ’(x) = e t · t ’ = e 2x+ 3 (2 x + 3)’ = e 2x+ 3 2 = 2 e 2x + 3

Acum să ne uităm la funcție g(x). Evident că trebuie înlocuit x 2 + ln x = t. Avem:

g ’(x) = g ’(t) · t’ = (păcat t)’ · t’ = cos t · t

Înlocuire inversă: t = x 2 + ln x. Apoi:

g ’(x) = cos ( x 2 + ln x) · ( x 2 + ln x)’ = cos ( x 2 + ln x) · (2 x + 1/x).

Asta este! După cum se poate vedea din ultima expresie, întreaga problemă a fost redusă la calcularea sumei derivate.

Răspuns:
f ’(x) = 2 · e 2x + 3 ;
g ’(x) = (2x + 1/x) cos ( x 2 + ln x).

Foarte des în lecțiile mele, în loc de termenul „derivat”, folosesc cuvântul „prim”. De exemplu, cursa sumei este egală cu suma curselor. Este mai clar? Ei bine, asta e bine.

Astfel, calcularea derivatei se reduce la a scăpa de aceleași lovituri conform regulilor discutate mai sus. Ca exemplu final, să revenim la puterea derivată cu un exponent rațional:

(x n)’ = n · x n − 1

Puțini oameni știu asta în rol n poate fi un număr fracționar. De exemplu, rădăcina este x 0,5. Ce se întâmplă dacă există ceva fantezist sub rădăcină? Din nou, rezultatul va fi o funcție complexă - le place să dea astfel de construcții în teste și examene.

Sarcină. Aflați derivata funcției:

Mai întâi, să rescriem rădăcina ca o putere cu un exponent rațional:

f(x) = (x 2 + 8x − 7) 0,5 .

Acum facem un înlocuitor: let x 2 + 8x − 7 = t. Găsim derivata folosind formula:

f ’(x) = f ’(t) · t ’ = (t 0,5)’ · t’ = 0,5 · t−0,5 · t ’.

Să facem înlocuirea inversă: t = x 2 + 8x− 7. Avem:

f ’(x) = 0,5 · ( x 2 + 8x− 7) −0,5 · ( x 2 + 8x− 7)’ = 0,5 (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

În sfârșit, înapoi la rădăcini: