Строение земной атмосферы. География тема — атмосфера

  • 17.10.2019

Изменявшие земную поверхность. Не меньшее значение имела деятельность ветра , переносившего мелкие фракции горных пород на большие расстояния. Существенно влияли на разрушение горных пород колебания температуры и другие атмосферные факторы. Наряду с этим А. защищает поверхность Земли от разрушительного действия падающих метеоритов , большая часть которых сгорает при вхождении в плотные слои атмосферы.

Деятельность живых организмов, оказавшая сильное влияние на развитие А. сама в очень большой степени зависит от атмосферных условий. А. задерживает большую часть ультрафиолетового излучения Солнца , которое губительно действует на многие организмы. Атмосферный кислород используется в процессе дыхания животными и растениями , атмосферная углекислота - в процессе питания растений. Климатические факторы, в особенности термический режим и режим увлажнения, влияют на состояние здоровья и на деятельность человека . Особенно сильно зависит от климатических условий сельское хозяйство . В свою очередь, деятельность человека оказывает всё возрастающее влияние на состав А. и на климатический режим.

Строение атмосферы

Вертикальное распределение температуры в атмосфере и связанная с этим терминология.

Многочисленные наблюдения показывают, что А. имеет четко выраженное слоистое строение (см. рис.). Основные черты слоистой структуры А. определяются в первую очередь особенностями вертикального распределения температуры . В самой нижней части А. - тропосфере , где наблюдается интенсивное турбулентное перемешивание (см. Турбулентность в атмосфере и гидросфере), температура убывает с увеличением высоты, причём уменьшение температуры по вертикали составляет в среднем 6° на 1 км. Высота тропосферы изменяется от 8-10 км в полярных широтах до 16-18 км у экватора. В связи с тем, что плотность воздуха быстро убывает с высотой, в тропосфере сосредоточено около 80% всей массы А. Над тропосферой расположен переходный слой - тропопауза с температурой 190-220 , выше которой начинается стратосфера. В нижней части стратосферы уменьшение температуры с высотой прекращается, и температура остаётся приблизительно постоянной до высоты 25 км - т. н. изотермическая область (нижняя стратосфера); выше температура начинает возрастать - область инверсии (верхняя стратосфера). Температура достигает максимума ~ 270 K на уровне стратопаузы , расположенной на высоте около 55 км. Слой А., находящийся на высотах от 55 до 80 км, где вновь происходит понижение температуры с высотой, получил название мезосферы . Над ней находится переходный слой - мезопауза , выше которой располагается термосфера , где температура, увеличиваясь с высотой, достигает очень больших значений (св. 1000 K). Ещё выше (на высотах ~ 1000 км и более) находится экзосфера , откуда атмосферные газы рассеиваются в мировое пространство за счёт диссипации и где происходит постепенный переход от А. к межпланетному пространству . Обычно все слои А., находящиеся выше тропосферы, называются верхними, хотя иногда к нижним слоям А. относят также стратосферу или её нижняя часть.

Все структурные параметры А. (температура, давление, плотность) обладают значительной пространственно-временной изменчивостью (широтной, годовой, сезонной, суточной и др.). Поэтому данные рис. отражают лишь среднее состояние атмосферы.

Схема строения атмосферы:
1 - уровень моря ; 2 - высшая точка Земли - г. Джомолунгма (Эверест), 8848 м; 3 - кучевые облака хорошей погоды; 4 - мощно-кучевые облака; 5 - ливневые (грозовые) облака; 6 - слоисто-дождевые облака; 7 - перистые облака; 8 - самолёт ; 9 - слой максимальной концентрации озона ; 10 - перламутровые облака ; 11 - стратостат ; 12 - радиозонд ; 1З - метеоры ; 14 - серебристые облака ; 15 - полярные сияния ; 16 - американский самолёт-ракета Х-15; 17, 18, 19 - радиоволны, отражающиеся от ионизованных слоев и возвращающиеся на Землю; 20 - звуковая волна, отражающаяся от тёплого слоя и возвращающаяся на Землю; 21 - первый советский искусственный спутник Земли; 22 - межконтинентальная баллистическая ракета ; 23 - геофизические исследовательские ракеты; 24 - метеорологические спутники; 25 - космические корабли «Союз-4» и «Союз-5»; 26 - космические ракеты, уходящие за пределы атмосферы, а также радиоволна, пронизывающая ионизованные слои и уходящая из атмосферы; 27, 28 - диссипация (ускальзывание) атомов Н и Не; 29 - траектория солнечных протонов Р; 30 - проникновение ультрафиолетовых лучей (длина волны l > 2000 и l < 900).

Слоистая структура атмосферы имеет и много других разнообразных проявлений. Неоднороден по высоте химический состав А. Если на высотах до 90 км, где существует интенсивное перемешивание А., относительный состав постоянных компонент атмосферы остаётся практически неизменным (вся эта толща А. получила название гомосферы), то выше 90 км - в гетеросфере - под влиянием диссоциации молекул атмосферных газов ультрафиолетовым излучением Солнца происходит сильное изменение химического состава А. с высотой. Типичные черты этой части А. - слои озона и собственное свечение атмосферы. Сложная слоистая структура характерна для атмосферного аэрозоля - взвешенных в А. твёрдых частиц земного и космического происхождения. Наиболее часто встречаются аэрозольные слои под тропопаузой и на высоте около 20 км. Слоистым является вертикальное распределение электронов и ионов в А., что выражается в существовании D-, Е- и F-cлоёв ионосферы .

Состав атмосферы

Одна из наиболее оптически активных компонент - атмосферная аэрозоль - взвешенные в воздухе частицы размером от нескольких нм до нескольких десятков мкм, образующиеся при конденсации водяного пара и попадающие в А. с земной поверхности в результате индустриальных загрязнений, вулканических извержений, а также из космоса . Аэрозоль наблюдается как в тропосфере, так и в верхних слоях А. Концентрация аэрозоля быстро убывает с высотой, но на этот ход налагаются многочисленные вторичные максимумы, связанные с существованием аэрозольных слоев.

Верхние слои атмосферы

Выше 20-30 км молекулы А. в результате диссоциации в той или иной степени распадаются на атомы и в А. появляются свободные атомы и новые более сложные молекулы. Несколько выше становятся существенными ионизационные процессы.

Наиболее неустойчива область гетеросферы , где процессы ионизации и диссоциации порождают многочисленные фотохимические реакции, определяющие изменение состава воздуха с высотой. Здесь происходит также и гравитационное разделение газов, выражающееся в постепенном обогащении А. более лёгкими газами по мере увеличения высоты. По данным ракетных измерений, гравитационное разделение нейтральных газов - аргона и азота - наблюдается выше 105-110 км . Основные компоненты А. в слое 100-210 км - молекулярный азот, молекулярный кислород и атомарный кислород (концентрация последнего на уровне 210 км достигает 77 ± 20% от концентрации молекулярного азота).

Верхняя часть термосферы состоит главным образом из атомарного кислорода и азота. На высоте 500 км молекулярный кислород практически отсутствует, но молекулярный азот, относительная концентрация которого сильно уменьшается, всё ещё доминирует над атомарным.

В термосфере важную роль играют приливные движения (см. Приливы и отливы), гравитационные волны, фотохимические процессы, увеличение длины свободного пробега частиц, а также другие факторы. Результаты наблюдений торможения спутников на высотах 200-700 км привели к выводу о наличии взаимосвязи между плотностью, температурой и солнечной активностью , с которой связано существование суточного, полугодового и годового хода структурных параметров. Возможно, что суточные вариации в значительной степени обусловлены атмосферными приливами. В периоды солнечных вспышек температура на высоте 200 км в низких широтах может достигать 1700-1900°C.

Выше 600 км преобладающей компонентой становится гелий , а ещё выше, на высотах 2-20 тыс. км, простирается водородная корона Земли. На этих высотах Земля окружена оболочкой из заряженных частиц, температура которых достигает нескольких десятков тысяч градусов. Здесь располагаются внутренний и внешний радиационные пояса Земли . Внутренний пояс, заполненный главным образом протонами с энергией в сотни Мэв, ограничен высотами 500-1600 км на широтах от экватора до 35-40°. Внешний пояс состоит из электронов с энергиями порядка сотен кэв. За внешним поясом существует «самый внешний пояс», в котором концентрация и потоки электронов значительно выше. Вторжение солнечного корпускулярного излучения (солнечного ветра) в верхние слои А. порождает полярные сияния. Под влиянием этой бомбардировки верхней А. электронами и протонами солнечной короны возбуждается также собственное свечение атмосферы, которое раньше называлось свечением ночного неба . При взаимодействии солнечного ветра с магнитным полем Земли создаётся зона, получившая назв. магнитосферы Земли , куда не проникают потоки солнечной плазмы .

Для верхних слоев А. характерно существование сильных ветров, скорость которых достигает 100-200 м/сек. Скорость и направление ветра в пределах тропосферы, мезосферы и нижней термосферы обладают большой пространственно-временной изменчивостью. Хотя масса верхних слоев А. незначительна по сравнению с массой нижних слоев и энергия атмосферных процессов в высоких слоях сравнительно невелика, по-видимому, существует некоторое влияние высоких слоев А. на погоду и климат в тропосфере.

Радиационный, тепловой и водный балансы атмосферы

Практически единственным источником энергии для всех физических процессов, развивающихся в А., является солнечная радиация. Главная особенность радиационного режима А. - т. н. парниковый эффект: А. слабо поглощает коротковолновую солнечную радиацию (большая её часть достигает земной поверхности), но задерживает длинноволновое (целиком инфракрасное) тепловое излучение земной поверхности, что значительно уменьшает теплоотдачу Земли в космическое пространство и повышает её температуру.

Приходящая в А. солнечная радиация частично поглощается в А. главным образом водяным паром, углекислым газом, озоном и аэрозолями и рассеивается на частицах аэрозоля и на флуктуациях плотности А. Вследствие рассеяния лучистой энергии Солнца в А. наблюдается не только прямая солнечная, но и рассеянная радиация, в совокупности они составляют суммарную радиацию. Достигая земной поверхности, суммарная радиация частично отражается от неё. Величина отражённой радиации определяется отражательной способностью подстилающей поверхности, т. н. альбедо . За счёт поглощённой радиации земная поверхность нагревается и становится источником собственного длинноволнового излучения, направленного к А. В свою очередь, А. также излучает длинноволновую радиацию, направленную к земной поверхности (т. н. противоизлучение А.) ив мировое пространство (т. н. уходящее излучение). Рациональный теплообмен между земной поверхностью и А. определяется эффективным излучением - разностью между собственным излучением поверхности Земли и поглощённым ею противоизлучением А. Разность между коротковолновой радиацией, поглощённой земной поверхностью, и эффективным излучением называется радиационным балансом .

Преобразования энергии солнечной радиации после её поглощения на земной поверхности и в А. составляют тепловой баланс Земли. Главный источник тепла для атмосферы - земная поверхность, поглощающая основную долю солнечной радиации. Поскольку поглощение солнечной радиации в А. меньше потери тепла из А. в мировое пространство длинноволновым излучением, то радиационный расход тепла восполняется притоком тепла к А. от земной поверхности в форме турбулентного теплообмена и приходом тепла в результате конденсации водяного пара в А. Так как итоговая величина конденсации во всей А. равна количеству выпадающих осадков, а также величине испарения с земной поверхности, приход конденсационного тепла в А. численно равен затрате тепла на испарение на поверхности Земли (см. также Водный баланс).

Некоторая часть энергии солнечной радиации затрачивается на поддержание общей циркуляции А. и на другие атмосферные процессы, однако эта часть незначительна по сравнению с основными составляющими теплового баланса.

Движение воздуха

Вследствие большой подвижности атмосферного воздуха на всех высотах А. наблюдаются ветры. Движения воздуха зависят от многих факторов, из которых главный - неравномерность нагрева А. в разных районах земного шара.

Особенно большие контрасты температуры у поверхности Земли существуют между экватором и полюсами из-за различия прихода солнечной энергии на разных широтах. Наряду с этим на распределение температуры влияет расположение континентов и океанов. Из-за высоких теплоёмкости и теплопроводности океанических вод океаны значительно ослабляют колебания температуры, которые возникают в результате изменений прихода солнечной радиации в течение года . В связи с этим в умеренных и высоких широтах температура воздуха над океанами летом заметно ниже, чем над континентами, а зимой - выше.

Неравномерность нагревания атмосферы способствует развитию системы крупномасштабных воздушных течений - т. н. общей циркуляции атмосферы , которая создаёт горизонтальный перенос тепла в А., в результате чего различия в нагревании атмосферного воздуха в отдельных районах заметно сглаживаются. Наряду с этим общая циркуляция осуществляет влагооборот в А., в ходе которого водяной пар переносится с океанов на сушу и происходит увлажнение континентов. Движение воздуха в системе общей циркуляции тесно связано с распределением атмосферного давления и зависит также от вращения Земли (см. Кориолиса сила). На уровне моря распределение давления характеризуется его понижением у экватора, увеличением в субтропиках (пояса высокого давления) и понижением в умеренных и высоких широтах. При этом над материками внетропических широт давление зимой обычно повышено, а летом понижено.

С планетарным распределением давления связана сложная система воздушных течений, некоторые из них сравнительно устойчивы, а другие постоянно изменяются в пространстве и во времени. К устойчивым воздушным течениям относятся пассаты, которые направлены от субтропических широт обоих полушарий к экватору. Сравнительно устойчивы также муссоны - воздушные течения, возникающие между океаном и материком и имеющие сезонный характер. В умеренных широтах преобладают воздушные течения западных направления (с З. на В.). Эти течения включают крупные вихри - циклоны и антициклоны , обычно простирающиеся на сотни и тысячи км. Циклоны наблюдаются и в тропических широтах, где они отличаются меньшими размерами, но особенно большими скоростями ветра, часто достигающими силы урагана (т. н. тропические циклоны). В верхней тропосфере и нижней стратосфере встречаются сравнительно узкие (в сотни км шириной) струйные течения , имеющие резко очерченные границы, в пределах которых ветер достигает громадных скоростей - до 100-150 м/сек. Наблюдения показывают, что особенности атмосферные циркуляции в нижней части стратосферы определяются процессами в тропосфере.

В верхней половине стратосферы, где наблюдается рост температуры с высотой, скорость ветра возрастает с высотой, причём летом доминируют ветры восточных направлений, а зимой - западных. Циркуляция здесь определяется стратосферным источником тепла, существование которого связано с интенсивным поглощением озоном ультрафиолетовой солнечной радиации.

В нижней части мезосферы в умеренных широтах скорость зимнего западного переноса возрастает до максимальных значений - около 80 м/сек, а летнего восточного переноса - до 60 м/сек на уровне порядка 70 км. Исследования последних лет ясно показали, что особенности поля температуры в мезосфере нельзя объяснить только влиянием радиационных факторов. Главное значение имеют динамические факторы (в частности, разогревание или охлаждение при опускании или подъёме воздуха), а также возможны источники тепла, возникающие в результате фотохимических реакций (например, рекомбинации атомарного кислорода).

Над холодным слоем мезопаузы (в термосфере) температура воздуха начинает быстро возрастать с высотой. Во многих отношениях эта область А. подобна нижней половине стратосферы. Вероятно, циркуляция в нижней части термосферы определяется процессами в мезосфере, а динамика верхних слоев термосферы обусловлена поглощением здесь солнечной радиации. Однако исследовать атмосферного движения на этих высотах трудно вследствие их значительной сложности. Большое значение приобретают в термосфере приливные движения (главным образом солнечные полусуточные и суточные приливы), под влиянием которых скорость ветра на высотах более 80 км может достигать 100-120 м/сек. Характерная черта атмосферных приливов - их сильная изменчивость в зависимости от широты, времени года, высоты над уровнем моря и времени суток. В термосфере наблюдаются также значительные изменения скорости ветра с высотой (главным образом вблизи уровня 100 км), приписываемые влиянию гравитационных волн. Расположенная в диапазоне высот 100-110 км т. н. турбопауза резко отделяет находящуюся выше область от зоны интенсивного турбулентного перемешивания.

Наряду с воздушными течениями больших масштабов, в нижних слоях атмосферы наблюдаются многочисленные местные циркуляции воздуха (бриз , бора , горно-долинные ветры и др.; см. Ветры местные). Во всех воздушных течениях обычно отмечаются пульсации ветра, соответствующие перемещению воздушных вихрей средних и малых размеров. Такие пульсации связаны с турбулентностью атмосферы, которая существенно влияет на многие атмосферные процессы.

Климат и погода

Различия в количестве солнечной радиации, приходящей на разные широты земной поверхности, и сложность её строения, включая распределение океанов, континентов и крупнейших горных систем, определяют разнообразие климатов Земли (см. Климат).

Литература

  • Метеорология и гидрология за 50 лет Советской власти, под ред. Е. К. Федорова, Л., 1967;
  • Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958;
  • Зверев А. С., Синоптическая метеорология и основы предвычисления погоды, Л., 1968;
  • Хромов С. П., Метеорология и климатология для географических факультетов, Л., 1964;
  • Тверской П. Н., Курс метеорологии, Л., 1962;
  • Матвеев Л. Т., Основы общей метеорологии. Физика атмосферы, Л., 1965;
  • Будыко М. И., Тепловой баланс земной поверхности, Л., 1956;
  • Кондратьев К. Я., Актинометрия , Л., 1965;
  • Хвостиков И. А., Высокие слои атмосферы, Л., 1964;
  • Мороз В. И., Физика планет, М., 1967;
  • Тверской П. Н., Атмосферное электричество, Л., 1949;
  • Шишкин Н. С., Облака, осадки и грозовое электричество, М., 1964;
  • Озон в земной атмосфере, под ред. Г. П. Гущина, Л., 1966;
  • Имянитов И. М., Чубарина Е. В., Электричество свободной атмосферы, Л., 1965.

М. И. Будыко, К. Я. Кондратьев.

Эта статья или раздел использует текст

Состав атмосферы. Воздушная оболочка нашей планеты - атмосфера защищает земную поверхность от губительного воздействия на живые организмы ультрафиолетового излучения Солнца. Предохраняет она Землю и от космических частиц - пыли и метеоритов.

Состоит атмосфера из механической смеси газов: 78 % ее объема составляет азот, 21 % - кислород и менее 1 % - гелий, аргон, криптон и другие инертные газы. Количество кислорода и азота в воздухе практически неизменно, потому что азот почти не вступает в соединения с другими веществами, а кислород, который хотя и очень активен и расходуется на дыхание, окисление и горение, все время пополняется растениями.

До высоты примерно 100 км процентное соотношение этих газов остается практически неизменным. Это обусловлено тем, что воздух постоянно перемешивается.

Кроме названных газов в атмосфере содержится около 0,03 % углекислого газа, который обычно концентрируется вблизи от земной поверхности и размещается неравномерно: в городах, промышленных центрах и районах вулканической активности его количество возрастает.

В атмосфере всегда находится некоторое количество примесей - водяного пара и пыли. Содержание водяного пара зависит от температуры воздуха: чем выше температура, тем больше пара вмещает воздух. Благодаря наличию в воздухе парообразной воды возможны такие атмосферные явления, как радуга, рефракция солнечных лучей и т. п.

Пыль в атмосферу поступает во время вулканических извержений, песчаных и пыльных бурь, при неполном сгорании топлива на ТЭЦ и т. д.

Строение атмосферы. Плотность атмосферы меняется с высотой: у поверхности Земли она наивысшая, с поднятием вверх уменьшается. Так, на высоте 5,5 км плотность атмосферы в 2 раза, а на высоте 11 км - в 4 раза меньше, чем в приземном слое.

В зависимости от плотности, состава и свойств газов атмосферу разделяют на пять концентрических слоев (рис. 34).

Рис. 34. Вертикальный разрез атмосферы (стратификация атмосферы)

1. Нижний слой называют тропосферой. Ее верхняя граница проходит на высоте 8-10 км на полюсах и 16-18 км - на экваторе. В тропосфере содержится до 80 % всей массы атмосферы и почти весь водяной пар.

Температура воздуха в тропосфере с высотой понижается на 0,6 °C через каждые 100 м и у верхней ее границы составляет -45-55 °C.

Воздух в тропосфере постоянно перемешивается, перемещается в разных направлениях. Только здесь наблюдаются туманы, дожди, снегопады, грозы, бури и другие погодные явления.

2. Выше расположена стратосфера, которая простирается до высоты 50-55 км. Плотность воздуха и давление в стратосфере незначительны. Разреженный воздух состоит из тех же газов, что и в тропосфере, но в нем больше озона. Наибольшая концентрация озона наблюдается на высоте 15-30 км. Температура в стратосфере повышается с высотой и на верхней границе ее достигает 0 °C и выше. Это объясняется тем, что озон поглощает коротковолновую часть солнечной энергии, в результате чего воздух нагревается.

3. Над стратосферой лежит мезосфера, простирающаяся до высоты 80 км. В ней температура вновь понижается и достигает -90 °C. Плотность воздуха там в 200 раз меньше, чем у поверхности Земли.

4. Выше мезосферы располагается термосфера (от 80 до 800 км). Температура в этом слое повышается: на высоте 150 км до 220 °C; на высоте 600 км до 1500 °C. Газы атмосферы (азот и кислород) находятся в ионизированном состоянии. Под действием коротковолновой солнечной радиации отдельные электроны отрываются от оболочек атомов. В результате в данном слое - ионосфере возникают слои заряженных частиц. Самый плотный их слой находится на высоте 300-400 км. В связи с небольшой плотностью солнечные лучи там не рассеиваются, поэтому небо черное, на нем ярко светят звезды и планеты.

В ионосфере возникают полярные сияния, образуются мощные электрические токи, которые вызывают нарушения магнитного поля Земли.

5. Выше 800 км расположена внешняя оболочка - экзосфера. Скорость движения отдельных частиц в экзосфере приближается к критической - 11,2 мм/с, поэтому отдельные частицы могут преодолеть земное притяжение и уйти в мировое пространство.

Значение атмосферы. Роль атмосферы в жизни нашей планеты исключительно велика. Без нее Земля была бы мертва. Атмосфера предохраняет поверхность Земли от сильного нагревания и охлаждения. Ее влияние можно уподобить роли стекла в парниках: пропускать солнечные лучи и препятствовать отдаче тепла.

Атмосфера предохраняет живые организмы от коротковолновой и корпускулярной радиации Солнца. Атмосфера - среда, где происходят погодные явления, с которыми связана вся человеческая деятельность. Изучение этой оболочки производится на метеорологических станциях. Днем и ночью, в любую погоду метеорологи ведут наблюдения за состоянием нижнего слоя атмосферы. Четыре раза в сутки, а на многих станциях ежечасно измеряют температуру, давление, влажность воздуха, отмечают облачность, направление и скорость ветра, количество осадков, электрические и звуковые явления в атмосфере. Метеорологические станции расположены всюду: в Антарктиде и во влажных тропических лесах, на высоких горах и на необозримых просторах тундры. Ведутся наблюдения и на океанах со специально построенных кораблей.

С 30-х гг. XX в. начались наблюдения в свободной атмосфере. Стали запускать радиозонды, которые поднимаются на высоту 25-35 км, и при помощи радиоаппаратуры передают на Землю сведения о температуре, давлении, влажности воздуха и скорости ветра. В наше время широко используют также метеорологические ракеты и спутники. Последние имеют телевизионные установки, передающие изображение земной поверхности и облаков.

| |
5. Воздушная оболочка земли § 31. Нагревание атмосферы

– воздушная оболочка земного шара, вращающаяся вместе с Землёй. Верхнюю границу атмосферы условно проводят на высотах 150-200 км. Нижняя граница – поверхность Земли.

Атмосферный воздух представляет собой смесь газов. Большая часть его объёма в приземном слое воздуха приходится на азот (78%) и кислород (21%). Кроме того, в воздухе содержатся инертные газы (аргон, гелий, неон и др.), углекислый газ (0,03), водяной пар и различные твёрдые частицы (пыль, сажа, кристаллы солей).

Воздух бесцветен, а цвет неба объясняется особенностями рассеивания световых волн.

Атмосфера состоит из нескольких слоёв: тропосферы, стратосферы, мезосферы и термосферы.

Нижний приземной слой воздуха называется тропосферой. На различных широтах её мощность неодинакова. Тропосфера повторяет форму планеты и участвует вместе с Землёй в осевом вращении. У экватора мощность атмосферы колеблется от 10 до 20 км. У экватора она больше, а у полюсов – меньше. Тропосфера характеризуется максимальной плотностью воздуха, в неё сосредоточено 4/5 массы всей атмосферы. Тропосфера определяет погодные условия: здесь формируются различные воздушные массы, образуются облака и осадки, происходит интенсивное горизонтальное и вертикальное движение воздуха.

Над тропосферой, до высоты 50 км, располагается стратосфера. Она характеризуется меньшей плотностью воздуха, в ней отсутствует водяной пар. В нижней части стратосферы на высотах около 25 км. расположен «озоновый экран» – слой атмосферы с повышенной концентрацией озона, который поглощает ультрафиолетовое излучение, гибельное для организмов.

На высоте 50 до 80-90 км простирается мезосфера. С увеличением высоты температура понижается со средним вертикальным градиентом (0,25-0,3)° / 100 м, а плотность воздуха уменьшается. Основным энергетическим процессом является лучистый теплообмен. Свечение атмосферы обусловлены сложными фотохимическими процессами с участием радикалов, колебательно возбуждённых молекул.

Термосфера располагается на высоте 80-90 до 800 км. Плотность воздуха здесь минимальная, степень ионизации воздуха очень велика. Температура изменяется в зависимости от активности Солнца. В связи с большим количеством заряженных частиц здесь наблюдаются полярные сияния и магнитные бури.

Атмосфера имеет огромное значение для природы Земли. Без кислорода невозможно дыхание живых организмов. Её озоновый слой защищает всё живое от губительных ультрафиолетовых лучей. Атмосфера сглаживает колебание температур: поверхность Земли не переохлаждается ночью и не перегревается днём. В плотных слоях атмосферного воздуха не достигая поверхности планеты, сгорают от терния метеориты.

Атмосфера взаимодействует со всеми оболочками земли. С её помощью осуществляется обмен теплом и влагой между океаном и сушей. Без атмосферы не было бы облаков, осадков, ветров.

Значительное неблагоприятное влияние на атмосферу оказывает хозяйственная деятельность человека. Происходит загрязнение атмосферного воздуха, что приводит к увеличению концентрации оксида углерода (CO 2). А это способствует глобальному потеплению климата и усиливает «парниковый эффект». Озоновый слой Земли разрушается из-за отходов производств и работы транспорта.

Атмосфера нуждается в охране. В развитых странах осуществляется комплекс мер по защите атмосферного воздуха от загрязнения.

Остались вопросы? Хотите знать больше об атмосфере?
Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Строение атмосферы Земли

Атмосфера – это газовая оболочка Земли с содержащимися в ней аэрозольными частицами, движущимися вместе с Землей в мировом пространстве как единое целое и одновременно принимающая участие во вращении Земли. На дне атмосферы в основном протекает наша жизнь.

Своими атмосферами обладают почти все планеты нашей солнечной системы, но только земная атмосфера способна поддерживать жизнь.

Когда 4,5 миллиарда лет назад формировалась наша планета, то, по всей видимости, она была лишена атмосферы. Атмосфера была сформирована в результате вулканических выбросов водяного пара с примесями диоксида углерода, азота и других химических веществ из недр молодой планеты. Но атмосфера может содержать в себе ограниченное количество влаги, поэтому ее избыток в результате конденсации дал начало океанам. Но тогда атмосфера была лишена кислорода. Первые живые организмы, зародившиеся и развившиеся в океане, в результате реакции фотосинтеза (H 2 O + CO 2 = CH 2 O + O 2) стали выделять небольшие порции кислорода, который стал попадать в атмосферу.

Формирование кислорода в атмосфере Земли привело к образованию озонового слоя на высотах примерно 8 – 30 км. И, тем самым, наша планета приобрела защиту от губительного воздействия ультрафиолетового изучения. Это обстоятельство послужило толчком для дальнейшей эволюции жизненных форм на Земле, т.к. в результате усиления фотосинтеза количество кислорода в атмосфере стало стремительно расти, что способствовало формированию и поддержанию жизненных форм в том числе и на суше.

Сегодня наша атмосфера на 78,1% состоит из азота, на 21% из кислорода, на 0,9% из аргона, на 0,04% из диоксида углерода. Совсем малые доли по сравнению с основными газами составляют неон, гелий, метан, криптон.

На частицы газа, содержащиеся в атмосфере, действует сила притяжения Земли. А, учитывая то, что воздух сжимаем, то его плотность с высотой постепенно убывает, переходя в космическое пространство без четкой границы. Половина всей массы земной атмосферы сосредоточена в нижних 5 км, три четверти – в нижних 10 км, девять десятых – в нижних 20 км. 99% массы атмосферы Земли сосредоточено ниже высоты 30 км, а это всего 0,5% экваториального радиуса нашей планеты.

На уровне моря число атомов и молекул на кубический сантиметр воздуха составляет около 2 * 10 19 , на высоте 600 км всего 2 * 10 7 . На уровне моря атом или молекула пролетает примерно 7 * 10 -6 см, прежде чем столкнуться с другой частицей. На высоте 600 км это расстояние составляет около 10 км. И на уровне моря каждую секунду происходит около 7 * 10 9 таких столкновений, на высоте 600 км – всего около одного в минуту!

Но не только давление меняется с высотой. Меняется и температура. Так, например, у подножия высокой горы может быть достаточно жарко, в то время как вершина горы покрыта снегом и температура там в то же время ниже нуля. А стоит подняться на самолете на высоту примерно 10–11 км, как можно услышать сообщение о том, что за бортом –50 градусов, в то время как у поверхности земли градусов на 60–70 теплее…

Изначально ученые предполагали, что температура с высотой убывает до тех пор, пока не достигает абсолютного нуля (-273,16°C). Но это не так.

Атмосфера Земли состоит из четырех слоев: тропосфера, стратосфера, мезосфера, ионосфера (термосфера). Такое деление на слои принято исходя и из данных об изменении температуры с высотой. Самый нижний слой, где температура воздуха падает с высотой, назвали тропосферой. Слой над тропосферой, где падение температуры прекращается, сменяется изотермией и, наконец, температура начинает повышаться, назвали стратосферой. Слой над стратосферой, в котором температура снова стремительно падает – это мезосфера. И, наконец, тот слой, где снова начинается рост температуры, назвали ионосферой или термосферой.

Тропосфера простирается в среднем в нижних 12 км. Именно в ней происходит формирование нашей погоды. Самые высокие облака (перистые) образуются в самых верхних слоях тропосферы. Температура в тропосфере с высотой понижается адиабатически, т.е. изменение температуры происходит вследствие убывания давления с высотой. Температурный профиль тропосферы во многом обусловлен поступающей к поверхности Земли солнечной радиацией. В результате нагрева поверхности Земли Солнцем формируются конвективные и турбулентные потоки, направленные верх, которые формируют погоду. Стоит заметить, что влияние подстилающей поверхности на нижние слои тропосферы распространяется до высоты примерно 1,5 км. Конечно, исключая горные районы.

Верхней границей тропосферы является тропопауза – изотермический слой. Вспомните характерный вид грозовых облаков, вершина которых представляет собой «выброс» перистых облаков, называемых «наковальней». Эта «наковальня» как раз и «растекается» под тропопаузой, т.к. из-за изотермии восходящие потоки воздуха значительно ослабевают, и облако перестает развиваться по вертикали. Но в особых, редких случаях, вершины кучево-дождевых облаков могут вторгаться в нижние слои стратосферы, преодолевая тропопаузу.

Высота тропопаузы зависит от географической широты. Так, на экваторе она находится на высоте примерно 16 км, и ее температура составляет около –80°C. На полюсах тропопауза расположена ниже – примерно на высоте 8 км. Летом ее температура здесь составляет –40°C, и –60°C зимой. Т.о., несмотря на более высокие температуры у поверхности Земли, тропическая тропопауза намного холоднее, чем у полюсов.

Состав Земли. Воздух

Воздух - это механическая смесь из различных газов, составляющих атмосферу Земли. Воздух необходим для дыхания живых организмов, находит широкое применение в промышленности.

То, что воздух представляет собой именно смесь, а не однородную субстанцию, было доказано в ходе экспериментов шотландского учёного Джозефа Блэка. В ходе одного из них учёный обнаружил, что при нагревании белой магнезии (углекислый магний) выделяется «связанный воздух», то есть углекислый газ, и образуется жжёная магнезия (окись магния). При обжиге известняка, напротив, происходит удаление «связанного воздуха». На основе этих экспериментов учёный сделал вывод, что различие между углекислыми и едкими щелочами заключается в том, что в состав первых входит углекислый газ, являющийся одной из составных частей воздуха. Сегодня же мы знаем, что кроме углекислого, в состав земного воздуха входят:

Указанное в таблице соотношение газов в земной атмосфере характерно для её нижних слоёв, до высоты 120 км. В этих областях лежит хорошо перемешанная, однородная по составу область, называемая гомосферой. Выше гомосферы лежит гетеросфера, для которой характерно разложение молекул газов на атомы и ионы. Области отделены друг от друга турбопаузой.

Химическая реакция, при которой под воздействием солнечного и космического излучения происходит разложение молекул на атомы, называется фотодиссоциацией. При распаде молекулярного кислорода образуется атомарный кислород, являющийся основным газом атмосферы на высотах свыше 200 км. На высотах от 1200 км начинают преобладать водород и гелий, являющиеся наиболее лёгкими из газов.

Поскольку основная масса воздуха сосредоточена в 3 нижних атмосферных слоях, изменения состава воздуха на высотах более 100 км не оказывают заметного влияния на общий состав атмосферы.

Азот - самый распространенный газ, на долю которого приходится более трёх четвертей объёма земного воздуха. Современный азот образовался при окислении ранней аммиачно-водородной атмосферы молекулярным кислородом, который образуется в процессе фотосинтеза. В настоящее время небольшое количество азота в атмосферу поступает в результате денитрификации - процесса восстановления нитратов до нитритов, с последующим образованием газообразных оксидов и молекулярного азота, который производится анаэробными прокариотами. Часть азота в атмосферу поступает при вулканических извержениях.

В верхних слоях атмосферы при воздействии электрических разрядов при участии озона молекулярный азот окисляется до монооксида азота:

N 2 + O 2 → 2NO

В обычных условиях монооксид тотчас же вступает в реакцию с кислородом с образованием закиси азота:

2NO + O 2 → 2N 2 O

Азот является важнейшим химическим элементом земной атмосферы. Азот входит в состав белков, обеспечивает минеральное питание растений. Он определяет скорость биохимических реакций, играет роль разбавителя кислорода.

Вторым по распространённости газом атмосферы Земли является кислород. Образование этого газа связывают с фотосинтезирующей деятельностью растений и бактерий. И чем более разнообразными и многочисленными становились фотосинтезирующие организмы, тем более значительным становился процесс содержания кислорода в атмосфере. Небольшое количество тяжёлого кислорода выделяется при дегазации мантии.

В верхних слоях тропосферы и стратосферы под воздействием ультрафиолетового солнечного излучения (обозначим его как hν) образуется озон:

O 2 + hν → 2O

В результате действия того же ультрафиолетового излучения происходит и распад озона:

О 3 + hν → О 2 + О

О 3 + O → 2О 2

В результате первой реакции образуется атомарный кислород, в результате второй - молекулярный кислород. Все 4 реакции носят название «механизм Чепмена», по имени британского учёного Сидни Чепмена открывшего их в 1930 году.

Кислород служит для дыхания живых организмов. С его помощью происходят процессы окисления и горения.

Озон служит для защиты живых организмов от ультрафиолетового излучения, которое вызывает необратимые мутации. Наибольшая концентрация озона наблюдается в нижней стратосфере в пределах т.н. озонового слоя или озонового экрана, лежащего на высотах 22-25 км. Содержание озона невелико: при нормальном давлении весь озон земной атмосферы занимал бы слой толщиной всего 2,91 мм.

Образование третьего по распространенности в атмосфере газа аргона, а также неона, гелия, криптона и ксенона связывают с вулканическими извержениями и распадом радиоактивных элементов.

В частности гелий является продуктом радиоактивного распада урана, тория и радия: 238 U → 234 Th + α, 230 Th → 226 Ra + 4 He, 226 Ra → 222 Rn + α (в этих реакция α-частица является ядром гелия, которая в процессе потери энергии захватывает электроны и становится 4 He).

Аргон образуется в процессе распада радиоактивного изотопа калия: 40 K → 40 Ar + γ.

Неон улетучивается из изверженных пород.

Криптон образуется как конечный продукт распада урана (235 U и 238 U) и тория Th.

Основная масса атмосферного криптона образовалась ещё на ранних стадиях эволюции Земли как результат распада трансурановых элементов с феноменально малым периодом полураспада или поступила из космоса, содержание криптона в котором в десять миллионов раз выше чем на Земле.

Ксенон является результатом деления урана, но основная масса этого газа осталась с ранних стадий образования Земли, от первичной атмосферы.

Углекислый газ поступает в атмосферу в результате вулканических извержений и в процессе разложения органического вещества. Его содержание в атмосфере средних широт Земли сильно различается в зависимости от сезонов года: зимой количество CO 2 возрастает, а летом - снижается. Связано данное колебание с деятельностью растений, которые используют углекислый газ в процессе фотосинтеза.

Водород образуется в результате разложения воды солнечным излучением. Но, будучи самым лёгким из газов, входящих в состав атмосферы, постоянно улетучивается в космическое пространство, и потому содержание его в атмосфере очень невелико.

Водяной пар является результатом испарения воды с поверхности озёр, рек, морей и суши.

Концентрация основных газов в нижних слоях атмосферы, за исключением водяных паров и углекислого газа, постоянна. В небольших количествах в атмосфере содержатся оксид серы SO 2 , аммиак NH 3 , монооксид углерода СО, озон O 3 , хлороводород HCl, фтороводород HF, монооксид азота NO, углеводороды, пары ртути Hg, йода I 2 и многие другие. В нижнем атмосферном слое тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц.

Источниками твёрдых частиц в атмосфере Земли являются вулканические извержения, пыльца растений, микроорганизмы, а в последнее время и деятельность человека, например, сжигание ископаемого топлива в процессе производства. Мельчайшие частицы пыли, которые являющиеся ядрами конденсации, служат причинами образования туманов и облаков. Без твёрдых частиц, постоянно присутствующих в атмосфере, на Землю не выпадали бы осадки.