Классическая вероятность. Вероятность случайного события

  • 30.09.2019

Учебник по теории вероятности: содержание

Глава 1. Случайные события. Вычисление вероятности

    1.1. Элементы комбинаторики

    1.2. Классическое определение вероятности

    1.3. Геометрическое определение вероятности

    1.4. Сложение и умножение вероятностей

    1.5. Условная вероятность

    1.6. Формула полной вероятности и формула Байеса

    1.7. Независимые испытания. Формула Бернулли

    1.8. Наивероятнейшее число успехов

    1.9. Формула Пуассона

    1.10. Теоремы Муавра-Лапласа

1.1. Элементы комбинаторики

Рассмотрим некоторое множество Х , состоящее из n элементов . Будем выбирать из этого множества различные упорядоченные подмножества из k элементов.

Размещением из n элементов множества Х по k элементам назовем любой упорядоченный набор элементов множества Х .

Если выбор элементов множества из Х происходит с возвращением, т.е. каждый элемент множества Х может быть выбран несколько раз, то число размещений из n по k находится по формуле (размещения с повторениями ).

Если же выбор делается без возвращения, т.е. каждый элемент множества Х можно выбирать только один раз, то количество размещений из n по k обозначается и определяется равенством

(размещения без повторений ).


Пример.
Пусть даны шесть цифр: 1; 2; 3; 4; 5; 6. Определить сколько трехзначных чисел можно составить из этих цифр.

Решение. Если цифры могут повторяться, то количество трехзначных чисел будет . Если цифры не повторяются, то .

Пример. Студенты института изучают в каждом семестре по десять дисциплин. В расписание занятий включаются каждый день по 3 дисциплины. Сколько различных расписаний может составить диспетчерская?

Решение . Расписание на каждый день может отличаться либо предметами, либо порядком расположения этих предметов, поэтому имеем размещения:

Частный случай размещения при n =k называется перестановкой из n элементов. Число всех перестановок из n элементов равно
.

Пример . 30 книг стоит на книжной полке, из них 27 различных книг и одного автора три книги. Сколькими способами можно расставить эти книги на полке так, чтобы книги одного автора стояли рядом?

Решение. Будем считать три книги одного автора за одну книгу, тогда число перестановок будет . А три книги можно переставлять между собой способами, тогда по правилу произведения имеем, что искомое число способов равно: *=3!*28!

Пусть теперь из множества Х выбирается неупорядоченное подмножество (порядок элементов в подмножестве не имеет значения). Сочетаниями из n элементов по k называются подмножества из k элементов, отличающиеся друг от друга хотя бы одним элементом. Общее число всех сочетаний из n по k обозначается и равно
.

Справедливы равенства: , , .

Пример. В группе из 27 студентов нужно выбрать трех дежурных. Сколькими способами можно это сделать?

Решение. Так как порядок студентов не важен, используем формулу для числа сочетаний: .

При решении задач комбинаторики используют следующие правила:

Правило суммы. Если некоторый объект А может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А, либо В можно m + n способами.

Правило произведения. Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А, В) в указанном порядке может быть выбрана m*n способами.

Пример. Наряд студентки состоит из блузки, юбки и туфель. Девушка имеет в своем гардеробе четыре блузки, пять юбок и трое туфель. Сколько нарядов может иметь студентка?

Решение. Пусть сначала студентка выбирает блузку. Этот выбор может быть совершен четырьмя способами, так как студентка имеет четыре блузки, затем пятью способами произойдет выбор юбки и тремя способами выбор туфель. По принципу умножения получается 4*5*3=60 нарядов (комбинаций).

1.2. Классическое определение вероятности

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным , если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу , если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами. Исход называется благоприятствующим появлению события А , если появление этого события влечет за собой появление события А .

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события A называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместных элементарных исходов, образующих полную группу

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству .

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаевm =n =10. Следовательно, Р (А )=1. Событие А достоверное .

Пример. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?

Решение. Вынуть два шара из десяти можно следующим числом способов: .
Число случаев, когда среди этих двух шаров будут два белых, равно .
Искомая вероятность
.

Пример. В урне 15 шаров: 5 белых и 10 черных. Какова вероятность вынуть из урны синий шар?

Решение. Так как синих шаров в урне нет, то m =0, n =15. Следовательно, искомая вероятность р =0. Событие, заключающееся в вынимании синего шара, невозможное .

Пример. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение . Количество элементарных исходов (количество карт) n =36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению события А , m =9. Следовательно,
.

Пример. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.

Решение. Общее число возможных исходов равно числу способов, которыми можно отобрать 7 человек из 10, т.е.
.

Найдем число исходов, благоприятствующих интересующему нас событию: трех женщин можно выбрать из четырех способами; при этом остальные четыре человека должны быть мужчинами, их можно отобрать способами. Следовательно, число благоприятствующих исходов равно .

Искомая вероятность
.

1.3. Геометрическое определение вероятности

Пусть случайное испытание можно представить себе как бросание точки наудачу в некоторую геометрическую область G (на прямой, плоскости или пространстве). Элементарные исходы – это отдельные точки G, любое событие – это подмножество этой области, пространства элементарных исходов G. Можно считать, что все точки G «равноправны» и тогда вероятность попадания точки в некоторое подмножество пропорционально его мере (длине, площади, объему) и не зависит от его расположения и формы.

Геометрическая вероятность события А определяется отношением:
,
где m(G), m(A) – геометрические меры (длины, площади или объемы) всего пространства элементарных исходов и события А.

Пример. На плоскость, разграфленную параллельными полосами шириной 2d, расстояние между осевыми линиями которых равно 2D, наудачу брошен круг радиуса r (). Найти вероятность того, что круг пересечет некоторую полосу.

Решение. В качестве элементарного исхода этого испытания будем считать расстояние x от центра круга до осевой линии ближайшей к кругу полосы. Тогда все пространство элементарных исходов – это отрезок . Пересечение круга с полосой произойдет в том случае, если его центр попадет в полосу, т.е. , или будет находится от края полосы на расстоянии меньшем чем радиус, т.е. .

Для искомой вероятности получаем: .

1.4. Сложение и умножение вероятностей

Событие А называется частным случаем события В , если при наступлении А наступает и В . То, что А является частным случаем В , записываем .

События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записываем А = В .

Суммой событий А и В называется событие А + В , которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

Теорема о сложении вероятностей. Вероятность появления одного из двухнесовместных событий равна сумме вероятностей этих событий.

Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:

.

Если случайные события образуют полную группу несовместных событий, то имеет место равенство

Произведением событий А и В называется событие АВ , которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными , если при данном испытании могут произойти оба эти события.

Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле

События событий А и В называются независимыми , если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В , если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:

Вероятность произведения зависимых событий вычисляется по формуле условной вероятности (см. следующий раздел).

Пример. В первом ящике 1 белый и 5 черных шаров, во втором 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Найти вероятность того, что один из вынутых шаров белый, а другой – черный.

Решение. Обозначим события: А – вынули белый шар из первого ящика,
;

Вынули черный шар из первого ящика,
;

В – белый шар из второго ящика,
;

Черный шар из второго ящика,
.

Нам нужно, чтобы произошло одно из событий или . По теореме об умножении вероятностей
, .
Тогда искомая вероятность по теореме сложения будет
.

Пример. Вероятность попадания в цель у первого стрелка 0,8, у второго – 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) хотя бы одного попадания; г) одного попадания.

Решение.

Пусть А – попадание первого стрелка, ;

В – попадание второго стрелка, .

Тогда - промах первого, ;

Промах второго, .

Найдем нужные вероятности.

а) АВ – двойное попадание,

б) – двойной промах, .

в) А +В – хотя бы одно попадание,

г) – одно попадание,

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.

Решение.

А – формула содержится в первом справочнике;

В – формула содержится во втором справочнике;

С – формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий? Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.

Теорема. Вероятность появления хотя бы одного из событий , независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий

Если события имеют одинаковую вероятность , то формула принимает простой вид:

.

Пример. Вероятности попадания в цель при стрельбе из трех орудий таковы: p 1 = 0,8;p 2 = 0,7; p 3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.

Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям , и (т. е. вероятности промахов), соответственно равны:

, ,

Искомая вероятность .

Пример. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).

Решение. События "машина работает" и "машина не работает" (в данный момент) - противоположные, поэтому сумма их вероятностей равна единице:

Отсюда вероятность того, что машина в данный момент не работает, равна

Искомая вероятность

Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.

Пример. Вероятность того, что при одном выстреле стрелок попадает в цель, равна 0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?

Решение. Обозначим через А событие "при n выстрелах стрелок попадает в цель хотя бы один раз". События, состоящие в попадании в цель при первом, втором выстрелах и т. д., независимы в совокупности, поэтому применима формула .

Приняв во внимание, что, по условию, (следовательно, ), получим

Прологарифмируем это неравенство по основанию 10:

Итак, , т.е. стрелок должен произвести не менее 5 выстрелов.

1.5. Условная вероятность

Случайное событие определено как событие, которое при осуществлении совокупности условий эксперимента может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий эксперимента, не налагается, то такую вероятность называют безусловной ; если же налагаются и другие дополнительные условия, то вероятность события называют условной . Например, часто вычисляют вероятность события В при дополнительном условии, что произошло событие А .

Условной вероятностью (два обозначения) называют вероятность события В , вычисленную в предположении, что событие А уже наступило.

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.

В частности, отсюда получаем
.

Пример. В урне находятся 3 белых шара и 2 черных. Из урны вынимается один шар, а затем второй. Событие В – появление белого шара при первом вынимании. Событие А – появление белого шара при втором вынимании.

Решение. Очевидно, что вероятность события А , если событие В произошло, будет
.
Вероятность события А при условии, что событие В не произошло, будет
.

Пример. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероятность появления белого шара при втором испытании (событие В), если при первом испытании был извлечен черный шар (событие А).

Решение . После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность .

Этот же результат можно получить по формуле
.

Действительно, вероятность появления белого шара при первом испытании
.

Найдем вероятность того, что в первом испытании появится черный шар, а во втором - белый. Общее число исходов - совместного появления двух шаров, безразлично какого цвета, равно числу размещений . Из этого числа исходов событию благоприятствуют исходов. Следовательно, .

Искомая условная вероятность

Результаты совпали.

Пример. В трамвайном парке имеются 15 трамваев маршрута №1 и 10 трамваев маршрута №2. Какова вероятность того, что вторым по счету на линию выйдет трамвай маршрута №1?

Решение . Пусть А - событие, состоящее в том, что на линию вышел трамвай маршрута №1, В - маршрута №2.

Рассмотрим все события, которые могут при этом быть (в условиях нашей задачи): . Из них нас будут интересовать только первое и третье, когда вторым выйдет трамвай маршрута №1.

Так как все эти события совместны, то:

;

;

отсюда искомая вероятность

Пример. Какова вероятность того, что 2 карты, вынутые из колоды в 36 карт, окажутся одной масти?

Решение . Сначала подсчитаем вероятность того, что две карты окажутся одной определенной масти (например «пики»). Пусть А - появление первой карты такой масти, В - появление второй карты той же масти. Событие В зависит от события А , т.к. его вероятность меняется от того, произошло или нет событие А . Поэтому придется воспользоваться теоремой умножения в ее общей форме:

,
где (после вынимания первой карты осталось 35 карт, из них той же масти, что и первая - 8).

Получаем
.

События, состоящие в том, что будут вынуты две карты масти «пики», масти «треф» и т.д., несовместны друг с другом. Следовательно, для нахождения вероятности их объединения воспользуемся теоремой сложения:
.

1.6. Формула полной вероятности и формула Байеса

Если событие А может произойти только при выполнении одного из событий , которые образуют полную группу несовместных событий , то вероятность события А вычисляется по формуле

Эта формула называется формулой полной вероятности .

Вновь рассмотрим полную группу несовместных событий , вероятности появления которых . Событие А может произойти только вместе с каким-либо из событий , которые будем называть гипотезами . Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез .

По теореме умножения вероятностей

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса ). Вероятности гипотез называются апостериорными вероятностями , тогда как -априорными вероятностями .

Пример. В магаз поступила новая продукция с 3х предприятий.20%-продукция первого предприятия, 30% - продукция второго предприятия, 50% - продукция третьего предприятия; далее, 10% продукции первого предприятия высшего сорта, на втором предприятии - 5% и на третьем - 20% продукции высшего сорта. Найти вероятность того, что случайно купленная новая продукция окажется высшего сорта.

Решение. Обозначим через В событие, заключающееся в том, что будет куплена продукция высшего сорта, через обозначим события, заключающиеся в покупке продукции, принадлежащей соответственно первому, второму и третьему предприятиям.

Можно применить формулу полной вероятности, причем в наших обозначениях:

Подставляя эти значения в формулу полной вероятности, получим искомую вероятность:

Пример. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго - 0,5; для третьего - 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Решение. Возможны три гипотезы:

А 1 - на линию огня вызван первый стрелок,

А 2 - на линию огня вызван второй стрелок,

А 1 - на линию огня вызван третий стрелок.

Так как вызов на линию огня любого стрелка равновозможен, то

В результате опыта наблюдалось событие В - после произведенных выстрелов мишень не поражена. Условные вероятности этого события при сделанных гипотезах равны:

по формуле Байеса находим вероятность гипотезы после опыта:

Пример. На трех станках-автоматах обрабатываются однотипные детали, поступающие после обработки на общий конвейер. Первый станок дает 2% брака, второй – 7%, третий – 10%. Производительность первого станка в 3 раза больше производительности второго, а третьего – в 2 раза меньше, чем второго.

а) Каков процент брака на конвейере?

б) Каковы доли деталей каждого станка среди бракованных деталей на конвейере?

Решение. Возьмем с конвейера наудачу одну деталь и рассмотрим событие А – деталь бракованная. Оно связано с гипотезами относительно того, где была обработана эта деталь: – взятая наудачу деталь обработана на -ом станке, .

Условные вероятности (в условии задачи они даны в форме процентов):

Зависимости между производительностями станков означают следующее:

А так как гипотезы образуют полную группу, то .

Решив полученную систему уравнений, найдем: .

а) Полная вероятность того, что взятая наудачу с конвейера деталь – бракованная:

Другими словами, в массе деталей, сходящих с конвейера, брак составляет 4%.

б) Пусть известно, что взятая наудачу деталь – бракованная. Пользуясь формулой Байеса, найдем условные вероятности гипотез:

Таким образом, в общей массе бракованных деталей на конвейере доля первого станка составляет 33%, второго – 39%, третьего – 28%.

1.7. Независимые испытания. Формула Бернулли

При решении вероятностных задач часто приходится сталкиваться с ситуациями, в которых одно и тоже испытание повторяется многократно и исход каждого испытания независим от исходов других. Такой эксперимент еще называется схемой повторных независимых испытаний или схемой Бернулли .

Примеры повторных испытаний:

1) многократное извлечение из урны одного шара при условии, что вынутый шар после регистрации его цвета кладется обратно в урну;

2) повторение одним стрелком выстрелов по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой (роль пристрелки не учитывается).

Итак, пусть в результате испытания возможны два исхода : либо появится событие А , либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы; вероятность появления события А в каждом отдельно взятом или единичном испытании постоянна и от испытания к испытанию не изменяется (т.е. испытания проводятся в одинаковых условиях). Обозначим вероятность появления события А в единичном испытании буквой р, т.е. , а вероятность противоположного события (событие А не наступило) - буквой .

Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражаетсяформулой Бернулли

Распределение числа успехов (появлений события) носит название биномиального распределения .

Пример. В урне 20 белых и 10 черных шаров. Вынули 4 шара, причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых.

Решение. Событие А – достали белый шар. Тогда вероятности
, .
По формуле Бернулли требуемая вероятность равна
.

Пример. Определить вероятность того, что в семье, имеющей 5 деталей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки
, тогда .

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки:

, ,

, .

Следовательно, искомая вероятность

.

Пример. Среди деталей, обрабатываемых рабочим, бывает в среднем 4% нестандартных. Найти вероятность того, что среди взятых на испытание 30 деталей две будут нестандартными.

Решение. Здесь опыт заключается в проверке каждой из 30 деталей на качество. Событие А - «появление нестандартной детали», его вероятность , тогда . Отсюда по формуле Бернулли находим
.

Пример. При каждом отдельном выстреле из орудия вероятность поражения цели равна 0,9. Найти вероятность того, что из 20 выстрелов число удачных будет не менее 16 и не более 19.

Решение. Вычисляем по формуле Бернулли:

Пример. Независимые испытания продолжаются до тех пор, пока событие А не произойдет k раз. Найти вероятность того, что потребуется n испытаний (n ³ k), если в каждом из них .

Решение. Событие В – ровно n испытаний до k -го появления события А – есть произведение двух следующий событий:

D – в n -ом испытании А произошло;

С – в первых (n–1) -ом испытаниях А появилось (к-1) раз.

Теорема умножения и формула Бернулли дают требуемую вероятность:

Надо заметить, что использование биномиального закона зачастую связано с вычислительными трудностями. Поэтому с возрастанием значений n и m становится целесообразным применение приближенных формул (Пуассона, Муавра-Лапласа), которые будут рассмотрены в следующих разделах.

1.8. Наивероятнейшее число успехов

Биномиальное распределение (распределение по схеме Бернулли) позволяет, в частности, установить, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов (появлений события) имеет вид:

Так как , то эти границы отличаются на 1. Поэтому , являющееся целым числом, может принимать либо одно значение, когда целое число () , то есть когда (а отсюда и ) нецелое число, либо два значения, когда целое число.

Пример. При автоматической наводке орудия вероятность попадания по быстро движущейся цели равна 0,9. Найти наивероятнейшее число попаданий при 50 выстрелах.

Решение. Здесь . Поэтому имеем неравенства:

Следовательно, .

Пример. Данные длительной проверки качества выпускаемых стандартных деталей показали, что в среднем брак составляет 7,5%. Определить наиболее вероятное число вполне исправных деталей в партии из 39 штук.

Решение. Обозначая вероятность выпуска исправной детали через , будем иметь и (получение бракованной детали и получение исправной детали - события противоположные). Так как здесь n= 39, то искомое число можно найти из неравенств:

Отсюда наивероятнейшее число исправных деталей равно 36 или 37.

Неравенства для наивероятнейшего числа успехов позволяют решить и обратную задачу: по данному и известному значению р определить общее число n всех испытаний.

Пример. При каком числе выстрелов наивероятнейшее число попаданий равно 16, если вероятность попадания в отдельном выстреле составляет 0,7? Т А к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность (по сравнению с исходной формулой Бернулли). ., находим, вероятности выводится по ... 45 Сама теория достаточно сложна и подробно излагается лишь в специальных учебниках по корпоративным...

  • Менеджмент учебник санкт-петербург издательство «союз»

    Учебник

    ... по аппарату построения (форма); – по характеру моделируемых объектов содержание ). По ... вероятности во всех случаях, то учебники по теории вероятностей (а заодно и данная глава ... Теория вероятностей утверждает, что случайные события , ... вычислений . ...

  • Приказ № от 2014 г. Рабочая программа по математике класс: 5 (базовый уровень)

    Рабочая программа

    А. Г. Математика. 6 кл. Учебники по содержанию и по стилю выстроены так, чтобы... Глава 6. 4 2 2 - Введение в вероятность . §53 Достоверные, невозможные и случайные события Вероятность наступления событий . Достоверные, невозможные и случайные события ...

  • Проект основной образовательной программы мкоу бутурлиновская сош №1 Бутурлиновского муниципального района Воронежской области на 2012-2017гг

    Основная образовательная программа

    ... Случайные события и вероятность . Понятие о случайном опыте и случайном событии . Частота случайного события . Статистический подход к понятию вероятности . Вероятности противоположных событий . Достоверные и невозможные события . Равновозможность событий ...

  • Событие

    Определение 1

    Событием будем называть любое утверждение, которое может как произойти, так и не произойти.

    Обычно события обозначаются большими английскими буквами.

    Пример: $A$ – выпадение числа $6$ на кости.

    В связи с тем, что событие может иметь две вариации исхода («произошло» и «не произошло») мы сталкиваемся с понятие вероятности такого события.

    Понятие вероятности события

    Определение 2

    Вероятностью события будем называть число, которое обозначает степень возможности, что такое событие произойдет.

    Вероятность события обозначается как $P(A)$

    Чтобы определить границы значения этого числа введем понятие достоверного и невозможного событий.

    Определение 3

    Достоверным событием будем называть такое, которое произойдет при любых обстоятельствах.

    Примером такого события может быть следующее: Сумма «точек» на классической кости всегда равняется $21$.

    Вероятность такого события мы будем принимать за единицу.

    Определение 4

    Невозможным событием будем называть такое, которое не может произойти ни при каком обстоятельстве.

    Примером такого события может быть следующее: При игре в «очко» игрок набрал $1$ очко.

    Вероятность такого события мы будем принимать за $0$.

    То есть значение вероятности любого события содержится в отрезке $$.

    В современной теории вероятности принято выделять четыре определения для вероятности: классической, геометрическое, статистическое и аксиоматическое определения. Рассмотрим их отдельно.

    Классическое определение

    Классическое определение связано с такими неопределяемыми понятиями как равновозможность и элементарность события. Интуитивно их можно понять на следующих примерах:

    Равновозможность: При подбрасывании монеты она может упасть как аверсом, так и реверсом независимо от внешних условий. То есть можно сказать что вероятность выпадения одной или другой стороны по сути одинакова.

    Элементарность события: Если на кости выпадет число $4$, то это означает, что числа $1, 2, 3, 5$ и $6$ уже не выпали.

    Определение 5

    Вероятностью события будем называть отношения числа n равновозможных элементарных событий исходного события $B$ ко всем элементарным событиям $N$.

    Математически это выглядит следующим образом:

    $P(B)=\frac{n}{N}$

    Геометрическое определение

    Геометрическое определение применяется для случая, когда количество равновозможных событий будет бесконечно. Здесь, для введения геометрического определения рассмотрим следующий пример. Для игры дартс берем круг площадью $S$ и разбиваем его на несколько кругов. Какова вероятность, что дротик попадет в центральный круг? (Исключим здесь случаи полного непопадания в поле). Очевидно что равновозможных событий здесь будет бесконечно (как и общих событий) так как круг содержит в себе бесконечное число точек. Пусть площадь центрального круга равняется $s$. Тогда мы сталкиваемся с геометрическим определением вероятности такого события:

    $P(B)=\frac{s}{S}$

    Статистическое (частотное) определение

    Классическое определение довольно часто не учитывает всех возможностей. Рассматривая даже классический пример с бросанием кости мы пренебрегаем возможностью, что не выпадет никакого из шести чисел (кубик просто «остановится» на уголке). Поэтому вводят следующее определение вероятности, учитывающее все возможности. Рассматриваем $N$ наблюдений. Пусть нужное нам событие при этом выпало $n$ раз. Тогда

    $P(B)=lim_{N→∞}\frac{n}{N}$

    Аксиоматическое определение

    Данное определение задается с помощью аксиоматики Колмогорова.

    Пусть $X$ - пространство всех элементарных событий. Тогда

    Определение 6

    Вероятностью события $B$ будем называть такую функцию $P(B)$, которая удовлетворяет следующим условиям:

    1. Данная функция всегда неотрицательна,
    2. Вероятность того, что произойдет хотя бы одно из попарно несовместных событий равняется сумме их вероятностей.
    3. Функция всегда меньше или равна $1$, причем $P(X)=1$.

    Конспект урока

    по теме: Случайные события и их вероятности

    Цель урока: познакомить студентов с понятиями: события достоверные, невозможные, случайные, абсолютная частота, относительная частота, с классическим определением вероятности, формулой вычисления вероятности событий.

    Задачи урока: формирование навыков решения задач на характеристику событий и классическое нахождение вероятности событий; развить у студента умения отличать равновероятные возможности от не равновероятных; воспитание воли, трудолюбия.

    Оборудование: мультимедийная доска

    Ход урока:

      Организационный момент

      Актуализация знаний учащихся

    О теории вероятности

    В повседневной жизни, в практической и научной деятельности часто наблюдаются те или иные явления, проводят определенные эксперименты. В процессе наблюдения или эксперимента приходится встречаться с некоторыми случайными событиями, то есть такими событиями, которые могут произойти или не произойти. Например, поражение мишени или промах при выстреле - случайные события. Выигрыш команды во встрече с соперником, проигрыш или ничейный результат - это тоже случайные события. Закономерности случайных событий изучает специальный раздел математики, который называется теорией вероятностей.

    Каждый из нас не отделен от окружающего мира глухой стеной, да и в своей жизни мы ежедневно сталкиваемся с вероятностными ситуациями. Проблема выбора наилучшего из нескольких вариантов решения, оценка степени риска и шансов на успех, представление о справедливости и несправедливости в играх и в реальных жизненных ситуациях - все это, несомненно, находится в сфере реальных интересов личности. Подготовку человека к таким проблемам во всем мире осуществляет школьный курс математики, и в частности ее раздел ""математическая статистика"". Математическая статистика - это раздел математики, который изучает методы обработки и классификации статистических данных для получения научно - обоснованных выводов и принятия решений. В связи с тем, что статистические данные зависят от случайных факторов, математическая статистика тесно связана с теорией вероятностей, которая является ее теоретической основой.

    Еще первобытный вождь понимал, что у десятка охотников вероятность поразить копьем зверя гораздо больше, чем у одного. Поэтому о охотились тогда коллективно. Необоснованно было бы думать. Что такие древние полководцы, как Александр Македонский или Дмитрий Донской, готовясь к сражению, уповали только на доблесть и искусство воинов. Несомненно, они на основании наблюдений и опыта военного руководства умели как-то оценить вероятность своего возвращения со щитом или на щите, знали, когда принимать бой, когда уклониться от него. Они не были рабами случая, но вместе с тем они были еще очень далеки от теории вероятностей. Позднее, с опытом, человек все чаще и чаще стал взвешивать события, классифицировать их исходы как невозможные, возможные и достоверные. Он заметил, что случайность не так уж редко управляют объективные закономерности.

    Зарождение теории вероятностей произошло в поисках ответа на вопрос: как часто наступает то или иное событие в большей серии испытаний со случайными исходами, которые происходят в одинаковых условиях.

      Изучение нового материала

    Событие называется случайным, если при одних и тех же условиях оно может как произойти, так и не произойти

    Например, «При подбрасывании игрального кубика выпадет 6 очков»

    Говоря о любом случайном событии, мы всегда имеем в виду наличие определенных условий, без которых об этом событии вообще не имеет смысла говорить. Этот комплекс условий называют случайным опытом или случайным экспериментом.

    В дальнейшем мы будем называть случайным любое событие, связанное со случайным экспериментом.

    Достоверное событие, которое происходят при каждом таком эксперименте.

    Невозможное событие, которое никогда не могут произойти.

    Предметом теории вероятности является изучение вероятных закономерностей массовых однородных случайных событий.

    Рассмотрим несколько примеров случайных экспериментов:

    Опыт 1. П одбрасывание монеты. В результате такого эксперимента монета может упасть на одну из двух сторон - «орел» или «решка».

    Опыт 2. Подбрасывание кубика. Речь в нем идет об игральном кубике, на гранях которого выбиты точки, символизирующие количество очков от 1 до 6.

    Опыт 3. Выбор перчаток. В коробке лежит 3 пары одинаковых перчаток, из нее, не глядя, вытаскивают две перчатки.

    Кроме случайного события, с опытом связано еще одно важное понятие - элементарный исход. Исходом (или элементарным исходом, элементарным событием ) называется один из взаимоисключающих друг друга вариантов, которым может завершиться случайный эксперимент.

    Определим число возможных исходов в каждом из опытов:

    Опыт 1 - 2 исхода: «орел» и «решка»

    Опыт 2 - 6 исходов: 1, 2, 3, 4, 5, 6

    Сколько исходов в 3-м опыте? (2 исхода: «перчатки на одну рук» и «перчатки на разные руки»)

    В опыте 3 можно предложить более детальное описание исходов: «обе перчатки на левую руку», «обе перчатки на правую руку», «перчатки на разные руки». А можно - перенумеровать все шесть перчаток и тогда число исходов возрастет до 15.

    Неэлементарное событие будет состоять из некоторого множества исходов, которые называются благоприятными для этого события. Благоприятны они в том смысле, что приводят к наступлению данного события.

    Определение: Абсолютной частотой случайного события А в серии из n случайных опытов называется число, которое показывает, сколько раз в этой серии произошло событие А

    Провели испытания:

    Бросили 100 раз игральный кубик. При бросании игрального куба на его верхней грани

    кубика выпадает очки:

    Исходы испытания: 1. Выпадает одно очко.

    2. Выпадает два очка.

    3. Выпадает три очка.

    4. Выпадает четыре очка.

    5. Выпадает пять очков.

    6. Выпадает шесть очков.

    Случайное событие: - выпадет шесть очков.

    Частота события: - в данной серии экспериментов «шестёрка» выпала 17 раз

    Относительной частотой - отношение частоты к общему числу испытаний. (в нашем случае )

    Т. е. относительной частотой случайного события А в серии из n случайных опытов называется число, которое показывает, какая доля опытов в этой серии завершилась наступлением события А.

    Рассмотрим событие В, которое означает выпадение на кубе числа очков, кратного 3. Это событие происходит лишь при двух исходах испытания: когда выпало 3 очка и когда выпало 6 очков, т.е. для события В благоприятными являются два исхода из шести равновозможных исходов.

    Отношения числа благоприятных исходов к числу всех равновозможных исходов в рассматриваемом примере равно 2/6. Это отношение вероятностью события В и пишут Р(В) = 2/6.

    Обозначение Р происходит от французского слова probabilite, что означает «вероятность».

    Если все исходы какого-либо испытания равновозможные, то вероятность события в этом испытании равна отношению числа благоприятных для него исходов к числу всех равновозможных исходов.

    Задача . Из 25 экзаменационных билетов по геометрии ученик успел подготовить 11 первых и 8 последних билетов. Какова вероятность того, что на экзамене ему достанется билет, который он не подготовил?

    Решение. Общее число равновозможных исходов при выборе билетов на экзамене 25. пусть М - событие, заключающееся в том, что ученику достанется на экзамене билет, к которому он не подготовился. Число благоприятных для события М исходов равно 25 - (11 + 8), т. е. 6. Значит, .

    Задача. Антон и Игорь бросают белый и черный игральные кубики и подсчитывают сумму выпавших очков. Они договорились, что если при очередном бросании в сумме выпадет 8 очков, то выигрывает Антон, а если в сумме выпадет 7 очков, то выигрывает Игорь. Можно ли считать, что шансы выиграть в этой игре у мальчиков одинаковы?

    Решение. При бросании кубиков на белом кубике может выпасть 1, 2, 3, 4, 5 или 6 очков. Каждому числу очков, выпавших на белом кубике, соответствует шесть вариантов числа очков, выпавших на черном кубике. Все исходы этого испытания приведены в таблице:

    (1; 1)

    (2; 1)

    (3; 1)

    (4; 1)

    (5; 1)

    (6; 1)

    (1; 2)

    (2; 2)

    (3; 2)

    (4; 2)

    (5; 2)

    (6; 2)

    (1; 3)

    (2; 3)

    (3; 3)

    (4; 3)

    (5; 3)

    (6; 3)

    (1; 4)

    (2; 4)

    (3; 4)

    (4; 4)

    (5; 4)

    (6; 4)

    (1; 5)

    (2; 5)

    (3; 5)

    (4; 5)

    (5; 5)

    (6; 5)

    (1; 6)

    (2; 6)

    (3; 6)

    (4; 6)

    (5; 6)

    (6; 6)

    В каждой паре на первом месте записано число очков, выпавших на белом кубике, а на втором месте - число очков, выпавших на черном кубике. Указанные исходы испытания равновозможны. Общее число равновозможных исходов равно 36. Пусть событие А означает, что при бросании кубиков в сумме выпало 8 очков, а событие В означает, что в сумме выпало 7 очков.

    Для события А благоприятными являются 5 исходов: (2; 6), (3; 5), (4; 4), (5; 3), (6; 2).

    Для события В благоприятными являются 6 исходов:

    (1; 6), (2; 5), (3; 4), (4; 3), (5; 2), (6; 1).

    Отсюда , .

    Поэтому шансов выиграть у Игоря больше, чем у Антона.

        1. Закрепление нового материала.

    Решить следующие задачи:

        1. Для новогодней лотереи отпечатали 1500 билетов, из которых 120 выигрышных. Какова вероятность того, что купленный билет окажется выигрышным?

          Какова вероятность того, что при бросании игрального кубика выпадет 1 очко? более 3 очков?

        1. Ученик записал в тетради произвольно двузначное число. Какова вероятность того, что сумма цифр этого числа окажется равной 6?

          В коробке лежит 10 шаров, из них 5 черных, 2 белых, остальные – красные. Какова вероятность вытащить черный шар? вытащить не красный шар?

          Андрей и Олег договорились, что если при бросании двух игральных кубиков в сумме выпадет число очков кратное 5, то выигрывает Андрей, а если в сумме выпадет число очков, кратное 6, то выигрывает Олег. Справедлива ли эта игра? У кого из мальчиков больше шансов выиграть? Какова вероятность выигрыша каждого мальчика?

    5. Итоги урока.

    6. Домашнее задание.

    Задача 1. В урне находятся 3 синих, 8 красных и 9 белых шаров одинакового размера и веса, неразличимых на ощупь. Шары тщательно перемешаны. Какова вероятность появления синего, красного и белого шаров при одном вынимании шара из урны?

    Задача 2. Наташа купила лотерейный билет, который участвует в розыгрыше 100 призов на 50000 билетов, а Лена – билет, который участвует в розыгрыше трех призов на 70000. У кого больше шансов выиграть?

    Случайные события и их вероятности

    Событие – любое явление, в отношении которого имеет смысл говорить, наступило оно или не наступило в результате определенного комплекса условий или случайного эксперимента. Отсюда следует, что событие можно рассматривать, как величину, которая может принимать только два значения.

    Можно выделить виды событий.

    Событие называется достоверным, если оно обязательно происходит при каждом осуществлении определенной совокупности условий. Например, если брошена игральная кость, то выпадение не менее одного и не более шести очков является достоверным событием.

    Событие называется невозможным, если оно заведомо не произойдет ни при одном осуществлении данной совокупности условий. Например, если брошена игральная кость, то выпадение более шести очков является невозможным событием.

    Событие называется случайным, если оно может произойти, а может и не произойти при осуществлении данной совокупности условий. Например, если брошена игральная кость, то выпадение любого из шести очков является случайным событием.

    События называются несовместимыми, если их одновременное появление при осуществлении данной совокупности условий невозможно, т. е. появление события А в данном испытании исключает появление события В в этом же испытании. Например, если из урны с черными и белыми шарами случайным образом извлекается белый шар, то его появление исключает извлечение черного шара в той же попытке.

    События называются единственно возможными, если появление в результате испытания одного и только одного из них является достоверным событием. Например, если стрелок произвел выстрел, то обязательно происходит одно из двух событий – попадание или промах. Эти события единственно возможные.

    Совокупность единственно возможных событий испытания называется полной группой событий.

    События называются равновозможными, если есть основания считать, что ни одно из этих событий не является более возможным, чем другие. Например, появление герба или решетки при бросании монеты есть события равновозможные.

    Если – какое либо событие, то событие, состоящее в том, что событие не наступило, называется событием противоположным событию или отрицанием события и обозначается .

    Суммой событий и называется такое событие, обозначаемое , которое происходит только тогда, когда происходит хотя бы одно из событий или или оба вместе.

    Произведением событий и называется такое событие, обозначаемое , которое происходит только тогда, когда происходят оба события и одновременно. Если и несовместимые события, то событие является невозможным.

    События, происходящие при реализации определенного комплекса условий или в результате случайного эксперимента, называются элементарными исходами. Считается, что при проведении случайного эксперимента реализуется только один из возможных элементарных исходов. Множество всех элементарных исходов случайного эксперимента называется пространством элементарных исходов.

    Те элементарные исходы, при которых наступает интересующее нас событие, называются исходами, благоприятствующимиэтому событию.

    Вероятностьсобытия – это отношение числа благоприятствующих этому событию элементарных исходов к общему числу всех возможных и равновозможных элементарных исходов эксперимента , где – число элементарных исходов, благоприятствующих событию ; – число всех возможных элементарных исходов эксперимента.

    Можно определить следующие свойства вероятности:

    – вероятность достоверного события равна 1;

    – вероятность невозможного события равна 0;

    – вероятность случайного события есть положительное число, заключенное между 0 и 1: .

    Математическое понятие вероятности случайного события является абстрактной характеристикой, присущей не самим интересующим нас объектам материального мира, а их теоретико-множественным моделям. Требуется некоторое дополнительное соглашение для того, чтобы можно было извлекать сведения о вероятностях из экспериментальных данных. В соответствии с классическим определением принято оценивать вероятность события относительной частотой благоприятных исходов опыта. Если проведено N независимых испытаний и в n из них наблюдалось событие , то эмпирическая (выборочная) оценка вероятности , которую можно получить из этой серии, равна: . При этом полагают, что , если число испытаний .

    Основные теоремы теории вероятностей

    1. Теорема сложения вероятностей . Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий за вычетом вероятности их одновременного наступления

    Если и несовместимые события, то событие является невозможным. Следовательно, . Обобщая на несколько попарно несовместимых событий, можно записать .

    Если события образуют полную группу, то сумма вероятностей этих событий равна единице: . Сумма вероятностей противоположных событий равна единице: .

    2. Теорема умножения вероятностей. Предположим, что из общего числа исходов испытания событию благоприятствуют элементарных исходов, событию благоприятствуют элементарных исходов, а одновременному наступлению событий и благоприятствуют элементарных исходов. Если событие наступило, то это означает, что осуществился один из благоприятствующих ему исходов, причем из этих исходов благоприятствовать событию будут и те исходов, при которых события и наступают одновременно. В связи с этим вводится понятие условной вероятности. Условной вероятностью называют вероятность события , вычисленную в предположении, что событие уже наступило. Независимыми событиями называются события, если вероятность одного из них не зависит от наступления или ненаступления другого. Если событие независимо от события , то . События называются независимыми в совокупности, если каждое из этих событий независимо в паре с любым произведением остальных событий, содержащим как все остальные события, так и любую их часть. Независимость событий в совокупности влечет за собой попарную независимость этих событий. Для двух случайных зависимых событий вероятность произведения этих событий (т. е. одновременного появления в одном испытании) равна произведению вероятностей одного из них на условную вероятность другого, рассчитанную при условии, что первое событие уже произошло: . Если событие независимо от события , то . Вероятность одновременного появления нескольких попарно независимых событий равна произведению их вероятностей: .

    3. Теорема полной вероятности. Пусть имеется группа событий , обладающих следующими свойствами: а) все события попарно несовместимы; б) их объединение образует пространство элементарных исходов; в) они образуют полную группу событий. Такие события называют гипотезами, поскольку заранее неизвестно, какое из этих событий наступит. Пусть – некоторое событие, которое может произойти при наступлении одного и только одного из событий . Это означает, что . Вероятность события , которое может наступить лишь при условии появления одного из несовместимых событий , образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события : . Приведенная формула называется формулой полной вероятности.

    4. Формула Байеса. Пусть, как и в предыдущем случае имеем совокупность события и группы событий , обладающих теми же свойствами. Допустим, что событие произошло и требуется определить, как в связи с этим изменились вероятности гипотез, т. е. . Эта задача решается с помощью формулы Байеса . Формула Байеса позволяет переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие , т. е. найти апостериорные вероятности. Используя понятие условной вероятности формулу Байеса можно интерпретировать как вероятность того, что причиной появления события является событие .

    5. Формула Бернулли. Пусть производится независимых испытаний, в каждом из которых событие может появиться, либо не появиться. Будем считать, что вероятность события в каждом испытании одна и та же и равна . Следовательно, вероятность ненаступления события в каждом испытании также постоянна и равна . Вероятность того, что при этих условиях при n испытаниях событие произойдет ровно k раз и, следовательно, не произойдет раз определяется по формуле Бернулли , где . Формулу Бернулли называют также формулой биномиального распределения вероятностей, поскольку в правой ее части стоит -й член бинома Ньютона.

    6. Локальная теорема Лапласа. При больших формулой Бернулли пользоваться затруднительно из-за громоздкости вычислений. Для этого случая доказана так называемая локальная теорема Лапласа, дающая асимптотическую формулу, которая позволяет приближенной найти вероятность появления события раз в испытаниях, если число испытаний достаточно велико , где и . Для функции составлены таблицы, соответствующие положительным значениям аргумента , поскольку . Формула Лапласа дает тем большую точность, чем больше .