Измерительные шкалы. Шкалы измерений

  • 30.09.2019

В системном анализе выделяют раздел «теория эффективности», связанный с определением качества систем и процессов, их реализующих. Теория эффективности - научное направление, предметом изучения которого являются вопросы количественной оценки качества характеристик и эффективности функционирования сложных систем.

Оценка сложных систем может проводиться для разных целей:

4) для оптимизации - выбора наилучшего алгоритма из нескольких, реализующих один закон функционирования системы;

5) для идентификации - определения системы, качество которой наиболее соответствует реальному объекту в заданных условиях;

6) для принятия решений по управлению системой.

Общим во всех подобных задачах является подход, основанный на том, что понятия «оценка» и «оценивание» рассматриваются раздельно и оценивание проводится в несколько этапов. Под оценкой понимают результат, получаемый в ходе процесса, который определен как оценивание . Т.е. с термином «оценка» сопоставляется понятие «истинность», а с термином «оценивание» - «правильность». Истинная оценка может быть получена только при правильном процессе оценивания. Это положение определяет место теории эффективности в задачах системного анализа.

Выделяют четыре этапа оценивания сложных систем.

Этап 1. Определение цели оценивания. Выделяют два типа целей: качественные и количественные, достижение которых выражаются в соответствующих шкалах. Определение цели должно осуществляться относительно системы, в которой рассматриваемая система является элементом (подсистемой).

Этап 2. Измерение свойств систем, признанных существенными для целей оценивания. Для этого выбираются соответствующие шкалы измерений свойств и всем исследуемым свойствам систем присваивается определенное значение на этих шкалах.

Этап 3. Обоснование предпочтений критериев качества и критериев эффективности функционирования систем на основе измеренных на выбранных шкалах свойств.

Этап 4. Собственно оценивание. Все исследуемые системы, рассматриваемые как альтернативы, сравниваются по сформулированным критериям и в зависимости от целей оценивания ранжируются, выбираются, оптимизируются и т.д.

2.1.1. Понятие шкалы

В основе оценки лежит процесс сопоставления значений качественных или количественных характеристик исследуемой системы значениям соответствующих шкал. Исследование характеристик привело к выводу о том, что все возможные шкалы принадлежат к одному из нескольких типов, определяемых перечнем допустимых операций на этих шкалах.

Формально шкалой называется кортеж из трех элементов , j , Y>, где Х - реальный объект, Y - шкала, j - гомоморфное отображение X на Y .

В современной теории измерений определено:

X= {x 1 , х 2 ,…x i ,…, х п , R x } - эмпирическая система с отношением, включающая множество свойств x i , на которых в соответствии с целями измерения задано некоторое отношение R x . В процессе измерения необходимо каждому свойству х i ÎX поставить в соответствие признак или число, его характеризующее. Если, например, целью измерения является выбор, то элементы х i рассматриваются как альтернативы, а отношение R x позволяет сравнивать эти альтернативы; Y ={j (x 1),…, j(х п), R y } знаковая система с отношением, являющаяся отображением эмпирической системы в виде некоторой образной или числовой системы, соответствующей измеряемой эмпирической системе; j Î Ф - гомоморфное отображение X на Y , устанавливающее соответствие между X и Y так, что {j (x 1),…, j(х п), R y R y только тогда, когда (х 1 ,..., х п, ) Î R x .

Тип шкалы определяется по множеству допустимых преобразований Ф.

В соответствии с приведенными определениями, охватывающими как количественные, так и качественные шкалы, измерение эмпирической системы X с отношением R x состоит в определении знаковой системы Y с отношением R , соответствующей измеряемой системе. Предпочтения R x на множестве Х ´Х в результате измерения переводятся в знаковые (в том числе и количественные) соотношения R y на множестве Y ´Y.

2.1.2. Шкалы номинального типа

Самой слабой качественной шкалой является номинальная (шкала наименований , классификационная шкала ), по которой объектам или их неразличимым группам дается некоторый признак. Название «номинальный» объясняется тем, что такой признак дает лишь ничем не связанные имена объектам. Шкалы номинального типа задаются множеством взаимно однозначных допустимых преобразований шкальных значений. Эти значения для разных объектов либо совпадают, либо различаются; никакие более тонкие соотношения между значениями не зафиксированы. Основным свойством этих шкал является сохранение неизменными отношений равенства между элементами эмпирической системы в эквивалентных шкалах.

Примерами измерений в номинальном типе шкал могут служить номера автомашин, телефонов, коды городов, лиц, объектов и т. п. Единственная цель таких измерений выявление различий между объектами разных классов. Если каждый класс состоит из одного объекта, шкала наименований используется для различения объектов.

На рис.2.1 изображено измерение в номинальной шкале объектов, представляющих три множества элементов А, В, С. Здесь эмпирическую систему представляют четыре элемента: а ÎA, b ÎВ, {с, d} ÎС. Знаковая система представлена цифровой шкалой наименований, включающей элементы 1, 2,..., n и сохраняющей отношение равенства. Гомоморфное отображение φ ставит в соответствие каждому элементу из эмпирической системы определенный элемент знаковой системы. Номинальные шкалы имеют две особенности:

Всякая обработка результатов измерения в номинальной шкале должна учитывать данные особенности. В противном случае могут быть сделаны ошибочные выводы по оценке систем, не соответствующие действительности.

2.1.3. Шкалы порядка

Шкала называется ранговой (шкалой порядка ), если множество Ф состоит из всех монотонно возрастающих допустимых преобразований шкальных значений.

Монотонно возрастающим называется такое преобразование φ (х ), которое удовлетворяет условию: если х 1 > х 2 , то и φ (х 1) > φ (х 2) для любых шкальных значений из области определения. Порядковый тип шкал допускает не только различие объектов, как номинальный тип, но и используется для упорядочения объектов по измеряемым свойствам.

Ситуации для применения ранговой шкалы:

Необходимо упорядочить объекты во времени или пространстве. При этом интересуются не сравнением степени выраженности какого-либо их качества, а лишь взаимным пространственным или временным расположением объектов;

Нужно упорядочить объекты в соответствии с каким-либо качеством, но при этом не требуется производить его точное измерение;

Какое-либо качество в принципе измеримо, но в настоящий момент не может быть измерено по причинам практического или теоретического характера.

Примеры шкал порядка: шкала твердости минералов, предложенная в 1811 г. немецким ученым Ф. Моосом и до сих пор распространенная в полевой геологической работе; шкалы силы ветра, силы землетрясения, сортности товаров в торговле, социологические шкалы и т.п.

Любая шкала, полученная из шкалы порядка S с помощью произвольного монотонно возрастающего преобразования шкальных значений, будет также точной шкалой порядка для исходной эмпирической системы с отношениями.

2.1.4. Шкалы интервалов

Одним из наиболее важных типов шкал является тип интервалов . Этот тип содержит шкалы, единственные с точностью до множества положительных линейных допустимых преобразований вида φ (х ) = ах + b, где х ÎY Y; а > 0; b - любое значение.

Основным свойством этих шкал является сохранение неизменными отношений интервалов в эквивалентных шкалах:

Примеры применения шкал интервалов:

1) Шкалы температур. Переход от одной шкалы к эквивалентной, например от шкалы Цельсия к шкале Фаренгейта, задается линейным преобразованием шкальных значений:
t °F = 1,8 t °С + 32.

2) Измерение признака «дата совершения события», поскольку для измерения времени в конкретной шкале необходимо фиксировать масштаб и начало отсчета. Григорианский и мусульманский календари - две конкретизации шкал интервалов.

При переходе к эквивалентным шкалам с помощью линейных преобразований в шкалах интервалов происходит изменение как начала отсчета (параметр b), так и масштаба измерений (параметр а).

Шкалы интервалов так же, как номинальная и порядковая, сохраняют различие и упорядочение измеряемых объектов. Однако кроме этого они сохраняют и отношение расстояний между парами объектов. Запись означает, что расстояние между х 1 и х 2 в K раз больше расстояния между х 3 и х 4 и в любой эквивалентной шкале это значение (отношение разностей численных оценок) сохранится. При этом отношения самих оценок не сохраняются.

В социологических исследованиях в шкалах интервалов обычно измеряют временные и пространственные характеристики объектов. Например, даты событий, стаж, возраст, время выполнения заданий, разницу в отметках на графической шкале и т.д. Однако прямое отождествление замеренных переменных с изучаемым свойством не столь просто.

Типичная ошибка: свойства, измеряемые в шкале интервалов, принимаются в качестве показателей для других свойств, монотонно связанных с данными.

Применяемые для измерения связанных свойств исходные шкалы интервалов становятся всего лишь шкалами порядка. Игнорирование этого факта приводит к неверным результатам.

2.1.5. Шкалы отношений

Шкалой отношений (подобия) называется шкала, если Ф состоит из преобразований подобия j(х) = ах, а >0, где х Î Y- шкальные значения из области определения Y; а - действительные числа. В шкалах отношений остаются неизменными отношения численных оценок объектов: .

Примерами измерений в шкалах отношений являются измерения массы и длины объектов. При установлении массы используется большое разнообразие численных оценок: производя измерение в килограммах, получаем одно численное значение, при измерении в фунтах - другое и т.д. Однако в какой бы системе единиц ни производилось измерение массы, отношение масс любых объектов одинаково и при переходе от одной числовой системы к другой, эквивалентной, не меняется. Этим же свойством обладает и измерение расстояний и длин предметов.

Шкалы отношений отражают отношения свойств объектов, т.е. во сколько раз свойство одного объекта превосходит это же свойство другого объекта.

Шкалы отношений образуют подмножество шкал интервалов фиксированием нулевого значения параметра b : b = 0. Это соответствует заданию нулевой точки начала отсчета шкальных значений для всех шкал отношений. Переход от одной шкалы отношений к другой, эквивалентной ей шкале осуществляется с помощью преобразований подобия (растяжения), т.е. изменением масштаба измерений. Шкалы отношений, являясь частным случаем шкал интервалов, при выборе нулевой точки отсчета сохраняют не только отношения свойств объектов, но и отношения расстояний между парами объектов.

2.1.6. Шкалы разностей

Шкалы разностей определяются как шкалы, единственные с точностью до преобразований сдвига φ (х ) = х + b, где х ÎY шкальные значения из области определения Y; b - вещественные числа. Т.е. при переходе от одной числовой системы к другой меняется лишь начало отсчета. Шкалы разностей применяются в тех случаях, когда необходимо измерить, насколько один объект превосходит по определенному свойству другой объект. В шкалах разностей неизменными остаются разности численных оценок свойств: φ (х 1) - φ (х 2) = х 1 - х 2 .

Примеры измерений в шкалах разностей:

3) Измерение прироста продукции предприятий (в абсолютных единицах) в текущем году по сравнению с прошлым;

4) Увеличение численности учреждений, количество приобретенной техники за год и т. д.

5) Летоисчисление (в годах). Переход от одного летоисчисления к другому осуществляется изменением начала отсчета.

Шкалы разностей являются частным случаем шкал интервалов, получаемых фиксированием параметра а : (а = 1), т.е. выбором единицы масштаба измерений. Точка отсчета в шкалах разностей может быть произвольной. Шкалы разностей сохраняют отношения интервалов между оценками пар объектов, но, в отличие от шкалы отношений, не сохраняют отношения оценок свойств объектов.

2.1.7. Абсолютные шкалы

Абсолютными называют шкалы, в которых единственными допустимыми преобразованиями Ф являются тождественные преобразования: φ (х ) = {е }, где е(х) = х.

Это означает, что существует только одно отображение эмпирических объектов в числовую систему. Единственность измерения понимается в буквальном абсолютном смысле.

Абсолютные шкалы применяются, например, для измерения количества объектов, предметов, событий, решений и т.п. В качестве шкальных значений при измерении количества объектов используются натуральные числа, когда объекты представлены целыми единицами, и вещественные числа, если кроме целых единиц присутствуют и части объектов.

Абсолютные шкалы являются частным случаем всех ранее рассмотренных типов шкал, поэтому сохраняют любые соотношения между числами оценками измеряемых свойств объектов: различие, порядок, отношение интервалов, отношение и разность значений и т.д.

Кроме указанных существуют промежуточные типы шкал, например, степенная шкала φ(х) = ах b ; а >0, b >0, а ¹1, b ¹1, и ее разновидность логарифмическая шкала φ(х) = х b ; b >0, b ¹1.



Изобразим для наглядности соотношения между основными типами шкал в виде иерархической структуры основных шкал (рис.2.2). Стрелки указывают включение совокупностей допустимых преобразований более «сильных» в менее «сильные» типы шкал. При этом шкала тем «сильнее», чем меньше свободы в выборе φ(х) . Некоторые шкалы являются изоморфными, т.е. равносильными. Например, равносильны шкала интервалов и степенная шкала. Логарифмическая шкала равносильна шкале разностей и шкале отношений.

С. Стивенсом предложена классификация из четырех типов шкал измерения: номинальная, порядковая, интервальная и шкала отношений.

Номинальная шкала (шкала наименований, номинативная шкала) состоит в присваивании какому-либо свойству или признаку определенного обозначения или символа (численного, буквенного и т.д.). По сути это- классификация свойств, группирование объектов, объединение их в классы при условии, что объекты, принадлежащие к одному классу, идентичны (или аналогичны) друг другу в отношении какого-либо признака или свойства, тогда как объекты, различающиеся по этому признаку, попадают в разные классы.

Пример: а) классификация вкусовых качеств: А - сладкое, В - горь­кое, С - кислое; б) цвета видимого спектра: красный, зеленый, синий и пр.; в) национальность: А белорус, В - русский, С - украинец; г) раз­биение людей по четырем типам темперамента: сангвиник, флегматик, меланхолик, холерик.

Номинальная шкала определяет, что разные свойства или признаки качественно отличаются друг от друга. Привычные операции с числами - упорядочивание, сложение-вычитание, деление - при измерении в номинативной шкале теряют смысл. Так, для признаков, измеренных по этой шкале, нельзя сказать, что какой-то из них больше, а какой-то меньше, какой-то лучше, а какой-то хуже. То есть при сравнении объектов мы можем делать вывод только о том, принадлежат они к одному или разным классам, тождественны или нет по измеренному свойству.

Следует подчеркнуть, что присваиваемые объектам в номинативной шкале символы являются условными и допускаются любые замены или перестановки буквенных (численных) обозначений.

Простейший случай номинативной шкалы - дихотомическая шкала. При измерениях по этой шкале измеряемые признаки можно кодировать двумя символами или цифрами, например 0 и 1 или 3 и 5, или буквами А и Б, а также любыми двумя отличающимися друг от друга символами. Признак, измеренный по дихотомической шкале, называется альтернативным.

В дихотомической шкале все объекты, признаки или изучаемые свойства разбиваются на два непересекающихся класса, при этом исследователь ставит вопрос о том, «проявился» ли интересующий его признак у испытуемого или нет. Например, в конкретном исследовании признак «леворукости» проявился у 8 испытуемых из 20, то есть 8 испытуемым можно поставить цифру 1, соответствующую признаку «леворукость», остальным цифру 0, соответствующую признаку «праворукость».

Пример: а) классификация по полу: 1 - мужской, 0 - женский;
б) ответы на опросник: 1 - да, 0 - нет; в) состав семьи: А - полная семья, Б -неполная семья.

В номинативной шкале можно подсчитать частоту встречаемости признака, то есть число испытуемых, явлений и т.п., попавших в данный класс и обладающих данным свойством. Допустим, мы выясняем число мальчиков и девочек в классе. Для этого мы кодируем мальчиков, например, цифрой 1, а девочек - цифрой 0. После этого подсчитываем общее количество цифр (кодов) 1 и 0. Это и есть подсчет частоты признака.


Единица измерения, которой мы при этом оперируем - количество наблюдений (испытуемых, реакций, выборов и т.п.), или частота. Точнее, единица измерения - это одно наблюдение. Общее число наблюдений (испытуемых, реакций, выборов и т.п.) принимается за 100%, и тогда можно вычислить процентное соотношение, например, мальчиков и девочек в классе.

К результатам измерений, полученным в номинативной шкале, возможно применить небольшое число статистических методов. Такие данные могут быть обработаны, например, с помощью метода %, биномиального критерия m, углового преобразования Фишера φ и др.

Порядковая шкала (ранговая шкала) - это шкала, классифицирующая по принципу «больше - меньше», «выше - ниже», «сильнее - слабее». Измерение в этой шкале предполагает приписывание объектам чисел в зависимости от степени выраженности измеряемого свойства. Если в предыдущей шкале было несущественно, в каком порядке располагаются измеренные признаки, то в порядковой шкале все признаки располагаются по рангу - от самого большего (высокого, сильного, умного и т.п.) до самого маленького (низкого, слабого, глупого и т. п.) или наоборот. Типичный и очень хорошо известный всем пример порядковой шкалы - это школьные оценки: от 5 до 1 балла или от 0 до 10 баллов.

В порядковой шкале должно быть не менее трех классов, например «положительная реакция - нейтральная реакция - отрицательная реак­ция» или «высокий - средний - низкий» и т. п., с тем расчетом, чтобы можно было расставить измеренные признаки по порядку.

Существует множество способов получения измерения в порядковой шкале. Но суть остается общей: при сравнении испытуемых друг с другом мы можем сказать, больше или меньше выражено свойство, но не можем сказать, насколько больше или насколько меньше оно выражено, а уж тем более - во сколько раз больше или меньше. При измерении в ранговой шкале, таким образом, из всех свойств чисел учитывается то, что они разные, и то, что одно число больше, чем другое.

Пример: а) места, занятые студентами в соревновании (1, 2, 3); б) ранг студента по среднему баллу успеваемости (1, 2, 3, 4, 5, 6 и т.д.); в) ответы на тест: 1 - никогда, 2 - иногда, 3 - часто, 4 - всегда.

В порядковой шкале мы не знаем истинного расстояния между классами, а знаем лишь, что они образуют последовательность. От классов можно просто перейти к числам, если считать, что низший класс получает ранг (код или цифру) 1, средний - 2, высший - 3 (или наоборот). Чем больше число классов разбиений всей экспериментальной совокупности, тем шире возможности статистической обработки полученных данных.

При кодировании порядковых переменных им можно приписывать любые цифры (коды), но в этих кодах (цифрах) обязательно должен сохраняться порядок, или, иначе говоря, каждая последующая цифра должна быть больше (или меньше) предыдущей, Например, необходимо закодировать уровень тревожности по пяти градациям: самый низкий - 1, низкий - 2, средний - 3, высокий - 4, самый высокий - 5. Можно использовать и другие способы кодировки (например, 14, 23, 34, 45, 56 соответственно), однако предложенный первоначально способ кодировки является наиболее привычным и поэтому наиболее предпочтительным. Числа в ранговых шкалах обозначают лишь порядок следования признаков, а операции с числами в этой шкале - это операция с рангами.

При ранжировании необходимо учитывать два обстоятельства:
1. Установите для себя и запомните порядок ранжирования. Можно ранг 1 присваивать тому, у которого 1-е место по выраженности данного признака (например, «самый сильный»). Или можно ранг 1 присваивать тому, у которого наименьшая выраженность признака, и далее - увеличение ранга по мере увеличения уровня признака. Строгих правил выбора здесь нет, но важно помнить, в каком направлении производилось ранжирование. 2. Соблюдайте правило ранжирования для связанных рангов, когда двое или более испытуемых имеют одинаковую выраженность измеряемого свойства. В этом случае таким испытуемым присваивается один и тот же, средний ранг. Например, если вы ранжируете испытуемых по «месту в группе» и двое имеют одинаковые самые высокие исходные оценки, то обоим присваивается средний ранг 1,5: (1+2)/2=1,5. Следующему за этой парой испытуемому присваивается ранг 3 и т.д. Это правило основано на соглашении соблюдения одинаковой суммы рангов для связанных или несвязанных рангов. В соответствии с этим правилом сумма всех присвоенных рангов для группы численностью N должна равняться N(N+1)/2, вне зависимости от наличия или отсутствия связей в рангах.

В порядковой шкале применяется множество разнообразных статистических методов. Наиболее часто к измерениям, полученным в этой шкале, применяются коэффициенты корреляции Спирмена и Кендалла, кроме того, применительно к данным, полученным в этой шкале, используют разнообразные критерии различий.

Интервальная шкала (шкала интервалов) - это шкала, классифицирующая по принципу «больше на определенное количество единиц -меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии. Главное понятие этой шкалы - интервал, который можно определить как долю или часть измеряемого свойства между двумя соседними позициями на шкале. Размер интервала - величина фиксированная и постоянная на всех участках шкалы. Для измерения посредством шкалы интервалов устанавливаются специальные единицы измерения (в психологии, например, стены и стенайны). Объекту присваивается число единиц измерения, пропорциональное выраженности измеряемого свойства. Важной особенностью шкалы интервалов является то, что у нее нет естественной точки отсчета (нуль условен и не указывает на отсутствие измеряемого свойства). Следовательно, применяя эту шкалу, мы можем судить, насколько больше или насколько меньше выражено свойство при сравнении объектов, но не можем судить о том, во сколько раз больше или меньше выражено свойство.

Пример: а) измерение температуры по шкале Цельсия (°С); б) тесты интеллекта (условная единица измерения IQ); в) 16-факторный опросник Кеттелла (сырые баллы переведены в стены).

К экспериментальным данным, полученным по этой шкале, применимо достаточно большое число статистических методов.

Шкала отношений - это шкала, классифицирующая объекты или субъекты пропорционально степени выраженности измеряемого свойства. В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8. Это предполагает наличие абсолютной нулевой точки отсчета, поэтому при сравнении объектов мы можем сказать не только о том, насколько больше или меньше выражено свойство, но и о том, во сколько раз (на сколько процентов и т.д.) больше или меньше оно выражено. Измерив время решения задачи парой испытуемых, мы можем сказать не только о том, кто и на сколько секунд (минут) решил задачу быстрее, но и о том, во сколько раз быстрее.

Следует отметить, что, несмотря на привычность и обыденность абсолютной шкалы, в психологии она используется не часто. Возможности человеческой психики столь велики, что трудно представить себе абсолютный нуль в какой-либо измеряемой психологической переменной.

Пример: а) измерение времени реакции (обычно в миллисекундах); б) измерение абсолютных порогов чувствительности.

Перечисленные шкалы полезно характеризовать по признаку их дифференцирующей способности (мощности). В этом отношении шкалы по мере возрастания мощности располагаются следующим образом: номинальная, порядковая, интервальная, шкала отношений. Таким образом, неметрические шкалы заведомо менее мощные - они отражают меньше информации о различии объектов (испытуемых) по измеренному свойству, и, напротив, метрические шкалы более мощные, так как они лучше дифференцируют испытуемых. Поэтому если у исследователя есть возможность выбора, необходимо применить более мощную шкалу. Другое дело, что чаще такого выбора нет, и приходится использовать доступную измерительную шкалу.

Определение того, в какой шкале измерено явление (представлен признак), - ключевой момент анализа данных: от этого зависит выбор метода и интерпретация результатов.

Обычно идентификация номинативной шкалы, ее дифференциация от ранговой, а тем более от метрической шкалы не вызывает проблем.

Пример: рассмотрим вопрос анкеты «Насколько Вы уверены в своих силах?» для ответа, на который испытуемые выбирают один из предложенных вариантов:

1) совершенно уверен;

2) затрудняюсь ответить;

3) совершенно неуверен.

Если исследователя интересует, в какой степени испытуемые уверены или не уверены в своих силах, то логично предполагать, что признак представлен в порядковой шкале. Если же исследователя интересует то, как распределились ответы по вариантам или чем характеризуется каждая из трех соответствующих групп, то разумнее рассматривать этот признак как номинальный.

Значительно сложнее определить различие между порядковой и метрической шкалами. Проблема связана с тем, что измерения в психологии, как правило, косвенные. Непосредственно мы измеряем некоторые наблюдаемые явления или события: количество ответов на вопросы или заданий, решенных за отведенное время, или время решения набора заданий и т.д. Но при этом выносим суждения о некотором скрытом, латентном свойстве, недоступном прямому наблюдению: об агрессивности, общительности, способности и т.д.

Количество заданий, решенных за отведенное время, - это, конечно, измерение в метрической шкале. Но само по себе это количество нас интересует лишь в той мере, в какой оно отражает некоторую изучаемую нами способность. Соответствуют ли равные разности решенных задач равным разностям выраженности изучаемого свойства (способности)? Если ответ «да» - шкала метрическая (интервальная или равных отношений), если «нет» - шкала порядковая.

В подобных ситуациях проще всего согласиться с тем, что признак представлен в порядковой шкале. Но при этом мы существенно ограничиваем себя в выборе методов последующего анализа. Более того, переход к менее мощной шкале обрекает нас на утрату части ценной для нас эмпирической информации. Следствием этого может являться падение статистической достоверности результатов исследования. Поэтому исследователь стремиться все же найти свидетельство того, что используемая шкала - более мощная.

Задания:

Определите, в какой шкале представлено каждое из приведенных ниже измерений; наименований, порядка, интервалов, отношений.

1. Упорядочивание испытуемых по времени решения тестовой задачи.

2. Предпочтение домашних животных: собаки, кошки, крысы, никакие.

3. Воинское звание (рядовой, ефрейтор, сержант, лейтенант, капитан) как мера продвижения по службе.

4. Количество агрессивных реакций за день.

5. Академический статус (ассистент, доцент, профессор) как указание на принадлежность к соответствующей категории.

6. Упорядочивание испытуемым 18 инструментальных ценностей (по Рокичу) по степени их значимости для него.

7. Цвет волос (блондинки, брюнетки, шатенки, рыжие).

8. Время решения задачи.

9. Статус ученика в группе (звезда, предпочитаемый, принятый, непринятый).

Библиография

1. Ермолаев, О.Ю. Математическая статистика для психологов /
О.Ю. Ермолаев. - М.: МПСИ: Флинта. - 2002. – 325 с.

2. Наследов, А.Д. Математические методы в психологическом исследовании. Анализ и интерпретация данных / А.Д. Наследов. - СПб.: Речь. - 2004.

3. Сидоренко, Е.В. Методы математической обработки в психологии. – СПб.: ООО «Речь» - 2004. – 350с.

4. Бурлачук, Л.Ф., Морозов С.М. Словарь – справочник по психодиагностике / Л.Ф. Бурлачук, С.М. Морозов – СПб: Питер Ком. - 1999. – 528с.

5. Суходольский, Г. В. Математические методы в психологии / Г.В. Суходольский. - Харьков: Изд-во Гуманитарный Центр. - 2006. – 512с.

6. Тарасов, С.Г. Основы применения математических методов в психологии. / С.Г. Тарасов. - СПб.: Изд-во: Санкт - Петербург. ун-та. - 1999. – 326с.

7. Глинский, В. В., Ионин, В. Г. Статистический анализ данных /
В.В. Глинский, В.Г. Ионин. - М.: Филин. - 2008. – 265 с.

14. Понятие, виды, особенности измерительных шкал

Измерение - это алгоритмическая операция, которая данному наблюдаемому состоянию объекта ставит в соответствие определенное обозначение: число, помер или символ. Обозначим через хi. i=1,…, m наблюдаемое состояние (свойство) объекта, а через уi, i = 1,..,m - обозначение для этого свойства. Чем теснее соответствие между состояниями и их обозначениями, тем больше информации можно извлечь в результате обработки данных. Менее очевидно, что степень этого соответствия зависит не только от организации измерений (т. е. от экспериментатора), но и от природы исследуемого явления, и что сама степень соответствия в свою очередь определяет допустимые (и недопустимые) способы обработки данных!

Измерительные шкалы в зависимости от допустимых на них операций различаются по их силе. Самые слабые - номинальные шкалы, а самые сильные - абсолютные.

С. Стивенсом предложена классификация из 4 типов шкал измерения:

1) номинативная, или номинальная, или шкала наименований;

2) порядковая, или ординальная, шкала;

3) интервальная, или шкала равных интервалов;

4) шкала равных отношений.

Выделяют три основных атрибута измерительных шкал, наличие или отсутствие которых определяет принадлежность шкалы к той или иной категории:

1. упорядоченность данных означает, что один пункт шкалы, соответствующий измеряемому свойству, больше, меньше или равен другому пункту;

2. интервальность пунктов шкалы означает, что интервал между любой парой чисел, соответствующих измеряемым свойствам, больше, меньше или равен интервалу между другой парой чисел;

3. нулевая точка (или точка отсчета) означает, что набор чисел, соответствующих измеряемым свойствам, имеет точку отсчета, обозначаемую за ноль, что соответствует полному отсутствию измеряемого свойства.

Кроме того, выделяют следующие группы:

    неметрические или качественные шкалы, в которых отсутствуют единицы измерений (номинальная и порядковая(ранговая) шкалы);

    количественные или метрические (шкала интервалов, абсолютная шкала).

Шкалирование представляет собой отображение какого-либо свойства объекта или явления в числовом множестве.

Можно сказать, что чем сильнее шкала, в которой производятся измерения, тем больше сведений об изучаемом объекте, явлении, процессе дают измерения. Поэтому так естественно стремление каждого исследователя провести измерения в возможно более сильной шкале. Однако важно иметь в виду, что выбор шкалы измерения должен ориентироваться на объективные отношения, которым подчинена наблюдаемая величина, и лучше всего производить измерения в той шкале, которая максимально согласована с этими отношениями. Можно измерять и в шкале более слабой, чем согласованная (это приведет к потере части полезной информации), но применять более сильную шкалу опасно: полученные данные на самом деле не будут иметь той силы, на которую ориентируется их обработка.

Иногда же исследователи усиливают шкалы; типичный случай - «оцифровка» качественных шкал: классам в номинальной или порядковой шкале присваиваются номера, с которыми дальше «работают» как с числами. Если в этой обработке не выходят за пределы допустимых преобразований, то «оцифровка» - это просто перекодировка в более удобную (например, для ЭВМ) форму. Однако применение других операций сопряжено с заблуждениями, ошибками, так как свойства, навязываемые подобным образом, на самом деле не имеют места.

Виды шкал:

    Номинативная или шкала наименований:

Позволяет установить к какому классу относится тот или иной объект измерения. Все объекты группируются по классам. Каждому классу приписывается значение. Особенностью является то, что учитывается одно значение чисел. Обычные арифметические операции недопустимы. Мы можем сделать вывод о тождественности по измеряемому свойству. Иными словами, объекты сравниваются друг с другом и определяется их эквивалентность -- неэквивалентность. В результате процедуры образуется совокупность классов эквивалентности. Объекты, принадлежащие одному классу, эквивалентны друг другу и отличны от объектов, относящихся к другим классам. Эквивалентным объектам присваиваются одинаковые имена. О шкале наименований можно говорить в том случае, когда эмпирические объекты просто "метятся" числом. Несмотря на тенденцию "завышать" мощность шкалы, психологи очень часто применяют шкалу наименований в исследованиях. "Объективные" измерительные процедуры при диагностике личности приводят к типологизации: отнесению конкретной личности к тому или иному типу. Примером такой типологии являются классические темпераменты: холерик, сангвиник, меланхолик и флегматик.

Самая простая номинативная шкала называется дихотомической. При измерениях по дихотомической шкале измеряемые признаки можно кодировать двумя символами или цифрами, например 0 и 1, или 2 и 6, или буквами А и Б, а также любыми двумя отличающимися друг от друга символами. Признак, измеренный по дихотомической шкале, называется альтернативным. В дихотомической шкале все объекты, признаки или изучаемые свойства разбиваются на два непересекающихся класса, при этом исследователь ставит вопрос о том, «проявился» ли интересующий его признак у испытуемого или нет.

Операции с числами для номинативной шкалы.

1) Нахождение частот распределения по пунктам шкалы с помощью процентирования или в

численности к общему ряду распределения (частоты).

2) Поиск средней тенденции по модальной частоте. Модальной (Мо) называют группу с

наибольшей численностью. Эти две операции дают представление о распределении

психологических характеристик в количественных показателях. Его наглядность повышается

отображением в диаграммах.

3) Самым сильным способом количественного анализа является установление взаимосвязи

между рядами свойств, расположенных неупорядоченно. С этой целью составляют

перекрестные таблицы. Помимо простой процентовки в таблицах перекрестной

    Порядковая (ранговая) шкала:

Измерения предполагают приписывание объектам чисел в зависимости от выраженности признака. Данная шкала делит всю совокупность признаков на множество, которые связаны отношениями «больше - меньше». Для объектов с одинаковой выраженностью признака используется правило равных рангов. При ранжировании необходимо указывать какому значению (наибольшему или наименьшему) присваивается первый ранг. Эта операция должна быть одинакова для всех признаков.

Чтобы проверить правильность ранжирования используется формула: сумма рангов равна общее количество измерений умноженное на сумму N+1 и делённое на 2.

Шкалы порядка широко используются в психологии познавательных процессов, экспериментальной психосемантике, социальной психологии: ранжирование, оценивание, в том числе педагогическое, дают порядковые шкалы. Классическим примером использования порядковых шкал является тестирование личностных черт, а также способностей. Большинство же специалистов в области тестирования интеллекта полагают, что процедура измерения этого свойства позволяет использовать интервальную шкалу и даже шкалу отношений.

В качестве характеристики центральной тенденции можно использовать медиану, а в качестве характеристики разброса - процентили. Для установления связи двух измерений допустима порядковая корреляция (т-Кэнделла и р-Спирмена).

Характерной особенностью порядковых шкал является то, что отношение порядка ничего не говорит о дистанции между сравниваемыми классами. Поэтому порядковые экспериментальные данные, даже если они изображены цифрами, нельзя рассматривать как числа.Числовые значения порядковой шкалы нельзя складывать, вычитать, делить и умножать.

    Интервальная шкала.

Отражает уровень выраженности свойства. Данная шкала предполагает использование единиц измерения. Тестовые шкалы, разработанные в следствии стандартизации. Но в данной шкале не существует нулевой точки отсчёта. Ряд авторов полагают, что относить тесты интеллекта к шкалам интервалов нет оснований. Во-первых, каждый тест имеет "нуль" - любой индивид может получить минимальный балл, если не решит ни одной задачи в отведенное время. Во-вторых, тест имеет максимум шкалы -- балл, который испытуемый может получить, решив все задачи за минимальное время. В-третьих, разница между отдельными значениями шкалы неодинакова. По крайней мере, нет никаких теоретических и эмпирических оснований утверждать, что 100 и 120 баллов по шкале IQ отличаются на столько же, на сколько 80 и 100 баллов.

Скорее всего, шкала любого теста интеллекта является комбинированной шкалой, с естественным минимумом и\или максимумом, но порядковой. Однако эти соображения не мешают тестологам рассматривать шкалу IQ как интервальную, преобразуя "сырые" значения в шкальные с помощью известной процедуры "нормализации" шкалы

Интервальная шкала позволяет применять практически всю параметрическую статистику для анализа данных, полученных с ее помощью. Помимо медианы и моды для характеристики центральной тенденции используется среднее арифметическое, а для оценки разброса--дисперсия. Можно вычислять коэффициенты асимметрии и эксцесса и другие параметры распределения. Для оценки величины статистической связи между переменными применяется коэффициент линейной корреляции Пирсона и т.д.

Операции с числами в интервальной метрической шкале богаче. Чем в номинальных

1) Точка отсчета на шкале выбирается произвольно.

2) Все методы описательной статистики.

3) Возможности корреляционного и регрессионного анализа. Можно использовать коэффициент парной корреляции Пирсона и коэффициенты множественной корреляции, что может предсказать изменения в одной переменной в зависимости от изменений в другой или в целом ряде переменных.

    Шкала абсолютная. (шкала отношений):

Шкалу отношений называют также шкалой равных отношений. Особенностью этой шкалы является наличие твердо фиксированного нуля, который означает полное отсутствие какого-либо свойства или признака. Шакала отношений является наиболее информативной шкалой, допускающей любые математические операции и использование разнообразных статистических методов. Шкала отношений по сути очень близка интервальной, поскольку если строго фиксировать начало отсчета, то любая интервальная шкала превращается в шкалу отношений.

Шкала отношений показывает данные о выраженности свойств объектов, когда можно сказать, во сколько раз один объект больше или меньше другого.

Это возможно лишь тогда, когда помимо определения равенства, рангового порядка, равенства интервалов известно равенство отношений. Шкала отношений отличается от шкалы интервалов тем, что на ней определено положение "естественного" нуля. Классический пример -- шкала температур Кельвина. Именно в шкале отношений производятся точные и сверхточные измерения в таких науках, как физика, химия, микробиология и др. Измерение по шкале отношений производятся и в близких к психологии науках, таких, как психофизика, психофизиология, психогенетика.

Измерения массы, времени реакции и выполнения тестового задания -- области применения шкалы отношений.

В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8. Это предполагает наличие абсолютной нулевой точки отсчета. Считается, что в психологии примерами шкал равных отношений являются шкалы порогов абсолютной чувствительности. Возможности человеческой психики столь велики, что трудно представить себе абсолютный нуль в какой-либо измеряемой психологической переменной. Абсолютная глупость и абсолютная честность – понятия скорее житейской психологии.

Возможны преобразования из одной шкалы в другую. Результаты, полученные по шкале интервалов, могут быть преобразованы в ранги или переведены в номинативную шкалу.

Рассмотрим, например, первичные результаты шести испытуемых по шкале экстраверсии-

интроверсии теста Айзенка. психолог обязан помнить, что в действительности

скрывается за величинами, которыми он оперирует.

1) Первое ограничение – соразмерность количественных показателей, фиксированных разными шкалами в рамках одного исследования. Более сильная шкала отличается от слабой тем, что допускает более широкий диапазон математических операций с числами. Все, что допустимо для слабой шкалы допустимо и для более сильной, но не наоборот. Поэтому, смешение в анализе мерительных эталонов разного типа приводит к тому, что не используются возможности сильных шкал.

2) Второе ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным.

Теоретическая валидизация в социологическом исследовании: Методология и методы

Благодаря Стенли Стивенсону, в нашей исследовательской практике мы оперируем несколькими типами шкал. Некоторые критикуют эту типологию, но судя по-всему никто не придумал ничего лучше.

0 Нажми, если пригодилось =ъ

Независимо от того, какой сложности анкетные вопросы или же тестовые методики вы рассматриваете, все их можно разделить на три типа в зависимости от того, к какой измерительной шкале они относятся. Речь в данном случае идет не о специфических методиках построения измерительных инструментов (например, шкала Гутмана или шкала Терстоуна), а о классификации измерительных шкал, предложенной Стэнли Стивенсом в 1946 году. Знание этой классификации имеет решающее значение с точки зрения использования количественного подхода, поскольку применение тех или иных методов математической статистики опирается, в том числе, и на измерительные шкалы, в которой отображены интересующие исследователя переменные.

Более подробно о понятии "переменная"
"Переменная" является часто употребляемым понятием в рамках научных исследований (не только в социальных и поведенческих науках) и особенно, если мы говорим о количественном подходе и применении статистических методов. Фактически переменная - это любое свойство изучаемых объектов, которое меняется от одного наблюдения к другому. Под наблюдениями в данном случае понимаются объекты изучения (люди, организации, страны или что-либо другое - зависит от самого исследования).
Если же некоторое свойство не изменяется от одного наблюдения к другому, то оно не дает никакой ценной в математическом смысле информации (большинство методов будет просто непригодно для использования).
Таким образом, в рамках количественного подхода изучаемые объекты представляются в виде набора переменных, составляющих интерес и подлежащих изучению. Нетрудно догадаться что переменные, прежде всего, делятся в зависимости от шкал, в которых они отображены. Так, можно выделить, например, номинальные, порядковые и метрические переменные. При этом, порядковые можно разделить на свернутые и непрерывные порядковые. Непрерывные порядковые переменные имеют множество численных значений и выглядят (по крайней мере, на первый взгляд), как метрические. Свернутые порядковые переменные имеют лишь несколько категорий или численных значений (не более пяти-шести). Они могут быть получены либо путем сбора данных в свернутой форме, либо сворачивания непрерывной порядковой или метрической шкалы.
Еще одним важным делением переменных является деление на зависимые и независимые. Часто в процессе анализа выдвигаются гипотезы о влиянии одних переменных на другие. В таких случаях, влияющие переменные называются независимыми, а переменные, на которые влияние оказывается, - зависимыми. Например, если мы говорим о взаимосвязи между полом студента и успешностью его обучения, то пол будет - независимой переменной, а успешность обучения - зависимой.

Согласно классификации Стивенсона, в самом общем виде, можно выделить три типа шкал:
- номинальную,
- порядковую,
- метрическую.

Номинальная шкала включает в себя класс переменных, значения которых можно разделить на группы, но невозможно проранжировать. Примерами соответствующих переменных являются пол, национальность, религия и т.д. Рассмотрим более подробно такую переменную как национальность. В данном случае респондентов можно разделить на разные группы в зависимости от того, к какой национальности они себя относят. Вместе с тем, на основе этой информации, респондентов невозможно упорядочить в смысле количественной выраженности интересующего нас параметра, ведь национальность не является измеряемым, в традиционном значении этого слова, свойством.
Порядковая шкала включает в себя класс переменных, значения которых можно не только разделить на группы, но и проранжировать в зависимости от выраженности измеряемого свойства. Классическим примером порядковой шкалы является Шкала Богардуса, предназначенная для измерения национальной дистанциированности. Ниже приведен адаптированный для населения Украины вариант (Н.Панина, Е.Головаха):

Анкетное задание
Относительно каждой национальности, приведенной ниже, выберите одно из положений, наиболее близкое для вас лично, на которое бы вы допустили представителей этой национальности.
Шкала ответов
1) как членов моей семьи;
2) как близких друзей;
3) как соседей;
4) как колег по работе;
5) как жителей Украины;
6) как поситителей Украины;
7) вообще не допускал бы в Украину.

Эта шкала позволяет упорядочить респондентов в зависимости от их отношения к той или иной национальности. Вместе с тем, она предоставляет лишь приблизительную информацию, которая не дает возможности точно оценить различия между градациями шкалы. Так, например, мы может утверждать, что респондент, готовый допустить евреев в качестве членов своей семьи будет относится к ним лучше, чем тот, кто готов допустить их лишь как соседей. Вместе с тем, мы не можем сказать "на сколько?" или "во сколько?" раз первый респондент лучше относится к представителям еврейской национальности чем второй. Другими словами, у нас нет никаких аргументов, которые бы подтверждали равенство интервалов между пунктами шкалы.
Метрическая шкала включает в себя класс переменных, значения которых можно как разделить на группы и проранжировать, так и определить их величину в точных терминах (те самые "на сколько?" и "во сколько?"). Типичными примерами соответствующих переменных являются возраст, заробтная плата, количество детей и т.д. Измерение каждой из них можно осуществить максимально точно: возраст в годах, зароботнуню плату в гривнах, количество детей в... штуках;)
Естественно, если переменная может быть потенциально выражена в метрической шкале, то эту же переменную можно выразить и в порядковой.

Например, возраст можно выразить в возрастных группах (молодежь, средний возраст, пожилой возраст), которые дают лишь приблизительную информацию о респонденте, несмотря на возможность их ранжирования.
Принадлежность переменной к метрической шкале открывает возможность использования любых статистических методов. В свою очередь принадлежность к порядковой или номинальной ограничивает выбор математических инструментов (в случае порядковой шкалы в меньшей мере, а в случае номинальной - в большой). Классификация статистических методов приведена .
Для того, чтобы сделать различия между номинальной, порядковой и метрической шкалами еще более очевидными, приведу дополнительный пример, посвященный рейтингу профессиоанальных боксеров в супертяжелом весе по версии сайта boxrec.com (информация актуальна по состоянию на 31.01.2012). При этом мы рассмотрим данные относительно боксеров первой десятки по трем переменным: этническая принадлежность боксера, его место в рейтинге и количество рейтинговых очков, которые имелись у него в активе 31.01.2012.

А) Этническая принадлежность (номинальная шкала ). Три боксера (братья Кличко и Димитренко) являются украинцами, один (Поветкин) - русским, один (Адамек) - Поляком, два (Чемберс и Томпсон) - американцами, один (Фьюри) - британцем, один (Хелениус) - фином, один (Пулев) - болгарином. Таким образом переменная "национальность" помогла нам разделить всех боксеров на 7 групп, в зависимости от их этнической принадлежности. Владея этими данными, человек далекий от бокса ничего не сможет сказать об успешности перечисленных боксеров, хотя и получит информацию об этнической принадлежности 10-ти наилучших тяжеловесов (мы и далее будет обращаться к гипотетическому эксперту):
украинцы - 30%;
американцы - 20%;
русские, поляки, британцы, фины и болгары - по 10%.
Б) Место в рейтинге (порядковая шкала ) дает приблизительную информацию об успешности боксера. Ситуация следующая:
1. Владимир Кличко
2. Виталий Кличко
3. Александр Поветкин
4. Томаш Адамек
5. Эдди Чемберс
6. Тайсон Фьюри
7. Роберт Хелениус
8. Тони Томпсон
9. Александр Димитренко
10. Кубрат Пулев
Теперь наш неосведомленный аналитик знает последовательность первой десятки боксеров супертяжелого веса. И хотя здесь уже присутствуют числа от 1 до 10, он все еще не может осуществлять никаких математических операций кроме сравнения. К примеру, он не может сказать, что Владимир Кличко лучше Эдди Чемберса на 4 единицы. Выражение "5 минус 1" в данном случае не имеет смысла. В отношении этих двух боксеров он может утверждать лишь то, что Владимир Кличко лучше Эдди Чемберса как боксер (как впрочем и всех остальных из десятки). Причина невозможности осуществления математических действий заключается в том, что между пунктами с 1-го по 10-й нет равенства интервалов. Каковы на самом деле интервалы между пунктами, можно увидеть благодаря последней переменной.
В) Количество рейтинговых очков (метрическая шкала ). Данный показатель

Измерение – это совокупность действий, выполняемых при помощи средств измерений с целью нахождения числового значения измеряемой величины в принятых единицах величин.

В более широком понимании измерение представляет собой процедуру количественной или качественной оценки того или иного свойства. Измерение становится возможным, если удается сформировать шкалу рассматриваемого свойства с учетом множества его различных проявлений. Слово «шкала» происходит от латинского «scala – лестница», и означает ряд последовательных значений измеряемой величины в восходящем или нисходящем порядке, которые приняты для измерения.

Свойство рассматривают как некую систему, между элементами которой действуют различные отношения: отношения эквивалентности (равенства), отношения порядка (больше, меньше), отношения аддитивности (суммирования).

В теории измерений рассматривают 5 различных типов шкал:

- шкалы наименований ;

- шкалы интервалов (шкалы разностей);

- шкалы отношений ;

- шкалы порядка (шкалы рангов);

- абсолютные шкалы .

Шкалы наименований – это качественные шкалы, которые соответствуют свойствам только с отношениями эквивалентности . К этим свойствам нельзя применить термин «размер», но они могут быть определены и идентифицированы. Например, наименование или обозначение цвета по атласу цветов.

Шкалы порядка – соответствуют свойствам, для которых могут быть установлены отношения эквивалентности и отношения порядка по возрастанию или уменьшению количественного проявления свойства, но единицы измерения ввести нельзя. Это шкалы с балльной оценкой (сила землетрясения, сила ветра, твердость минералов и металлов).

Шкалы интервалов – соответствуют свойствам с отношениями эквивалентности, порядка и аддитивности . Шкалы интервалов имеют условный ноль, заданные значения интервалов и единицу измерения.

Например, шкала времени имеет условный ноль и установленные интервалы. Единица измерения воспроизводится непосредственно как интервал времени – с, мин, час, сутки и т.д. К шкале интервалов относится температурные шкалы Цельсия и Фаренгейта. Шкала Цельсия имеет условный ноль (температуру замерзания воды или таяния льда) и заданный интервал (100 градусов Цельсия – температура кипения воды). В шкале Фаренгейта началом отсчета является температура смеси льда, поваренной соли и нашатыря. В качестве второй опорной точки выбрана температура тела человека. Единица температуры по Фаренгейту – градус Фаренгейта, определяется как одна девяносто шестая часть полученного интервала. Температура таяния льда по Фаренгейту равна 32 градусам, температура кипения воды – 212 градусов.



Шкалы отношений – соответствуют свойствам с отношениями эквивалентности, порядка и аддитивности . Шкалы отношений считаются наиболее совершенными, так как имеют естественный ноль и единицы измерения, которые принимают по согласованию. Например, температурная шкала Кельвина имеет физически определенный ноль (абсолютный ноль – наиболее низкая возможная температура). Кельвин является одной из основных единиц СИ (до 1968 г. называлась градус Кельвина). 1 К = 1 градусу Цельсия (по определению Кельвин – это единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды, то есть точки сосуществования трех агрегатных состояний воды – жидкого, твердого и газообразного. Тройная точка воды соответствует 0,01 градуса Цельсия. Шкалами отношений также являются шкалы многих физических величин – массы, длины, силы электрического тока и др. С помощью шкал отношений возможны все арифметические операции с измеряемыми величинами: сложение, вычитание, умножение и деление.

Шкалы порядка – соответствуют свойствам с отношениями эквивалентности и порядка (по возрастанию или уменьшению количественного проявления свойства), но единицы измерения ввести нельзя. Эти величины не измеряют, а оценивают. Шкалы порядка имеют балльную оценку. Например, шкала силы землетрясения, шкалы твердости минералов и металлов, шкалы серых и синих эталонов оценки устойчивости окраски и др.

Абсолютные шкалы - соответствуют свойствам с отношениями эквивалентности, порядка и аддитивности , имеющие естественное однозначное определение единицы измерения. Например, шкала измерения плоских углов в радианах (радиан – это центральный угол, соответствующий дуге, длина которой равна ее радиусу).



Измерения классифицируют по нескольким классификационным признакам.

По числу выполненных наблюдений или снятых показаний измерения делят на однократные и многократные .

Однократным называют измерение, выполненное один раз. Например, снятие размерных признаков тела человека.

Многократным называют измерение, результат которого получен из нескольких следующих друг за другом измерений (то есть состоящее из ряда однократных измерений). Многократное измерение выполняют с целью снижения погрешности. Например, определение Рр и Ер ткани по стандартной методике предусматривает использование 3 проб по основе и 4 проб по утку.

В зависимости от способа получения результата измерения делят на прямые, косвенные, совместные и совокупные.

Прямыми называют измерения, в которых искомое значение находят непосредственно из опытных данных. Например, измерение длины, массы и т.д.

Косвенными называют измерения, в которых искомое значение находят по результатам прямых измерений других величин, которые связаны с искомой определенной зависимостью. Например, определение линейной плотности нитей:

Т=m/L, текс.

Совместными называют производимые одновременно измерения двух или нескольких разноименных величин для установления функциональной зависимости между ними. Например, одновременное определение Р и l для построения кривой «деформация – усилие» и нахождения зависимости Р=f(l).

Совокупными называют измерения, в которых значения измеряемых величин находят решением системы уравнений, составленной по данным измерений нескольких одноименных величин . Примером является определение масс отдельных гирь в наборе по известной массе одной из них и по результатам определения масс различных сочетаний гирь.

По характеру зависимости измеряемой величины от времени измерения подразделяют на статические и динамические .

Статическими называют измерения, при которых измеряемая величина принимается за неизменную на время проведения измерения. Например, измерение Рр и Ер является статическим.

Динамическими называют измерения, при которых измеряемая величина изменяется со скоростью, превышающей возможности средства измерений отслеживать ее изменения. В этом случае возникает дополнительная динамическая составляющая погрешности, обусловленная инерционными свойствами измерительного прибора. Например, измерение дискретных значений Р и Е при растяжении пробы; измерение нарастающей влажности воздуха в корпусе установки при определении паропроницаемости материалов.

По уровню точности измерения делят на измерения максимально возможной точности, контрольные и технические (рабочие).

Измерения максимально возможной точности выполняют в метрологических центрах при создании и эксплуатации эталонов, а также в научных исследованиях по определению значений констант, стандартных справочных данных и т.д.

Контрольные измерения выполняют при поверке и калибровке средств измерений. Погрешность таких измерений не должна превышать некоторое заданное контрольное значение.

Технические (рабочие) измерения выполняют в промышленности с помощью рабочих средств измерений.

По особенностям обработки результатов измерения делят на равноточные и неравноточные .

Равноточными называют измерения, выполненные одинаковыми по точности средствами измерений в одних и тех же условиях.

Неравноточными называют измерения, выполненные различающимися по точности средствами измерений и/или в разных условиях.

Системы единиц

Система единиц – совокупность основных (независимых) и производных единиц величин.

Впервые принцип построения такой системы разработал немецкий ученый Гаусс в 1832 г. Разработанная им система получила название абсолютной и включала три основные единицы – миллиметр, миллиграмм и секунду. Абсолютная система не получила широкого распространения, но принцип ее построения используется до настоящего времени.

Принцип построения систем единиц заключается в том, что выбираются независимые друг от друга основные физические величины. Их единицы измерения называются основнымиединицами величин . Остальные величины называются производными, их единицы измерений - производными единицами величин . Производные единицы величин устанавливают через основные с использованием известных физических законов и соотношений. Эти соотношения в метрологии называют уравнениями связи между величинами.

Международная система единиц СИ разработана по решению ГКМВ и первоначально (в 1960 г.) включала шесть основных единиц. Позднее была добавлена седьмая основная единица – количество вещества – моль, а затем две дополнительные единицы – радиан и стерадиан. Система СИ нашла свое отражение в международных стандартах ИСО и государственном стандарте РФ.

Основные единицы СИ:

- метр (м) – единица длины (L) , равная пути, пройденному в вакууме светом за интервал времени 1/299 792 458 с;

- килограмм (кг) – единица массы (М) , равная массе международного прототипа килограмма (прототип килограмма представляет собой гирю в виде прямого цилиндра диаметром и высотой 39 мм из сплава платины и иридия);

- секунда (с) – единица времени (Т) , равная 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133;

- ампер (А) – единица силы электрического тока (I) . Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2*10 -7 Н;

- кельвин (К) – единица термодинамической температуры – греч, тэта) , равная 1/273,16 части термодинамической температуры тройной точки воды (то есть точки сосуществования льда, воды и пара, которая соответствует 0,01 градуса Цельсия или 273,16 К);

- кандела (кд) – единица силы света (J) . Кандела есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540,10 12 Гц, электрическая сила света которого в этом направлении составляет 1/683 Вт/ср (Ватт на стерадиан);

- моль (моль) – единица количества вещества (N) . Моль – это количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг.

Дополнительные единицы :

- радиан (рад) – единица измерения плоского угла, равная внутреннему углу между двумя радиусами окружности, длина дуги между которыми равна радиусу;

- стерадиан (ср) – единица измерения телесного угла. Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на поверхности этой сферы площадь, равной площади квадрата со стороной, равной радиусу.

Одновременно с принятием системы СИ ГКМВ приняла десятичные кратные и дольные приставки к единицам. Приставка означает, что единица умножена на десять в целой положительной или отрицательной степени. Новая единица называется кратной или дольной (кратно превышающей или составляющей долю от исходной единицы). Из многообразия кратных и дольных единиц выбирают единицу, позволяющую получать числовые значения, удобные для применения на практике – в диапазоне от 0,1 до 1000.

Множители и приставки для образования десятичных кратных и дольных единиц, и их наименования

Примеры: МПа, кН, гПа, даН, дм, см, мм, мкм, нм.

ГКМВ признало использование некоторых внесистемных единиц наравне с единицами СИ из-за их практической важности – минута (мин), час (ч), литр (л) и некоторые другие.

На практике для удобства применяются не только системные и допущенные внесистемные единицы величин. Например, значение атмосферного давления и кровяное давление человека привычно указывают в миллиметрах ртутного столба, а не в Па; мощность двигателей автомобилей - в лошадиных силах, а не в киловаттах и т.д.

Вопросы для самоконтроля

1. С помощью каких шкал можно выполнить наибольшее количество действий:

- шкал наименований ;

- шкал интервалов ;

- шкал отношений ;

- шкал порядка ;

- абсолютных шкалы .

2. Физической величиной, на множестве значений которой возможно выполнение операций, подобных сложению и вычитанию, является:

- сила электрического тока;

- коэффициент линейного расширения;

- твердость минералов;

- сила ветра.

3. Измерения, выполненные различающимися по точности средствами измерений и/или в разных условиях, называются:

- однократными ;

- многократными;

- прямыми;

- косвенными;

- неравноточными.

4. Измерение, результат которого получен из нескольких следующих друг за другом измерений (то есть состоящее из ряда однократных измерений):

- многократное;

- прямое;

- косвенное;

- совместное;

- совокупное.

5. Из приведенных единиц измерения основнымиединицами величин являются:

- метр, м

- килограмм, кг

- джоуль, Дж

- ампер, А

- градус, град

- кельвин, К

- секунда, с

- моль

- кандела, кд

Средства измерений

Средство измерений – техническое средство, которое предназначено для измерений и имеет нормированные метрологические характеристики. К метрологическим характеристикам относят характеристики средства измерений, которые влияют на результат измерений и его погрешность.

Средства измерений выполняют одну из двух функций:

Воспроизводят величину заданного размера (гири, линейки);

Вырабатывают сигнал (показание), несущий информацию о значении измеряемой величины.

Показания средства измерений могут непосредственно восприниматься органами чувств человека (например, показания стрелочного или цифрового прибора), либо преобразуются другими техническими средствами в сигнал, удобный для восприятия (например, записывающими устройствами).

Средства измерений подразделяют на меры, измерительные преобразователи (датчики), измерительные приборы, измерительные установки, измерительные системы .

Мера – средство измерений, предназначенное для воспроизведения и/или хранения величины одного или нескольких размеров, значения которых выражены в установленных единицах с необходимой точностью. Например, гиря воспроизводит один размер, штриховая мера длины – линейка – воспроизводит несколько размеров.

Измерительный преобразователь (датчик) – это средство измерений, предназначенное для преобразования сигналов измерительной информации в форму, удобную для восприятия или дальнейшего преобразования. Например, температурные полоски, тензометрические датчики.

Измерительный прибор – это средство измерений, предназначенное для получения значений измеряемой величины в установленном диапазоне и выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия. По форме представления измерительной информации различают показывающие и регистрирующие приборы . Показывающие приборы позволяют производить отсчет или считывание показаний. Например, стрелочные или цифровые приборы. Регистрирующие приборы записывают информацию на каком-либо носителе. Например, гигрограф записывает кривую изменения влажности воздуха на специальной бумаге в течение суток.

По форме преобразования измерительных сигналов приборы подразделяют на аналоговые и цифровые . Аналоговые приборы имеют показания в виде непрерывной функции изменения измеряемой величины. Например, к аналоговым относятся разрывные машины с маятниковым силоизмерителем, стрелочные тонометры и др. Цифровые приборы автоматически преобразуют результаты измерения непрерывной величины в дискретные сигналы, которые отображаются в виде чисел на цифровом индикаторе (в силу этого существуют отличия в определении и нормировании метрологических характеристик цифровых приборов по сравнению с аналоговыми). Например, разрывные машины с цифровой индикацией, цифровые тонометры и др.

Измерительная установка – это совокупность функционально объединенных средств измерений и вспомогательных устройств, предназначенная для измерения одной или нескольких величин, расположенная в одном месте. Например, установка с эксикаторами для определения паропроницаемости.

Измерительная система - это совокупность функционально объединенных средств измерений и вспомогательных устройств, размещенных в разных точках контролируемого объекта и соединенных между собой каналами связи, предназначенная для измерения одной или нескольких величин.

Вопросы для самоконтроля

1. Совокупность функционально объединенных средств измерений и вспомогательных устройств, предназначенная для измерения одной или нескольких величин, расположенная в одном месте – это средство измерений, которое называется:

- мера,

- измерительный преобразователь (датчик),

- измерительный прибор,

- измерительная установка,

- измерительная система

2. Разрывная машина Р-50, которая имеет цифровые табло для отображения значений нагрузки и деформации проб и самописец для построения кривой «нагрузка-деформация» относится к:

- показывающим измерительным приборам,

- регистрирующим измерительным приборам ,

- аналоговым измерительным приборам,

- цифровым измерительным прибором.