Зависимость силы притяжения от расстояния. Гравитационные силы

  • 23.09.2019

По второму закону Ньютона причиной изменения движения, т. е. причиной ускорения тел, является сила. В механике рассматриваются силы различной физической природы. Многие механические явления и процессы определяются действием сил тяготения .

Закон всемирного тяготения был открыт Исааком Ньютоном в 1682 году. Еще в 1665 году 23-летний Ньютон высказал предположение, что силы, удерживающие Луну на ее орбите, той же природы, что и силы, заставляющие яблоко падать на Землю. По его гипотезе между всеми телами Вселенной действуют силы притяжения (гравитационные силы), направленные по линии, соединяющей центры масс (рис. 1.10.1). Понятие центра масс тела будет строго определено в 1.23.

У однородного шара центр масс совпадает с центром шара.

В последующие годы Ньютон пытался найти физическое объяснение законам движения планет , открытых астрономом Иоганном Кеплером в начале XVII века, и дать количественное выражение для гравитационных сил. Зная как движутся планеты, Ньютон хотел определить, какие силы на них действуют. Такой путь носит название обратной задачи механики . Если основной задачей механики является определение координат тела известной массы и его скорости в любой момент времени по известным силам, действующим на тело, и заданным начальным условиям (прямая задача механики ), то при решении обратной задачи необходимо определить действующие на тело силы, если известно, как оно движется. Решение этой задачи и привело Ньютона к открытию закона всемирного тяготения.

Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними:

Коэффициент пропорциональности G одинаков для всех тел в природе. Его называют гравитационной постоянной

Многие явления в природе объясняются действием сил всемирного тяготения. Движение планет в Солнечной системе, искусственных спутников Земли, траектории полета баллистических ракет, движение тел вблизи поверхности Земли - все они находят объяснение на основе закона всемирного тяготения и законов динамики.

Одним из проявлений силы всемирного тяготения является сила тяжести . Так принято называть силу притяжения тел к Земле вблизи ее поверхности. Если M - масса Земли, R - ее радиус, m - масса данного тела, то сила тяжести равна

где g - ускорение свободного падения у поверхности Земли:

Сила тяжести направлена к центру Земли. В отсутствие других сил тело свободно падает на Землю с ускорением свободного падения.

Среднее значение ускорения свободного падения для различных точек поверхности Земли равно 9,81 м/с 2 . Зная ускорение свободного падения и радиус Земли (R = 6,38·10 6 м), можно вычислить массу Земли М:

При удалении от поверхности Земли сила земного тяготения и ускорение свободного падения изменяются обратно пропорционально квадрату расстояния r до центра Земли. Рис. 1.10.2 иллюстрирует изменение силы тяготения, действующей на космонавта в космическом корабле при его удалении от Земли. Сила, с которой космонавт весом 71,5 кг (Гагарин) притягивается к Земле вблизи ее поверхности равна 700 Н.

Примером системы двух взаимодействующих тел может служить система Земля-Луна. Луна находится от Земли на расстоянии r Л = 3,84·10 6 м. Это расстояние приблизительно в 60 раз превышает радиус Земли R З. Следовательно, ускорение свободного падения a Л, обусловленное земным притяжением, на орбите Луны составляет

С таким ускорением, направленным к центру Земли, Луна движется по орбите. Следовательно, это ускорение является центростремительным ускорением . Его можно рассчитать по кинематической формуле для центростремительного ускорения:

где T = 27,3 сут - период обращения Луны вокруг Земли. Совпадение результатов расчетов, выполненных разными способами, подтверждает предположение Ньютона о единой природе силы, удерживающей Луну на орбите, и силы тяжести.

Собственное гравитационное поле Луны определяет ускорение свободного падения g Л на ее поверхности. Масса Луны в 81 раз меньше массы Земли, а ее радиус приблизительно в 3,7 раза меньше радиуса Земли. Поэтому ускорение g Л определится выражением:

В условиях такой слабой гравитации оказались космонавты, высадившиеся на Луне. Человек в таких условиях может совершать гигантские прыжки. Например, если человек в земных условиях подпрыгивает на высоту 1 м, то на Луне он мог бы подпрыгнуть на высоту более 6 м.

Рассмотрим теперь вопрос об искусственных спутниках Земли. Искусственные спутники движутся за пределами земной атмосферы, и на них действуют только силы тяготения со стороны Земли. В зависимости от начальной скорости траектория космического тела может быть различной. Мы рассмотрим здесь только случай движения искусственного спутника по круговой околоземной орбите. Такие спутники летают на высотах порядка 200-300 км, и можно приближенно принять расстояние до центра Земли равным ее радиусу R З. Тогда центростремительное ускорение спутника, сообщаемое ему силами тяготения, приблизительно равно ускорению свободного падения g . Обозначим скорость спутника на околоземной орбите через υ 1 . Эту скорость называют первой космической скоростью . Используя кинематическую формулу для центростремительного ускорения, получим:

Двигаясь с такой скоростью, спутник облетал бы Землю за время

На самом деле период обращения спутника по круговой орбите вблизи поверхности Земли несколько превышает указанное значение из-за отличия между радиусом реальной орбиты и радиусом Земли.

Движение спутника можно рассматривать как свободное падение , подобное движению снарядов или баллистических ракет. Различие заключается только в том, что скорость спутника настолько велика, что радиус кривизны его траектории равен радиусу Земли.

Для спутников, движущихся по круговым траекториям на значительном удалении от Земли, земное притяжение ослабевает обратно пропорционально квадрату радиуса r траектории. Скорость спутника υ находится из условия

Таким образом, на высоких орбитах скорость движения спутников меньше, чем на околоземной орбите.

Период T обращения такого спутника равен

Здесь T 1 - период обращения спутника на околоземной орбите. Период обращения спутника растет с увеличением радиуса орбиты. Нетрудно подсчитать, что при радиусе r орбиты, равном приблизительно 6,6 R З, период обращения спутника окажется равным 24 часам. Спутник с таким периодом обращения, запущенный в плоскости экватора, будет неподвижно висеть над некоторой точкой земной поверхности. Такие спутники используются в системах космической радиосвязи. Орбита с радиусом r = 6,6 R З называется геостационарной .

В 1667 году. Ньютон понимал, что для того, чтобы Луна вращалась вокруг Земли, а Земля и другие планеты вокруг Солнца, должна существовать сила, удерживающая их на круговой орбите. Он предположил, что сила тяжести, действующая на все тела на Земле и сила, удерживающая планеты на их круговых орбитах, есть одна и та же сила. Эта сила получила название сила всемирного тяготения или гравитационная сила . Эта сила является силой притяжения и действует между всеми телами. Ньютон сформулировал закон всемирного тяготения : две материальные точки притягиваются друг к другу с силой прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними .

Коэффициент пропорциональности G во времена Ньютона был неизвестен. Впервые он был экспериментально измерен английским ученым Кавендишем . Этот коэффициент называется гравитационной постоянной . Ее современное значение равно . Гравитационная постоянная является одной из самых фундаментальных физических констант. Закон всемирного тяготения можно записать в векторном виде. Если сила, действующая на вторую точку со стороны первой равна F 21 , а радиус-вектор второй точки относительно первой равен R 21 , то:

Представленный вид закона всемирного тяготения справедлив только для гравитационного взаимодействия материальных точек. Для тел произвольной формы и размеров его использовать нельзя. Вычисление гравитационной силы в общем случае является очень непростой задачей. Однако, есть тела, не являющиеся материальными точками, для которых гравитационную силу можно считать по приведенной формуле. Это тела, обладающие сферической симметрией, например, имеющие форму шара. Для таких тел приведенный закон справедлив, если под расстоянием R понимать расстояние между центрами тел. В частности силу тяжести, действующую на все тела со стороны Земли можно считать по этой формуле, так как Земля имеет форму шара, а все остальные тела можно считать материальными точками по сравнению с радиусом Земли.

Так как сила тяжести является гравитационной силой, то можно написать, что сила тяжести, действующая на тело массой m равна

Где М З и R З - масса и радиус Земли. С другой стороны сила тяжести равна mg, где g - ускорение свободного падения. Значит ускорение свободного падения равно

Это формула для ускорения свободного падения на поверхности Земли. Если удаляться от поверхности Земли, то расстояние до центра Земли будет увеличиваться, а ускорение свободного падения соответственно уменьшаться. Так на высоте h над поверхностью Земли ускорение свободного падения равно:

Как известно, вес представляет собой силу, с которой тело давит на опору вследствие тяготения к Земле.

По второму закону механики вес какого-либо тела связан с ускорением свободного падения и с массой этого тела соотношением

Вес тела обусловлен результирующей всех сил притяжения между каждой частицей тела и Землей. Поэтому вес всякого тела должен быть пропорционален массе этого тела, как это и есть в действительности. Если пренебречь влиянием суточного вращения Земли, то по ньютонову закону тяготения вес определяется формулой

где гравитационная постоянная, масса Земли, расстояние тела от центра Земли. Формула (3) показывает, что вес тела уменьшается по мере удаления от земной поверхности. Средний

радиус Земли равен поэтому при поднятии на вес уменьшается в отношении на 0,00032 своей величины.

Так как земная кора по плотности неоднородна, то в местностях, под которыми в глубине земной коры лежат плотные породы, сила тяжести несколько больше, чем в местностях (при той же географической широте), ложе которых составляют менее плотные породы. Массивы гор вызывают отклонение отвеса в сторону гор.

Сопоставляя уравнения (2) и (3), получаем выражение для ускорения силы тяжести без учета влияния вращения Земли:

Каждое тело, спокойно лежащее на поверхности Земли, участвуя в суточном вращении Земли, очевидно, имеет общее с данной местностью центростремительное ускорение лежащее в плоскости, параллельной экватору, и направленное к оси вращения (рис. 48). Сила с которой Земля притягивает какое-либо тело, спокойно лежащее на ее поверхности, частью проявляется статически в давлении которое тело оказывает на опору (эту составляющую и называют «весом» другая геометрическая составляющая силы проявляется динамически, сообщая телу центростремительное ускорение, вовлекающее его в суточное вращение Земли. Для экватора это ускорение является наибольшим; для полюсов оно равно нулю. Поэтому, если какое-либо тело перенести с полюса на экватор, то оно несколько «потеряет в весе».

Рис. 48. Вследствие вращения Земли сила притяжения к Земле имеет статическую (вес ) и динамическую составляющие.

Если бы Земля имела точно шарообразную форму, то потеря в весе на экваторе была бы равна:

где окружная скорость на экваторе. Пусть означает число секунд в сутках, тогда

Отсюда, учитывая, что находим относительную потерю в весе:

Следовательно, если бы Земля имела точно шарообразную форму, то каждый килограмм массы, перенесенный с полюса Земли на экватор, потерял бы в весе примерно (это можно было бы обнаружить, производя взвешивание на пружинных весах). Действительная потеря в весе еще больше (около ), так как Земля имеет несколько сплюснутую форму и ее полюсы расположены ближе к центру Земли, чем местности, лежащие на экваторе.

Центростремительное ускорение суточного вращения лежит в плоскости, параллельной экватору (рис. 48); оно направлено под углом к радиусу, проведенному из данной местности в центр Земли широта местности). Центростремительную силу мы рассматриваем как одну составляющую силы тяготения вес как другую геометрическую составляющую той же силы Следовательно, направление отвесной линии для всех местностей, кроме экватора и полюсов, не совпадает с направлением прямой, проведенной к центру Земли. Однако угол между ними мал, потому что центростремительная составляющая силы тяготения мала в сравнении с весом. Происшедшее вследствие суточного вращения сжатие Земли как раз таково, что отвесная линия (а не прямая, проведенная к центру Земли) всюду перпендикулярна к поверхности Земли. По форме Земля представляет собой трехосный эллипсоид.

Наиболее точные размеры земного эллипсоида, вычисленные под руководством проф. Ф. Н. Красовского, таковы:

Для вычисления ускорения силы тяжести в зависимости от географической широты местности а следовательно, и для определения веса тел на высоте уровня моря Международным геодезическим конгрессом в 1930 г. принята формула

Приводим значения ускорения силы тяжести для различных широт (на высоте уровня моря):

На широте 45° («нормальное ускорение»)

Рассмотрим, как изменяется сила тяжести при углублении внутрь Земли. Пусть средний радиус земного сфероида. Рассмотрим силу тяготения в точке К, расположенной на расстоянии от центра Земли.

Притяжение в этой точке определяется суммарным действием внешнего шарового слоя толщиной и внутренней сферы радиуса Точный математический расчет показывает, что шаровой слой не оказывает никакого действия на материальные точки, расположенные внутри него, так как силы притяжения, вызываемые отдельными его частями, взаимно уравновешиваются. Таким образом, остается только действие внутреннего сфероида радиуса и следовательно, меньшей массы, нежели масса земного шара.

Если бы земной шар был однороден по плотности, то масса внутри сферы определилась бы выражением

где средняя плотность Земли. В этом случае ускорение силы тяжести, численно равное силе, действующей на единичную массу в поле тяготения будет равно

и, следовательно, будет убывать линейно по мере приближения к центру Земли. Ускорение земного притяжения имеет максимальное значение на поверхности Земли.

Однако вследствие того, что ядро Земли состоит из тяжелых металлов (железа, никеля, кобальта) и имеет среднюю плотность более тогда как средняя плотность земной коры то вблизи поверхности Земли вначале даже несколько возрастает с глубиной и достигает своего максимального значения на глубине около т. е. на границе верхних слоев земной коры и рудной оболочки Земли. Далее сила тяжести начинает убывать по мере приближения к центру Земли, но несколько медленнее, чем того требует линейная зависимость.

Представляет значительный интерес история одного из приборов, предназначенных для измерения ускорения силы тяжести. В 1940 г. на международной конференции гравиметристов подвергался рассмотрению прибор немецкого инженера Гаалька. В процессе прений выяснилось что этот прибор принципиально ничем не отличается от так называемого «универсального барометра», сконструированного Ломоносовым и описанного им подробно в работе «Об отношении количества материи и веса», опубликованной в 1757 г. Прибор Ломоносова был устроен следующим образом (рис. 49).

Что позволяет учитывать весьма незначительные изменения ускорения свободного падения.

Между любыми телами в природе существует сила взаимного притяжения, называемая силой всемирного тяготения (или силами гравитации). был открыт Исааком Ньютоном в 1682 году. Когда еще ему было 23 года он высказал предположение, что силы, удерживающие Луну на ее орбите, той же природы, что и силы, заставляющие яблоко падать на Землю.

Сила тяжести (mg ) направлена вертикально строго к центру Земли ; в зависимости от расстояния до поверхности земного шара ускорение свободного падения различно. У поверхности Земли в средних широтах значение его составляет около 9,8 м/с 2 . по мере удаления от поверхности Земли g уменьшается.

Вес тела (сила веса) это сила, с которой тело действует на горизонтальную опору или растягивает подвес. При этом предполагается, что тело неподвижно относительно опоры или подвеса. Пусть тело лежит на неподвижном относительно Земли горизонтальном столе. Обозначается буквой Р .

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

Если ускорение а = 0 , то вес равен силе, с которой тело притягивается к Земле, а именно . [P] = Н .

Если другое состояние, то вес меняется:

  • если ускорение а не равно 0 , то вес Р = mg — ma (вниз) или Р = mg + ma (вверх);
  • если тело падает свободно или движется с ускорением свободного падения, т.е. а = g (рис.2), то вес тела равен 0 (Р=0 ). Состояние тела, в котором его вес равен нулю, называется невесомостью .

В невесомости находятся и космонавты. В невесомости на мгновение оказываетесь и вы, когда подпрыгиваете во время игры в баскетбол или танца.

Домашний эксперимент: Пластиковая бутылка с отверстием у дна наполняется водой. Выпускаем из рук с некоторой высоты. Пока бутылка падает, вода из отверстия не вытекает.

Вес тела движущегося с ускорением (в лифте) Тело в лифте испытывает перегрузки

В данном параграфе мы напомним Вам о силе тяжести, центростримительном ускорение и весе тела

На каждое тело, находящееся на планете, действует гравитация Земли . Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз .


Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

F т =GMm/R 2

где М - масса Земли; R - радиус Земли.
Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Согласно второму закону Ньютона и формуле F т =GMm/R 2 модуль ускорения свободного падения g находят по формуле

g=F т /m=GM/R 2 .

Из формулы (2.29) следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы (2.29) следует, что Fт = mg. В векторном виде

F т =mg

В § 5 было отмечено, что поскольку Земля не шар, а эллипсоид вращения, ее полярный радиус меньше экваториального. Из формулы F т =GMm/R 2 видно, что по этой причине сила тяжести и вызываемое ею ускорение свободного падения на полюсе больше, чем на экваторе.

Сила тяжести действует на все тела, находящиеся в поле тяготения Земли, однако не все тела падают на Землю. Это объясняется тем, что движению многих тел препятствуют другие тела, например опоры, нити подвеса и т. п. Тела, ограничивающие движение других тел, называют связями. Под действием силы тяжести связи деформируются и сила реакции деформированной связи по третьему закону Ньютона уравновешивает силу тяжести.

На ускорение свободного падения влияет вращение Земли. Это влияние объясняется так. Системы отсчета, связанные с поверхностью Земли (кроме двух, связанных с полюсами Земли), не являются, строго говоря, инерциальными системами отсчета - Земля вращается вокруг своей оси, а вместе с ней движутся по окружностям с центростремительным ускорением и такие системы отсчета. Эта неинерциальность систем отсчета проявляется, в частности, в том, что значение ускорения свободного падения оказывается различным в разных местах Земли и зависит от географической широты того места, где находится связанная с Землей система отсчета, относительно которой определяется ускорение свободного падения.

Измерения, проведенные на разных широтах, показали, что числовые значения ускорения свободного падения мало отличаются друг от друга. Поэтому при не очень точных расчетах можно пренебречь неинерциальностью систем отсчета, связанных с поверхностью Земли, а также отличием формы Земли от сферической, и считать, что ускорение свободного падения в любом месте Земли одинаково и равно 9,8 м/с 2 .

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте h от поверхности Земли модуль ускорения свободного падения определяют по формуле

g=GM/(R+h) 2.

Установлено, что на высоте 300 км над поверхностью Земли ускорение свободного падения меньше, чем у поверхности Земли, на 1 м/с2.
Следовательно, вблизи Земли (до высот нескольких километров) сила тяжести практически не изменяется, а потому свободное падение тел вблизи Земли является движением равноускоренным.

Вес тела. Невесомость и перегрузки

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес - это упругая сила, приложенная к опоре или подвесу (т. е. к связи).

Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести F т только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае

Р=F т =mg.

Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.

Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести F т =mg и сила упругости F yп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил F т и F уп дает равнодействующую, вызывающую ускорение тела, т. е.

F т + F уп =mа.

Согласно приведенному выше определению понятия "вес", можно написать, что Р=-F yп. Из формулы: F т + F уп =mа. с учетом того, что F т =mg, следует, что mg-mа=-F yп . Следовательно, Р=m(g-а).

Силы F т и F уп направлены по одной вертикальной прямой. Поэтому если ускорение тела а направлено вниз (т.е. совпадает по направлению с ускорением свободного падения g), то по модулю

P=m(g-a)

Если же ускорение тела направлено вверх (т. е. противоположно направлению ускорения свободного падения), то

Р = m = m(g+а).

Следовательно, вес тела, ускорение которого совпадает по направлению с ускорением свободного падения, меньше веса покоящегося тела, а вес тела, ускорение которого противоположно направлению ускорения свободного падения, больше веса покоящегося тела. Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

При свободном падении a=g. Из формулы: P=m(g-a)

следует, что в таком случае Р=0, т. е. вес отсутствует. Следовательно, если тела движутся только под действием силы тяжести (т. е. свободно падают), они находятся в состоянии невесомости . Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений, которые вызываются у покоящихся тел силой тяжести. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.