Магнитное поле соленоида. Купить диплом о высшем образовании недорого

  • 30.09.2019

Соленоидом называется проводник, свитый спиралью, по которому пропущен электрический ток (рисунок 1, а ).

Если мысленно разрезать витки соленоида поперек, обозначить направление тока в них, как было указано выше, и определить направление магнитных индукционных линий по "правилу буравчика", то магнитное поле всего соленоида будет иметь такой вид, как показано на рисунке 1, б .

Рисунок 1. Соленоид (а ) и его магнитное поле (б )

Рисунок 2. Компьютерная модель соленоида

На оси бесконечно длинного соленоида, на каждой единице длины которого намотано n 0 витков, напряженность магнитного поля внутри соленоида определяется формулой:

H = I × n 0 .

В том месте, где магнитные линии входят в соленоид, образуется южный полюс, где они выходят - северный полюс.

Для определения полюсов соленоида пользуются "правилом буравчика", применяя его следующим образом: если расположить буравчик вдоль оси соленоида и вращать его по направлению тока в витках катушки соленоида, то поступательное движение буравчика покажет направление магнитного поля (рисунок 3).

Видео про соленоид:

Электромагнит

Соленоид, внутри которого находится стальной (железный) сердечник, называется электромагнитом (рисунок 4 и 5). Магнитное поле у электромагнита сильнее, чем у соленоида, так как кусок стали, вложенный в соленоид, намагничивается и результирующее магнитное поле усиливается. Полюсы у электромагнита можно определить, так же как и у соленоида, по "правилу буравчика".


Рисунок 5. Катушка электромагнита

Электромагниты широко применяются в технике. Они служат для создания магнитного поля в электрических генераторах и двигателях, в электроизмерительных приборах, электрических аппаратах и тому подобном.

В установках большой мощности для отключения поврежденного участка цепи вместо плавких предохранителей применяются автоматические, масляные и воздушные выключатели. Для приведения в действие отключающих катушек автоматических выключателей применяются различные реле. Реле называются приборы или автоматы, реагирующие на изменение тока, напряжения, мощности, частоты и прочих параметров.

Из большого числа реле, различных по своему назначению, принципу действия и конструкции, кратко рассмотрим устройство электромагнитных реле. На рисунке 6 представлены конструкции этих реле. Работа реле основана на взаимодействии магнитного поля, создаваемого неподвижной катушкой, по которой проходит ток, и стального подвижного якоря электромагнита. При изменении условий работы в цепи главного тока катушка реле возбуждается, магнитный поток сердечника подтягивает (поворачивает или втягивает) якорь, который замыкает контакты цепи, отключающей катушки привода масляных и воздушных выключателей или вспомогательных реле.


Рисунок 6. Электромагнитное реле

Реле нашли себе применение также в автоматике и телемеханике.

Магнитный поток соленоида (электромагнита) увеличивается с увеличением числа витков и тока в нем. Намагничивающая сила зависит от произведения тока на число витков (числа ампер-витков).

Если, например, взять соленоид, по обмотке которого проходит ток 5 А и число витков которого равно 150, то число ампер-витков будет 5 × 150 = 750. Тот же магнитный поток получится если взять 1500 витков и пропустить по ним ток 0,5 А, так как 0,5 × 1500 = 750 ампер-витков.

Увеличить магнитный поток соленоида можно следующими путями: 1) вложить в соленоид стальной сердечник, превратив его в электромагнит; 2) увеличить сечение стального сердечника электромагнита (так как при данных токе, напряженности магнитного поля, и стало быть, магнитной индукции увеличение сечения ведет к росту магнитного потока); 3) уменьшить воздушный зазор сердечника электромагнита (так как при уменьшении пути магнитных линий по воздуху уменьшается магнитное сопротивление).

Видео про электромагнит:

Соленоидом называют катушку цилиндрической формы из проволоки, витки которой намотаны вплотную в одном направлении, а длина катушки значительно больше радиуса витка.

Магнитное поле соленоида можно представить как результат сложения полей, создаваемых несколькими круговыми токами, имеющими общую ось. На рисунке 3 видно, что внутри соленоида линии магнитной индукции каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположное направление.

Поэтому при достаточно плотной намотке соленоида противоположно направленные участки линий магнитной индукции соседних витков взаимно уничтожаются, а одинаково направленные участки сольются в общую линию магнитной индукции, проходящую внутри соленоида и охватывающую его снаружи. Изучение этого поля с помощью опилок показало, что внутри соленоида поле является однородным, магнитные линии представляют собой прямые линии, параллельные оси соленоида, которые расходятся на его концах и замыкаются вне соленоида (рис. 4).

Нетрудно заметить сходство между магнитным полем соленоида (вне его) и магнитным полем постоянного стержневого магнита (рис. 5). Конец соленоида, из которого магнитные линии выходят, аналогичен северному полюсу магнита N , другой же конец соленоида, в который магнитные линии входят, аналогичен южному полюсу магнита S .

Полюсы соленоида с током на опыте легко определить с помощью магнитной стрелки. Зная же направление тока в витке, эти полюсы можно определить с помощью правила правого винта: вращаем головку правого винта по току в витке, тогда поступательное движение острия винта укажет направление магнитного поля соленоида, а следовательно, и его северного полюса. Модуль магнитной индукции внутри однослойного соленоида вычисляется по формуле

B = μμ 0 NI l = μμ 0 nl,

где Ν — число витков в соленоиде, I — длина соленоида, n — число витков, приходящееся на единицу длины соленоида.

Намагничивание магнетика. Вектор намагниченности.
Если по проводнику течет ток, то вокруг проводника создаётся МП. Мы пока рассматривали провода, по которым текли токи, находящиеся в вакууме. Если провода, несущие ток, находятся в некоторой среде, то м.п. изменяется. Это объясняется тем, что под действием м.п. всякое вещество способно приобретать магнитный момент, или намагничиваться (вещество становится магнетиком ). Вещества, намагничивающиеся во внешнем м.п. против направления поля называются диамагнетиками . Вещества, слабо намагничивающиеся во внешнем м.п. по направлению поля называются парамагнетиками Намагниченное в-во создаёт м.п. - , это м.п. накладывается на м.п., обусловленное токами - . Тогда результирующее поле:
. (54.1)

Истинное (микроскопическое) поле в магнетике сильно изменяется в пределах межмолекулярных расстояний. - усреднённое макроскопическое поле.


Для объяснения намагничения тел Ампер предположил, что в молекулах вещества циркулируют круговые микроскопические токи, обусловленные движением электронов в атомах и молекулах. Каждый такой ток обладает магнитным моментом и создаёт в окружающем пространстве м.п.

Если внешнее поле отсутствует, то молекулярные токи ориентированы беспорядочным образом, и обусловленное ими результирующее поле равно 0.

Намагниченностью называют векторную величину, равную магнитному моменту единицы объёма магнетика:

, (54.3)

где - физически бесконечно малый объём, взятый в окрестности рассматриваемой точки; - магнитный момент отдельной молекулы.

Суммирование производится по всем молекулам, заключённым в объёме (вспомним где, - поляризованность диэлектрика, - дипольный элемент ).

Намагниченность можно представить так:

Токи намагничивания I" . Намагничивание вещества связано с преимущественной ориентацией магнитных моментов отдельных молекул в одном направлении. Элементарные круговые токи, связанные с каждой молекулой, называются молекулярными. Молекулярные токи оказываются ориентированными, т.е. возникают токи намагничивания - .

Токи, текущие по проводам, вследствие движения в веществе носителей тока называют токами проводимости - .

Для электрона движущегося по круговой орбите по часовой стрелке; ток направлен против часовой стрелки и по правилу правого винта направлен вертикально вверх.

Циркуляция вектора намагниченности по произвольному замкнутому контуру равна алгебраической сумме токов намагничивания, охватываемых контуром Г.

Дифференциальная форма записи теоремы о циркуляции вектора .

Напряжённость магнитного поля (стандартное обозначение Н ) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M .

В СИ: где — магнитная постоянная .

В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и H просто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ 0 μ H в системе СИ (см. Магнитная проницаемость , также см. Магнитная восприимчивость ).

В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.

1 Э = 1000/(4π) А/м ≈ 79,5775 А/м.

1 А/м = 4π/1000 Э ≈ 0,01256637 Э.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации , а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля совпадает с вектором магнитной индукции с точностью до коэффициента, равного 1 в СГС и μ 0 в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ , что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B 0 , который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B . Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи , которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля. Энергия магнитного поля как такового выражается только через фундаментальное B . Тем не менее видно, что величина H феноменологически и тут весьма удобна.

Виды магнетиков Диамагнетики имеют магнитную проницаемость чуть меньше 1. Отличаются тем, что выталкиваются из области магнитного поля.

Парамагнетики имеют магнитную проницаемость чуть более 1. Подавляющее количество материалов являются диа- и пара- магнетиками.

Ферромагнетики обладают исключительно большой магнитной проницаемостью, доходящей до миллиона.

По мере усиления поля проявляется явление гистерезиса , когда при увеличении напряженности и при последующем уменьшении напряженности значения В(Н) не совпадают друг с другом. В литературе различают несколько определений магнитной проницаемости.

Начальная магнитная проницаемость m н - значение магнитной проницаемости при малой напряженности поля.

Максимальная магнитная проницаемость m max - максимальное значение магнитной проницаемости, которое достигается обычно в средних магнитных полях.

Из других основных терминов, характеризующих магнитные материалы, отметим следующие.

Намагниченность насыщения - максимальная намагниченность, которая достигается в сильных полях, когда все магнитные моменты доменов ориентированы вдоль магнитного поля.

Петля гистерезиса - зависимость индукции от напряженности магнитного поля при изменении поля по циклу: подъем до определенного значения - уменьшение, переход через нуль, после достижения того же значения с обратным знаком - рост и т.п.

Максимальная петля гистерезиса - достигающая максимальной намагниченности насыщения.

Остаточная индукция B ост - индукция магнитного поля на обратном ходе петли гистерезиса при нулевой напряженности магнитного поля.

Коэрцитивная сила Н с - напряженность поля на обратном ходе петли гистерезиса при которой достигается нулевая индукция.

Магнитные моменты атомов

Магнитный момент Элементарные частицы обладают внутренним квантовомеханическим свойством известным как спин. Оно аналогично угловому моменту объекта вращающегося вокруг собственного центра масс, хотя строго говоря, эти частицы являются точечными и нельзя говорить об их вращении. Спин измеряют в единицах приведённой планковской постоянной (), тогда электроны, протоны и нейтроны имеют спин равный ½ . В атоме электроны обращаются вокруг ядра и обладают орбитальным угловым моментом помимо спина, в то время как ядро само по себе имеет угловой момент благодаря ядерному спину. Магнитное поле, создаваемое магнитным моментом атома, определяется этими различными формами углового момента, как и в классической физике вращающиеся заряженные объекты создают магнитное поле.

Однако, наиболее значительный вклад происходит от спина. Благодаря свойству электрона, как и всех фермионов, подчиняться правилу запрета Паули , по которому два электрона не могут находиться в одном и том же квантовом состоянии, связанные электроны спариваются друг с другом, и один из электронов находится в состоянии со спином вверх, а другой — с противоположной проекцией спина — состояние со спином вниз. Таким образом магнитные моменты электронов сокращаются, уменьшая полный магнитный дипольный момент системы до нуля в некоторых атомах с чётным числом электронов. В ферромагнитных элементах, таких как железо, нечётное число электронов приводит к появлению неспаренного электрона и к ненулевому полному магнитному моменту. Орбитали соседних атомов перекрываются, и наименьшее энергетическое состояние достигается, когда все спины неспаренных электронов принимают одну ориентацию, процесс известный как обменное взаимодействие. Когда магнитные моменты ферромагнитных атомов выравниваются, материал может создавать измеримое макроскопическое магнитное поле.

Парамагнитные материалы состоят из атомов, магнитные моменты которых разориентированы в отсутствии магнитного поля, но магнитные моменты отдельных атомов выравниваются при приложении магнитного поля. Ядро атома тоже может обладать ненулевым полным спином. Обычно при термодинамическом равновесии спины ядер ориентированы случайным образом. Однако, для некоторых элементов (таких как ксенон-129) возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами —состояния называемого гиперполяризацией. Это состояние имеет важное прикладное значение в магнитно-резонансной томографии.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.

Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Энергия W м магнитного поля катушки с индуктивностью L, создаваемого током I, равна

W м = LI 2 / 2

Соленоиды используются во многих устройствах для обеспечения линейного или вращательного приведения в действие механических систем.Хотя управление соленоидом может быть таким же простым, как включение и выключение нагрузки (например, выключатель), часто более высокая производительность может быть получена с помощью специализированной интегральной микросхемы (ИС) для его управления.

В этой статье мы рассмотрим, как система управления электропривода влияет на электромеханические характеристики соленоидов. Будет сравниваться две различные схемы: простой коммутатор и драйвер регулирования тока. Также будут рассмотрены технологии энергосбережения, которые ограничивают рассеивание мощности в соленоиде.

Принцип работы соленоида

Самая примитивная конструкция соленоида представляет собой катушку, создающую магнитное поле. Устройства, которые мы называем соленоидами, состоят из катушки и движущегося сердечника из железа или другого материала. При подаче тока в катушку сердечник втягивается и приводит в движение механический объект, соединенный с сердечником. Простой соленоид показан ниже:

Для приведения в движение сердечника на катушку подается напряжение. Поскольку индуктивное сопротивление катушки довольно велико для ускорения процессов срабатывания на катушку подают повышенное напряжение. Втягивающая сила сердечника пропорциональна току.

Для удержания механического устройства в активной зоне необходим гораздо меньший ток. Если ток в катушке после доведения механического устройства до конечной точки не уменьшить, то это вызовет соленоида.

Для решения этой проблемы можно использовать драйвер постоянного тока. Ток можно контролировать по времени для обеспечения минимальных тепловых потерь при максимально необходимом удерживающем моменте.

Испытательная установка

Чтобы сравнить электромеханические характеристики различных схем привода соленоида, была создана простая тестовая установка с использованием сервоусилителя, подключенного к соленоиду с изгибом для измерения движения соленоида. Движение, наряду с напряжением и током, было зафиксировано с помощью осциллографа. Для управления соленоидом использовалась MPS MPQ6610 IC.

Простые драйверы для соленоидов

Самый простой способ управлять соленоидом — включить и выключить ток. Это часто делается с помощью переключателя MOSFET с низкой стороны и токового защитного диода (рисунок ниже). В этой схеме ток ограничен только напряжением питания и постоянным сопротивлением соленоида.

Электромеханические характеристики простого привода соленоида ограничены. Поскольку полное напряжение и ток применяются в течение 100% времени, ток втягивания ограничивается постоянной мощностью рассеяния соленоида. Большая индуктивность катушки ограничивает скорость нарастания тока при включении соленоида.

В тесте измерялось движение, напряжение и ток соленоида включаемого с помощью простого переключателя (рисунок ниже). В этом случае время включения соленоида (15 Ом, рассчитанного на 12 В) занимало 30 мс, чтобы приводить в действие механический привод и рассеивать мощность 10 Вт.

Если вы задаетесь вопросом о «впадине» в текущей форме волны, то это уменьшение тока связано с обратной ЭДС, создаваемой движущимся сердечником соленоида. Обратная ЭДС увеличивается по мере того, как сердечник разгоняется до тех пор, пока соленоид не втянется и не остановится.

Высокопроизводительный драйвер соленоида

В большинстве применений полный ток необходим только для втягивания соленоида. После завершения движения уровень тока в соленоиде может быть снижен, что приводит к экономии энергии и значительно меньшему количеству тепла, выделяемого в катушке. Это также позволяет использовать более высокое напряжение питания, что обеспечивает форсировку тока втягивания, чтобы сделать процесс втягивания сердечника соленоида более быстрым и обеспечить большую силу втягивания.

Мощный полумост MPS MPQ6610 вместе с несколькими внешними компонентами может выполнить эту задачу (рисунок ниже). MPQ6610 рассчитан на 60 В и 3 А и доступен в небольших пакетах TSOT и SOIC.

Результирующие сигналы возбуждения показаны на рисунке ниже. Желтая линия — это сигнал OUT, управляющий соленоидом, а зеленый — ток соленоида. Первоначально полное напряжение питания 24 В (в этом случае приводится в движение соленоид). После задержки ток уменьшается путем широтно-импульсной модуляции выхода. Время втягивания сокращается до 16 мс, а рассеиваемая мощность удержания значительно ниже (около 600 мВт вместо 10 Вт).

Эта схема работает следующим образом:

Первоначально входной сигнал низкий. Это разряжает C1-D1 и удерживает контакт ISET с низким значением Q1.

Входной сигнал нарастает, что позволяет MPQ6610 «нарастить» выходной сигнал до высокого уровня, применяя полное напряжение питания к соленоиду. C1 начинает заряжаться через R1. Ток поступает из штыря ISET, пропорционального току, протекающему в соленоиде. С зарядом C1 напряжение на штыре ISET может увеличиться.

Предполагая, что в соленоиде имеется достаточный ток, напряжение на шине ISET продолжает расти, пока не достигнет своего порога регулирования тока (1,5 В). На этом этапе MPQ6610 начинает регулировать ток соленоида. Регулируемый ток удержания устанавливается значением R2.

Время задержки (когда соленоид приводится в 100% рабочий цикл) устанавливается значениями R1 и C1. Для стандартного логического уровня 3,3 В время составляет приблизительно 0,33 × RC. Для примера выше, с R1 = 100 кОм и C1 = 2,2 мкФ, 0,33 × RC = 75 мс.

Выводы

Представленные в этой статье измерения показывают, что улучшенная производительность и значительно более низкое потребление энергии могут быть достигнуты с использованием управляющего током драйвера для управления соленоидами. Небольшие драйверы на интегральных микросхемах, такие как MPS MPQ6610, могут обеспечить это преимущество производительности по низкой цене и занимать очень небольшую площадь на печатной плате.

И кому интересно как работает соленоид:

Соленоидом называется совокупность N одинаковых витков изолированного проводящего провода, равномерно намотанных на общий каркас или сердечник. По виткам проходит одинаковый ток. Магнитные поля, созданные каждым витком в отдельности, складываются по принципу суперпозиции. Индукция магнитного поля внутри соленоида велика, а вне его - мала. Для бесконечно длинного соленоида индукция магнитного поля вне соленоида стремится к нулю. Если длина соленоида во много раз больше диаметра его витков, то соленоид можно практически считать бесконечно длинным . Магнитное поле такого соленоида целиком сосредоточено внутри него и является однородным (рис.6).

Величину индукции магнитного поля внутри бесконечно длинного соленоида можно определить, используя теорему о циркуляции вектора :циркуляция вектора по произвольному замкнутому контуру равна алгебраической сумме токов, охватываемых контуром, умноженной на магнитную постоянную μ о :

, (20)

где μ 0 = 4π 10 -7 Гн/м.

Рис.6. Магнитное поле соленоида

Для определения величины магнитной индукции В внутри соленоида выберем замкнутый контур ABCD прямоугольной формы, где - элемент длины контура, задающий направление обхода (рис.6). При этом длиныAB и CD будем считать бесконечно малыми.

Тогда циркуляция вектора по замкнутому контуруABCD, охватывающему N витков, равна:

На участках AB и CD произведение
, так как вектораивзаимно перпендикулярны. Поэтому

. (22)

На участке DA вне соленоида интеграл
, так как магнитное поле вне контура равно нулю.

Тогда формула (21) примет вид:

, (23)

где l – длина участка BC. Сумма токов, охватываемых контуром, равна

, (24)

где I c – сила тока соленоида; N – число витков, охватываемых контуром ABCD.

Подставив (23) и (24) в (20), получим:

. (25)

Из (25) получим выражение для индукции магнитного поля бесконечно длинного соленоида:

. (26)

Так как число витков на единицу длину соленоида n равно:

(27)

то окончательно получим:

. (28)

Если внутрь соленоида помещен сердечник, то формула (28) для В примет вид:

. (29),

где  - магнитная проницаемость материала сердечника.

Таким образом, индукция В магнитного поля соленоида определяется током соленоида I c , числом витком n на единицу длины соленоида и магнитной проницаемостью материала сердечника.

Цилиндрический магнетрон

Магнетроном называется двухэлектродная электронная лампа (диод), содержащая накаливаемый катод и холодный анод и помещенная во внешнее магнитное поле.

Анод диода имеет форму цилиндра радиусом . Катод представляет собой полый цилиндр радиусом, вдоль оси которого расположена нить накала, как правило, изготавливаемая из вольфрама (рис.7).

Раскалённый катод в результате явления термоэлектронной эмиссии испускает термоэлектроны, которые образуют вокруг катода электронное облако. При подаче анодного напряжения
(рис.8), электроны начинают перемещаться от катода к аноду вдоль радиусов, что приводит к возникновению анодного тока. Анодный ток регистрируется миллиамперметром.

Рис.7. Схема диода

Рис.8. Электрическая схема цепи

Величина анодного напряжения регулируется потенциометром R A . Чем больше анодное напряжение, тем большее количество электронов за единицу времени достигает анода, следовательно, тем больше анодный ток.

Напряжённость электрического поля Е между катодом и анодом такая же, как и в цилиндрическом конденсаторе:

, (30)

где r – расстояние от оси катода до данной точки пространства между катодом и анодом.

Из формулы (30) следует, что напряжённость поля Е обратно пропорциональна расстоянию r до оси катода. Следовательно, напряженность поля максимальна у катода.

r к <

то значение логарифма ln стремится к большой величине. Тогда с увеличением расстояния r напряженность электрического поля между катодом и анодом снижается до нуля. Поэтому, можно считать, что электроны приобретают скорость под действием поля только вблизи катода, и дальнейшее их движение к аноду происходит с постоянной по величине скоростью.

Внешнее магнитное поле, в которое помещён диод, создаётся соленоидом (рис.8). Длина соленоида l много больше диаметра его витков, поэтому поле внутри соленоида можно считать однородным. Ток в цепи соленоида изменяется с помощью потенциометра R C (рис.8) и регистрируется амперметром.

Характер движения электронов в зависимости от величины поля соленоида показан на рис.9. Если ток в цепи соленоида отсутствует, то индукция магнитного поля В = 0. Тогда электроны движутся от катода к аноду практически по радиусам.

Увеличение тока в цепи соленоида приводит к возрастанию величины В. При этом, траектории движения электронов начинают искривляться, однако все электроны достигают анода. В анодной цепи будет течь ток такой же, как и в отсутствии магнитного поля.

Рис.9. Зависимость анодного тока I A от величины тока соленоида I c в идеальном (1) и реальном (2) случаях, а также характер движения электронов в зависимости от величины поля соленоида.

При некотором значении тока в соленоиде радиус окружности, по которой движется электрон, становится равным половине расстояния между катодом и анодом:

.. (32)

Электроны в этом случае касаются анода и уходят к катоду (рис.9). Такой режим работы диода называется критическим . При этом по соленоиду течёт критический ток I кр, которому соответствует критическое значение индукции магнитного поля В = В кр.

При В = В кр анодный ток в идеальном случае должен скачком уменьшиться до нуля. При В > В кр электроны не попадают на анод (рис.9), и анодный ток также будет равен нулю (рис.9, кривая 1).

Однако на практике, вследствие некоторого разброса скоростей электронов и нарушения соосности катода и соленоида, анодный ток уменьшается не скачком, а плавно (рис.9, кривая 2). При этом значение силы тока соленоида, соответствующее точке перегиба на кривой 2, считается критическим I кр. Критическому значению тока соленоида соответствует анодный ток, равный:

, (33)

где
– максимальное значение анодного тока при В = 0.

Зависимость анодного тока I A от величины индукции магнитного поля В (или от тока в соленоиде) при постоянном анодном напряжении и постоянном накале называется сбросовой характеристикой магнетрона.

Соленоид - длинная, тонкая катушка, то есть катушка, длина которой намного больше, чем её диаметр (также в дальнейших выкладках здесь подразумевается, что толщина обмотки намного меньше, чем диаметр катушки). При этих условиях и без использования магнитного материала плотность магнитного потока внутри катушки является фактически постоянной и (приближенно) равна

где − магнитная постоянная, − число витков, − ток и − длина катушки. Пренебрегая краевыми эффектами на концах соленоида, получим , что потокосцепление через катушку равно плотности потока , умноженному на площадь поперечного сечения и число витков :

Отсюда следует формула для индуктивности соленоида (без сердечника):

Если катушка внутри полностью заполнена магнитным материалом (сердечником), то индуктивность отличается на множитель - относительную магнитную проницаемость сердечника:

В случае, когда , можно (следует) под S понимать площадь сечения сердечника и пользоваться данной формулой даже при толстой намотке, если только полная площадь сечения катушки не превосходит площади сечения сердечника во много раз.

Более точные формулы для соленоида конечного размера

Для однослойного (с очень тонкой намоткой) соленоида конечных размеров (не бесконечно длинного) существуют более точные, хотя и более сложные формулы :

Количество витков,

Радиус цилиндра,

Длина его образующей,

Эллиптические интегралы.

    Трансформатор. Энергия магнитного поля. Основы теории Максвелла. Уравнения Максвелла в интегральной форме.

    Электрический колебательный контур. Затухающие электромагнитные колебания. Вынужденные электромагнитные колебания. Явление резонанса

Колебательный контур - осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

Колебательный контур - простейшая система, в которой могут происходить свободные электромагнитные колебания

Резонансная частота контура определяется так называемой формулой Томсона:

Принцип действия

Пусть конденсатор ёмкостью C заряжен до напряжения . Энергия, запасённая в конденсаторе составляет

При соединении конденсатора с катушкой индуктивности, в цепи потечёт ток , что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора . Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

Где - индуктивность катушки, - максимальное значение тока.

После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения .

В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.

В общем, описанные выше процессы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи, больше тока проходящего через весь контур, причем эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличие от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.

Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.

Вынужденными электромагнитными колебаниями называют периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника. Внешним источником ЭДС в электрических цепях являются генераторы переменного тока, работающие на электростанциях.

Принцип действия генератора переменного тока легко показать при рассмотрении вращающейся рамки провода в магнитном поле.

В однородное магнитное поле с индукцией В помещаем прямоугольную рамку, образованную проводниками (abсd).

Пусть плоскость рамки перпендикулярна индукции магнитного поля В и ее площадь равна S.

Магнитный поток в момент времени t 0 = 0 будет равен Ф = В*8.

При равномерном вращении рамки вокруг оси OO 1 с угловой скоростью w магнитный поток, пронизывающий рамку, будет изменяться с течением времени по закону:

Изменение магнитного потока возбуждает в рамке ЭДС индукцию, равную

где Е 0 = ВSw - амплитуда ЭДС.

Если с помощью контактных колец и скользящих по ним щеток соединить концы рамки с электрической цепью, то под действием ЭДС индукции, изменяющейся со временем по гармоническому закону, в электрической цепи возникнут вынужденные гармонические колебания силы тока - переменный ток .

На практике синусоидальная ЭДС возбуждается не путем вращения рамки в магнитном поле, а путем вращения магнита или электромагнита (ротора) внутри статора - неподвижных обмоток, навитых на сердечники из магнитомягкого материала. В этих обмотках находится переменная ЭДС, что позволяет избежать снятия напряжения с помощью контактных колец.

Явление резонанса относится к наиболее важным с практической точки зрения свойствам электрических цепей. Оно заключается в том, что электрическая цепь, имеющая реактивные элементы обладает чисто резистивным сопротивлением .

Общее условие резонанса для любого двухполюсника можно сформулировать в виде Im[Z ]=0 или Im[Y ]=0, где Z и Y комплексное сопротивление и проводимость двухполюсника. Следовательно, режим резонанса полностью определяется параметрами электрической цепи и не зависит от внешнего воздействия на нее со стороны источников электрической энергии.