Учёные Средневековья. Европейская средневековая наука

  • 24.09.2019

Эпоху Средневековья относят к началу П в. н. э., а ее завер­шение к XIV-XV вв. Знания, которые формируются в эпоху Сред­них веков в Европе, вписаны в систему средневекового миросо­зерцания, для которого, характерно стремление к всеохватываю­щему знанию, что вытекает из представлений, заимствованных из античности: подлинное знание - это знание всеобщее, апо­диктическое (доказательное). Но обладать им может только тво­рец, только ему доступно знать, и это знание только универсаль­ное. В этой парадигме нет места знанию неточному, частному, относительному, неисчерпывающему.

Так как все на земле сотворено, то существование любой вещи определено свыше, следовательно, она не может быть несимво­лической. Вспомним новозаветное: «Вначале было Слово, и Сло­во было у Бога, и Слово было Бог». Слово выступает орудием творения, а переданное человеку, оно выступает универсальным орудием постижения мира. Понятия отождествляются с их объек­тивными аналогами, что выступает условием возможности зна­ния. Если человек овладевает понятиями, значит, он получает ис­черпывающее знание о действительности, которая производна от понятий. Познавательная деятельность сводится к исследованию последних, а наиболее репрезентативными являются тексты Свя­щенного писания.

Все «вещи видимые» воспроизводят, но не в равной степени «вещи невидимые», т. е. являются их символами. И в зависимос­ти от приближенности или отдаленности от Бога, между симво­лами существует определенная иерархия. Телеологизм выража­ется в том, что все явления действительности существуют по про­мыслу Бога и для предуготовленных им ролей (земля и вода слу­жат растениям, которые в свою очередь служат скоту).

Как же, исходя из таких установок, может осуществляться познание? Только под контролем церкви. Формируется жесткая цензура, все противоречащее религии подлежит запрету. Так, в 1131 г. был наложен запрет на изучение медицинской и юриди­ческой литературы. Средневековье отказалось от многих провид­ческих идей античности, не вписывающихся в религиозные пред­ставления. Так как познавательная деятельность носит теологи­чески-текстовой характер, то исследуются и анализируются не вещи и явления, а понятия. Поэтому универсальным методом стано­вится дедукция (царствует дедуктивная логика Аристотеля). В мире, сотворенном Богом и по его планам, нет места объектив­ным законам, без которых не могло бы формироваться естество­знание. Но в это время существуют уже области знаний, которые подготавливали возможность рождения науки. К ним относят алхимию, астрологию, натуральную магию и др. Многие иссле­дователи расценивают существование этих дисциплин как проме­жуточное звено между натурфилософией и техническим ремес­лом, так как они представляли сплав умозрительности и грубого наивного эмпиризма.


Так, средневековые ученые, как правило, выходцы из араб­ских университетов, свое знание называли натуральной магией, понимая под ней надежное и глубокое познание тайн природы. Магия понималась как глубокое знание скрытых сил и законов Вселенной без их нарушения и, следовательно, без насилия над Природой. Маг - это больше практик-экспериментатор, нежели теоретик-концептуалист. Маг желает, чтобы опыт удался, и при­бегает к всевозможным приемам, формулам, молитвам, закли­наниям и пр.

Схоластика (от лат. - школьный), оформившаяся в IX- XII вв., стремится к обновлению религиозных догматов, приспо­сабливая их к удобствам преподавания в университетах и школах. Большое значение придается логике рассуждений, в которой схо­ласты видят путь постижения Бога. С расцветом схоластической учености связано оттачивание логического аппарата, рассудочных способов обоснования знания, при которых сталкиваются тезис и антитезис, аргументы и контраргументы. Схоластом величает себя всякий, кто занимается преподавательской деятельностью: Эриу-гена, Альберт Великий, Фома Аквинский, Абеляр, Ансельм Кен-терберийский. Важными для них являются вопросы о соотноше­нии разума и веры, науки и религии. Соотношение философии и теологии истолковывается неоднозначно. Ансельм Кентерберий-ский считает, что истины, добытые разумом, но противоречащие авторитету Священного писания, должны быть забыты или от­вергнуты.

Абеляр стремится к четкому разграничению между верой и знанием и предлагает сначала с помощью разума исследовать ре­лигиозные истины, а затем судить, заслуживают они веры или нет. Ему принадлежит ставший знаменитым принцип: «понимать, чтобы верить». В отличие от веры философия, как и знание, опи­рается на доказательства разума. Работа Абеляра «Да и нет» со­брала 159 каверзных вопросов христианской догматики. На них были предложены ответы из авторитетных церковных писаний и показано, что на каждый из вопросов в распоряжении богослова имеется как утвердительный, так и отрицательный ответ.

Знаменитый учеаътАльберт Великий (1193-1207) имел столь обширные сведения по естествознанию, что был удостоен звания «Doctor Universalis» (всеобъемлющий доктор»). Философ препо­давал в Парижском университете и стремился согласовать богословие (как опыт сверхъестественного) и науку (как опыт есте­ственного). Главным методом научного исследования он считал наблюдение, и был уверен, что при исследовании природы надо постоянно обращаться к наблюдению и опыту. В своей тайной мастерской он проводил многочисленные эксперименты. Так как он много путешествовал, в его наследии есть географические со­чинения, свидетельствующие о его наблюдательности. Его опы­ты по физике сообщают, что стеклянный шар, наполненный во­дой, собирает солнечные лучи в одну точку, в которой сосредото­чивается большое количество теплоты. Он указывал и способ ис­следования воды: если два куска полотна, опущенные в разные источники, после высыхания будут иметь разный вес, то кусок, который окажется легче, свидетельствует о более чистой воде. Ученый «маг» придерживался убеждения, что все происходит на основании скрытых законов природы.

В учении Фомы Аквинского (1225-1274) есть указания на метод интеллектуального, т. е. постигающего, созерцания, кото­рый схватывает не образ предмета, дальше которого не могут идти ни физика, ни математика, но прообраз этого образа, действи­тельную форму предмета, «которая есть само бытие и от которой бытие происходит».

Систему образования на первых порах в средневековье пред­ставляли монастырские школы, которые готовили священнослу­жителей. Более высокий класс школ, тоже готовивших священ­нослужителей, представляли собой так называемые епископские школы, начавшие появляться примерно с VIII в. В их деятельно­сти принимал участие епископ и приближенные к нему духовные лица, а повседневное обучение осуществляли специально подго­товленные учителя (magistri).

Что же касается содержания обучения во всех этих школах, то его первую ступень составляло светское знание, а вторую, выс­шую, - теология. Светским знанием назывались те семь «сво­бодных искусств», которые сложились еще в поздней античнос­ти. Но по сравнению с римской эпохой содержание этих искусств было значительно урезано, так как приспосабливалось к выпол­нению религиозно-церковных и богословских функций. Грамма­тика, например, сводилась к изучению правил латинского языка, языка Священного писания. Риторика была сведена церковью к умению составления проповедей, а затем и к умению составления различных документов. Арифметика, необходимая для элемен­тарного счета, получала также функцию мистического истолкова­ния чисел, встречающихся в Священном писании. Геометрия вклю­чала в себя некоторые, порой весьма фантастические, сведения относительно различных стран и земель, а также и населявших их народов. Музыка целиком была сведена к искусству организа­ции церковного песнопения. Астрономия стала предметом, с по­мощью которого можно было прежде всего определять сроки на­ступления христианских праздников.

В дальнейшем, наряду с церковными школами, стали возни­кать и светские. Среди таких школ выделялись юридические (пра­вовые). Нередко они возникали из светских же школ риторики. Усложнение экономики и всей жизни с необходимостью требова­ло правовых знаний. В Болонье уже в конце XI в. возник один из первых европейских университетов, который в течение всех Сред­них веков играл роль первого научного и преподавательского центра по изучению юриспруденции.

На протяжении всего Средневековья важнейшей составляю­щей образования являлась логика, которой отводилось значитель­ное место в трудах многих авторов. Рассмотрим одну из более поздних концепций логики, принадлежащую Раймунду Луллию (1235-1315). В ней логика определяется как такое искусства, с помощью которого истина может быть отличаема от лжи (дву­значное толкование истинности). Весьма плодотворно в истори­ческой перспективе понимание Луллием задачи логики. Так как логики, подобно самому Аристотелю, ставили перед своей нау­кой задачу доказательства истин, а не их открытия, то именно такую задачу и поставил перед собой Луллий - дополнить логи­ку доказательства логикой открытий. С этой целью он изложил свои попытки механического моделирования логического мыш­ления, с помощью которого даже человек средних способностей сможет открывать новые истины и убеждаться в непоколебимой истинности только католической религии.

Механизм, описанный им, представляет собой систему семи концентрических кругов, каждый из которых содержит группу сходных понятий. На одном из них, например, помещались такие «субстанции», как бог, ангел, человек, небо и др., на другом - соответствующие им абсолютные предикаты, такие, как могуще­ство, знание, благость, длительность и др., на третьем - такие относительные предикаты, как великое, благое и др. Вращение кругов относительно друг друга дает разнообразные комбинации терминов, представляющие собой новые понятия (благой бог, ве­ликий бог, великая благость бога и т. п.). Логический механизм Луллия заключал в себе весьма значительную идею формализа­ции логических действий посредством оперирования различны­ми общими знаками. Связь такого рода логической техники с христианско-католической теологией более чем внешняя (вряд ли с ее помощью невозможно было обратить в христианство ни одно­го язычника). Но историки логики последних десятилетий квали­фицируют Луллия как предшественника комбинаторных методов в новейшей логике. Не случайно в дальнейшем логический меха­низм Луллия (сама его идея) был высоко оценен Лейбницем, счи­тающимся отцом математической логики.

Вскрывая особенности средневековой науки, ученые отмеча­ют, что, прежде всего, она выступает как совокупность правил, в форме комментариев. Второй особенностью является тенденция к систематизации и классификации знаний. Компиляция, столь чуждая и неприемлемая для науки Нового времени, составляет характерную черту средневековой науки, связанную с общей ми­ровоззренческой и культурной атмосферой этой эпохи.

Средневековая западная культура - специфический феномен. С одной стороны, продолжение традиций античности, свидетель­ство тому - существование таких мыслительных комплексов, как созерцательность, склонность к абстрактному умозрительному те­оретизированию, принципиальный отказ от опытного познания, признание превосходства универсального над уникальным. С дру­гой стороны, разрыв с античными традициями: алхимия, астро­логия, имеющие «экспериментальный» характер. А на Востоке в средние века наметился прогресс в области математических, фи­зических, астрономических, медицинских знаний.

Начиная с VII в. в политической жизни стран Ближнего и Среднего Востока произошли важные изменения. Арабы в очень короткий срок захватили обширные территории, куда вошли зем­ли Ирана, Северной Африки, азиатских провинций Византии, зна­чительной части бывшей Римской империи, Армении, Северо-Западной Индии, на которых был создан Арабский халифат.

В городах халифата строились обсерватории, создавались биб­лиотеки при дворцах, мечетях, медресе. Внутренняя и внешняя торговля также способствовала распространению и передаче зна­ний. Первый научный центр халифата- Багдад (конец VIII - начало IX в.), где были сосредоточены ученые, переводчики и переписчики из разных стран, располагалась большая библиотека, постоянно пополняемая, функционировала своеобразная академия «Дом мудрости», на базе которого была создана обсерватория.

Труды ученых разных стран, которые в силу сложившихся обстоятельств оказываются на территории халифата, переводятся на арабский. В IX в. была переведена книга «Великая математи­ческая система астрономии» Птолемея под названием «Альмагисте» (великое), которая потом вернулась в Европу как «Альма­гест». Переводы и комментарии «Альмагеста» служили образцом для составления таблиц и правил расчета положения небесных светил. Также были переведены и «Начала» Евклида и сочинения Аристотеля, труды Архимеда, которые способствовали развитию математики, астрономии, физики. Греческое влияние отразилось на стиле сочинений арабских авторов, которые характеризует сис­тематичность изложения материала, полнота, строгость форму­лировок и доказательств, теоретичность. Вместе с тем в этих тру­дах присутствует характерное для восточной традиции обилие при­меров и задач чисто практического содержания. В таких областях, как арифметика, алгебра, приближенные вычисления, был дос­тигнут уровень, который значительно превзошел уровень, дос­тигнутый александрийскими учеными.

Интерес для нас представляет личность Мухаммеда ибн Муса ал-Хорезми (780-850), автора нескольких сочинений по матема­тике, которые в XII в. были переведены на латынь и четыре сто­летия служили в Европе учебными пособиями. Через его «Ариф­метику» европейцы познакомились с десятичной системой счис­ления и правилами (алгоритмами - от имени ал-Хорезми) вы­полнения четырех действий над числами, записанными по этой системе. Ал-Хорезми была написана «Книга об ал-джебр и ал-мукабала», целью которой было обучить искусству решения урав­нений, необходимых в случаях наследования, раздела имущества, торговли, при измерении земель, проведении каналов и т.д. «Ал-джебр» (отсюда идет название такого раздела математики, как алгебра) и «ал-мукабала» - приемы вычислений, которые были известны Хорезми еще из «Арифметики» позднегреческого мате­матика (Ш в.) Диофанта. Но в Европе об алгебраических приемах

узнали только от ал-Хорезми. Никакой специальной алгебраичес­кой символики у него даже в зачаточном состоянии еще нет. За­пись уравнений и приемы их решений осуществляются на есте­ственном языке.

По известной характеристике Энгельса, после александрий­ского периода в развитии положительной науки именно у арабов она делает дальнейший шаг в своем развитии. Это относится к различным отраслям знания, и прежде всего к математике и аст­рономии. Важнейшее достижение арабоязычной науки состоит в заимствовании у индийских ученых позиционной системы счис­ления и в совершенствовании ее.

В дальнейшем другие арабоязычные ученые добились новых достижений в алгебре (например, рассматривали задачи, требую­щие решения уравнений третьей, четвертой и пятой степеней, а также извлечения корней тех же степеней). Были заложены осно­вы тригонометрии, которая была связана с достижениями арабо­язычной астрономии. Так, астроном аль-Баттани (858-927), ав­тор комментария к птолемеевскому Альмагесту, с помощью впер­вые введенных им тригонометрических функций производил бо­лее точные по сравнению с Птолемеем астрономические наблю­дения.

Аль-Фараби (870-950) первым среди арабоязычных филосо­фов осмыслил и в известной мере доработал логическое наследие Аристотеля. Мыслитель собрал и упорядочил весь комплекс ари­стотелевского «Органона» (присоединив к нему «Риторику», до тех пор неизвестную среди арабоязычных философов), написал ком­ментарии ко всем его книгам и несколько собственных работ по вопросам логики. За заслуги в развитии логического знания он получил почетный титул «Второго учителя» («Первым» считался сам Аристотель).

Наиболее замечательное в области физики имя - аль-Хайсам алъ-Газен (965-1039) из Басры. Его труд по оптике, изданный на латинском языке в конце XVI в. и оказавший влияние на Кепле­ра, не только трактовал законы отражения и преломления света, но и давал поразительно точное для того времени описание стро­ения глаза.

Как и в античности, в арабоязычном средневековье было не­мало ученых-энциклопедистов, сделавших значительный вклад в различные науки. Среди них - среднеазиатский ученый аль-Би-рут (973-1048), в произведениях которого трактовались вопро­сы математики, астрономии, физики, географии, общей геоло­гии, минералогии, ботаники, этнографии, истории и хронологии. Так, Бируни установил метод определения географических дол­гот, близкий к современному, а также определил длину окружно­сти Земли. Впервые на средневековом Востоке великий ученый сделал предположение о возможности обращения Земли вокруг Солнца. В своих трудах Бируни привел достаточно точные мате­матические константы (например, определения удельных весов минералов), определил их распространенность (а также распрост­раненность руд, металлов, сплавов), подробно описал календар­ные системы различных ближневосточных народов. Географи­ческие познания Бируни весьма показательны для успехов этой науки в арабоязычном мире, в котором широкая торговля в стра­нах Южной Азии, Африки и Европы развивала географическую и этнографическую любознательность. Бируни, живший в Индии и изучавший санскритскую литературу, написал большой труд об этой стране. Следует также отметить, что он первым познакомил индийских ученых с достижениями древнегреческой математики и астрономии, переведя некоторые из трудов античных ученых на санскрит.

Широко известна деятельность арабских ученых в области ал­химии, которая хотя и преследовала недостижимые цели (превра­щение неблагородных металлов в благородные), но в процессе этих многовековых поисков открыла новые элементы (ртуть, сера), впоследствии использованные химией. Хотя деятельность алхи­миков (затем получившая широкое распространение и в Европе) не могла стать экспериментальным естествознанием, но в какой-то степени способствовала его будущему возникновению.

Известны достижения практической медицины в странах эпохи Средневековья. Еще задолго до Бируни автор многочисленных работ по естественным наукам и философии Закария Рази (864- 925) написал «Книгу объемлющую», своего рода медицинскую энциклопедию, составленную на основе работ античных и арабо-язычных ученых с добавлениями автора, почерпнутыми из его собственного богатого врачебного опыта. В других своих произве­дениях Рази весьма резко для своего времени говорил о чудесах, якобы творимых пророками, как об обмане и плутовстве, о вреде религиозных направлений и сект, религиозным книгам противо-

поставлял произведения Платона, Аристотеля, Эвклида и. Гип­пократа.

К наиболее ярким представителям ближневосточного средне­вековья можно отнести Омара Хайяма (1048-1131), великого иран­ского ученого и значительного философа, великолепного поэта, автора всемирно известных четверостиший (рубай). В качестве уче­ного Хайям больше всего сделал в математике. В алгебре он сис­тематически изложил решение уравнений до третьей степени вклю­чительно, написал «Комментарии» к «Началам» Евклида. Значи­тельны достижения Хайяма в области астрономии: взамен лун­ного календаря, принесенного арабами, он возвратился к солнеч­ному календарю, который был принят в Иране и Средней Азии до арабского завоевания, и усовершенствовал его.

Абу Али ибн Сина (Авиценна) (980-1037) - философ, матема­тик, астроном, врач, чей «Канон врачебной науки» снискал миро­вую славу и представляет определенный познавательный интерес сегодня. На основе идей Аристотеля он создал своеобразную клас­сификацию наук.

Ибн-Рушд (1126-1198) - философ, естествоиспытатель, до­бившийся больших успехов в области алхимии, автор медицинс­ких трудов, комментатор Аристотеля, был сторонником единого интеллекта и космического детерминизма. Он считал, что актив­ный интеллект, существуя вне и независимо от индивидуумов, есть вечный коллективный разум рода человеческого, который не возникает, не уничтожается и заключает в себе общие истины в обязательной для всех форме. Он есть субстанция истинно духов­ной жизни, и познавательная деятельность индивидуума образу­ет лишь частное проявление ее. Разумное познание человека есть, следовательно, безличная и сверхличная функция: это временная причастность индивидуума к вечному разуму. Последняя есть та общая сущность, которая реализуется в высших проявлениях ин­дивидуальной деятельности.

Эти и многие другие выдающиеся ученые арабского средне­вековья внесли большой вклад в развитие медицины, в частности глазной хирургии, что натолкнуло на мысль об изготовлении из хрусталя линз для увеличения изображения. В дальнейшем это привело к созданию оптики.

Работая на основе традиций, унаследованных от египтян и вавилонян, черпая некоторые знания от индийцев и китайцев и, что самое важное, переняв у греков приемы рационального мыш­ления, арабы применили все это в опытах с большим количеством веществ. Тем самым вплотную подойдя к созданию химии.

В XV в. после убийства Улугбека и разгрома Самаркандской обсерватории начинается период заката математических, физичес­ких и астрономических знаний на Востоке и центр разработки про­блем естествознания, математики переносится в Западную Европу.

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

Кольский филиал Петрозаводского государственного университета


Важнейшие открытия средневековья в области науки и техники



Введение

1. Наука и техника

Хронология и структура средневековья

Творцы открытий

Гений да Винчи

5. Биологические знания в средние века

6. Достижения медицины

На языке математики

Вперед к прогрессу

Заключение


Введение


Целью данного реферата является анализ научно-технического прогресса средних веков. Задачи:

Провести анализ актуальности по данной тематике.

Рассмотреть средневековье как эпоху.

Рассмотреть основные открытия науки и техники V- XVII вв.

Актуальность данной тематики обусловлена тем, что с начала V века наука начала свой нелегкий путь в век знаний и изобретений. В ее важнейших областях произошли удивительные открытия, были проведены различные исследования на основе соединения науки с техникой.

В нашей современной жизни стало обыденностью электричество, автомобили, да чего уж там говорить, книга - что может быть проще, листы бумаги с набранным текстом. А ведь несколько столетий назад, чтобы напечатать книгу требовалось приложить немало усилий и времени. Средневековье - так эта эпоха называется. Эпоха начала ведущих достижений в области науки и техники. От этой эпохи дошли до нас и поэтические произведения, в которых народы запечатлели свой гений, замечательные памятники народного творчества великолепные громады готической архитектуры, чудесные, прекрасные художественные и поэтические создания Ренессанса, первые успехи пробуждающейся научной мысли. Эта эпоха дала нам ряд великих людей, которыми гордится человечество. Такие как Коперник, Галилео, Бруно, Браге, Ньютон. Все эти и многие другие выдающиеся личности, своей жизнью и деятельностью ускорявшие прогресс человечества, принадлежат средневековью. Великие технические изобретения, сделанные в средневековье, оказали огромное влияние на все области экономики и культуры, в том числе и на развитие науки. Таким образом, средние века внесли свою, и немалую, долю в общую сокровищницу материальных и духовных ценностей всего человечества.

1. Наука и техника


Наука как знание и деятельность по производству знаний возникла с начала человеческой культуры и составила часть духовной культуры общества, хотя само по себе слово "наука" сравнительно недавнего происхождения. В переводе с латыни "scientia"(наука) означает знание.

Слово "техника" происходит от греческого "techne"-искусство, мастерство, умение. Основное значение этого слова сегодня - средства труда, производства.

Исторически техника прошла путь от примитивных орудий труда до сложнейших современных автоматических машин, развиваясь на основе достижений науки.

Наука и техника на протяжении всей истории человечества шагают рука об руку и особенно неразрывны стали в наши дни, когда наука является непосредственной производительной силой, когда без научных исследований невозможно создание образцов новой техники. Разработка образца новой техники, как правило, начинается с научных исследований - с проведения научно-исследовательской работы (НИР). Коренное усовершенствование техники возможно лишь благодаря науки. В наши дни разделить сферы влияния науки и техники практически невозможно. Ни одно значимое современное научное открытие практически неосуществимо на листе бумаги, то есть без привлечения техники, экспериментальной аппаратуры. Вместе с тем функции науки шире. Основными из них являются: описательная, систематизирующая, объяснительная, производственно-практическая, прогностическая, мировоззренческая. Только производственно-практическая функция связана напрямую с созданием техники.


2. Хронология и структура средневековья


Средние века (Средневековье) - исторический период, следующий после Древнего мира и предшествующий Новому времени. Началом Средневековья считается крушение Западной Римской империи в конце V века. Средневековье содержит внутри себя несколько этапов: темное время - раннее средневековье; высокое - средний период средневековья; позднее (зрелое, развитое, классическое) средневековье.

Раннее Средневековье - период европейской истории, начавшийся вскоре после распада Римской империи. Длился около пяти веков, приблизительно с 500 по 1000 гг.

Высокое Средневековье - период европейской истории, продлившийся приблизительно с 1000 по 1300 гг. Эпоха Высокого Средневековья сменила Раннее Средневековье и предшествовала Позднему Средневековью. Основной характеризующей тенденцией этого периода стало быстрое увеличение численности населения Европы, что привело в свою очередь к резким изменениям в социальной, политической и других сферах жизни.

Позднее Средневековье - термин, используемый историками для описания периода европейской истории в XVI-XVII веках.

Позднему Средневековью предшествовало Высокое Средневековье, а последующий период называется Новое время. Историки резко расходятся в определении верхней границы Позднего Средневековья. Если в российской исторической науке принято определять его окончание английской гражданской войной, то в западноевропейской науке конец Средневековья обычно связывают с началом церковной реформации или эпохи Великих географических открытий. Позднее Средневековье называют также эпохой Возрождения.

Наиболее общие хронологические рамки периода: середина V в. - середина XV в. Однако любая периодизация Средневековья носит условный характер.

География средневековья. Наиболее общие географические ареалы развития "научного" мышления и технологических инноваций в рассматриваемый период: "Западная Европа"; "Византия" и зона ее влияния; "Арабский Восток"; "Восток" (Индия, Китай, Япония); "Доколумбова Америка". Наиболее тесно были связаны первые три ареала.

Структура средневекового научного знания включает четыре основных направления: физико-космологическое , ядром которого является учение о движении. На основе натурфилософии Аристотеля оно объединяет массив физических, астрономических и математических знаний; учение о свете ; оптика является частью общей доктрины - "метафизики света", в рамках которой строится модель Вселенной, соответствующая принципам неоплатонизма; учение о живом, понимавшееся как наука о душе, рассматриваемое как принцип и источник и растительной, и животной, и разумной жизни; комплекс астролога - медицинских знаний, учение о минералах и алхимия.

К техническим новациям, оказавшим радикальное воздействие на всю культуру средневековья относятся: заимствование пороха, что быстро привело к созданию пороходелательного производства (первый завод); разработка технологии гранулирования пороха, повышающей его эффективность; стремительное развитие производства огнестрельного оружия, в корне изменило, способы ведения боевых действий и привело к развитию новых технологий в литейном деле, направленных на повышение точности метания; ветряные мельницы, заимствование бумаги, что привело к созданию книгопечатания; создание и внедрение в хозяйственный и культурный оборот различных механических устройств, создавших со временем целую инфраструктуру; развитие часового дела.

3. Творцы открытий


В период "высокого" средневековья роль естественных наук в обществе стала быстро меняться. Научные открытия ускорили развитие техники и технологий, которые, в свою очередь, привели к новым открытиям. Наука стала основой развития человеческого общества. Многие ученые именно в этот период сделали свои открытия. Иоганн Гутенберг, Николай Коперник, Тихо Браге, Галилео Галилей, Исаак Ньютон и еще ряд известных ученых.

Роджер Бэкон (1214-1292) английский алхимик, выдающийся философ. В 1240 году, первым в Европе описал технологию изготовления пороха. Он проделал немало опытов в поисках способов превращения одних веществ в другие. За отказ открыть секреты получения золота (которых он не знал), Бэкон был осужден собратьями по вере и провел в церковной темнице долгие 15 лет. По велению генерала ордена сочинения монаха-естествоиспытателя в наказание были прикованы цепями к столу в монастырской библиотеке в Оксфорде. Бэкон предугадал большое значение математики, без которой, по его мнению, не может существовать ни одна наука, и ряд открытий (телефона, самодвижущихся повозок, летательных аппаратов и др.).

Иоганн Гутенберг (1397 -1468) немецкий ювелир и изобретатель книгопечатания.

Гениальное изобретение Гутенберга состояло в том, что он изготовлял из металла подвижные выпуклые буквы, вырезанные в обратном виде, набирал из них строки и с помощью пресса оттискивал на бумаге.

При ограниченных средствах, не имея ни опытных рабочих, ни усовершенствованных инструментов Гутенберг, тем не менее, достиг замечательных успехов. До 1456 года он отлил не менее пяти различных шрифтов, напечатал латинскую грамматику Элия Доната (несколько листов ее дошли до нас и хранятся в Национальной библиотеке в Париже), несколько папских индульгенций и, наконец, две Библии, 36-строчную и 42-строчную; последняя, известная под названием Библии Мазарини, напечатана в 1453-1465 гг. с высоким качеством.

Николай Коперник (1473-1543) польский астроном, математик, экономист, каноник. Наиболее известен как автор средневековой гелиоцентрической системы мира.

Гелиоцентрическая теория, утверждавшая, что Земля вращается вокруг Солнца, а не наоборот, как привыкли думать ученые с античных времён. Наблюдая движение небесных тел, Коперник пришёл к выводу, что теория Птолемея неверна. После тридцати лет упорного труда, долгих наблюдений и сложных математических расчетов он убедительно доказал, что Земля - это только одна из планет и что все планеты вращаются вокруг Солнца. Правда, Коперник все же считал, что звёзды неподвижны и находятся на поверхности огромной сферы, на огромном расстоянии от Земли. Это было связано с тем, что в то время ещё не было таких мощных телескопов, с помощью которых можно наблюдать небо и звезды. Открыв, что Земля и планеты - спутники Солнца, Николай Коперник смог объяснить видимое движение Солнца по небосводу, странную запутанность в движении некоторых планет, а также видимое вращение небесного свода.

Судьба новой гипотезы складывалась непросто. Книга о вращениях небесных сфер (1543) стала потрясением для астрономов XVI века. Многие ученые, сомневавшиеся в непогрешимости птолемеевых построений, оказались готовы воспринять теорию Коперника. Но, конечно же, замена старой теории на новую произошла не сразу. Не весь научный мир принял гелиоцентрическую систему - и вовсе не по идеологическим соображениям. Разумеется, сыграла свою роль резко отрицательная позиция по отношению к учению Коперника христианской церкви. Первоначально церковь не обратила внимание на философские следствия самой возможности постановки Земля в один ряд с другими планетами, но в 1616 году исправила свою "оплошность" - декретом инквизиции книга Коперника была внесена "впредь до исправления" в индекс запрещенных книг и оставалась под запретом до 1828 года. Уединённая жизнь и позднее опубликование сочинения избавили Николая Коперника от гонений, которым подверглись его последователи. Коперник был священнослужителем и искренне верующим католиком. Создавая свою модель Вселенной, он стремился не вступать в конфликт с церковью, а найти "золотую середину" между верой и научной истиной: и то, и другое было для Коперника одинаково важным. Тем не менее, гелиоцентрическая теория, предложенная Коперником, в конечном счёте, перевернула устоявшиеся представления о Вселенной и положила начало первой научной революции.

Тихо Браге (1546-1601) датский астроном, астролог и алхимик. Первым в Европе начал проводить систематические и высокоточные астрономические наблюдения, которыми воспользовался Кеплер, чтобы открыть законы движения планет. В 1572 году заметил сверхновую звезду - неизмеримо далекую и очень яркую, - чье появление в "неизменном" пространстве за Луной было бы невозможно. Спустя несколько лет Браге наблюдал столь же невероятное появление кометы. В результате масштабных и систематических наблюдений исследователь определил положение многих небесных тел и издал первый современный каталог звезд.

Галилео Галилей (1564-1642) итальянский ученый, физик, механик и астроном, один из основоположников естествознания; поэт, филолог и критик. Заложил основы современной механики: выдвинул идею об относительности движения, установил законы инерции, свободного падения и движения тел по наклонной плоскости, сложения движений; открыл изохронность колебаний маятника; первым исследовал прочность балок.

Знаменитая история о том, как выскочивший из ванны Архимед бегал голым по улицам с криком "Эврика!", была известна во времена Галилея так же широко, как и в наши дни. Архимед тогда нашел способ установить, сделана ли царская корона из чистого золота или нет. Галилей решил усовершенствовать этот древний метод. Он придумал гидростатические весы, на которых можно было взвешивать предметы в воздушной и водной среде. После этого он повторил эксперимент Архимеда и изложил результаты в коротком трактате, названном "Маленькие весы".

В 1609 году Галилей самостоятельно построил свой первый телескоп с выпуклым объективом и вогнутым окуляром. Труба давала приблизительно трёхкратное увеличение. Вскоре ему удалось построить телескоп, дающий увеличение в 32 раза и открыл горы на Луне, 4 спутника Юпитера, фазы у Венеры, пятна на Солнце. Ряд телескопических открытий Галилея способствовали утверждению гелиоцентрической системы мира, которую Галилей активно пропагандировал, за что был, подвергнут суду инквизиции (1633), вынудившей его отречься от учения Николая Коперника. До конца жизни Галилей считался "узником инквизиции" и принужден был жить на своей вилле Арчетри близ Флоренции. В 1992 папа Иоанн Павел II объявил решение суда инквизиции ошибочным и реабилитировал Галилея.

Исаак Ньютон (1642-1727) великий английский физик, математик и астроном. Исаак Ньютон был величайшим ученым после Галилея. Его труд "Математические начала натуральной философии" (1687) убедительно продемонстрировал, что земная и небесная сферы подчиняются одним и тем же законам природы, а все материальные объекты - трем законам движения. Более того, Ньютон сформулировал закон всемирного тяготения и математически обосновал законы, управляющие этими процессами. Ньютонова модель Вселенной оставалась фактически неизменной вплоть до новой научной революции начала XX века, в основу которой легли труды Альберта Эйнштейн.


4. Гений да Винчи


Хотелось бы еще выделить одну великую личность времён средневековья.

Это итальянский живописец, искусный архитектор, инженер, техник, ученый, математик, анатом, музыкант и скульптор, Леонардо да Винчи (1452-1519).Способности и возможности Леонардо да Винчи были, без преувеличения, сверхъестественными. Существует версия, что Леонардо да Винчи мог проникать в параллельные миры, где и брал идеи своих чудесных многочисленных изобретений. В то время они действительно воспринимались как чудо.

Леонардо да Винчи был прекрасным фокусником (современники называли его магом). Он мог вызывать из кипящей жидкости многоцветное пламя, вливая в нее вино; легко превращал белое вино в красное; одним ударом ломал трость, концы которой положены на два стакана, не разбив ни один из них; наносил на конец пера немного своей слюны и надпись на бумаге становится черной. Чудеса, которые показывал Леонардо, настолько впечатляли современников, что его всерьез подозревали в служении "черной магии". К тому же возле гения постоянно находились странные, сомнительной нравственности личности, вроде Томазо Джованни Мазини, известного под псевдонимом Зороастр де Перетола,- хорошего механика, ювелира и одновременно адепта тайных наук…

Леонардо многое шифровал, чтобы его идеи раскрывались постепенно, по мере того, как человечество до них "дозреет". Ученые только в прошлом году, спустя пять столетий после смерти Леонардо да Винчи, сумели разобраться в проекте его самодвижущейся тележки и построить ее. Это изобретение можно смело назвать предшественником современного автомобиля.

В 1499 году Леонардо да Винчи для встречи французского короля Людовика XII сконструировал деревянного механического льва, который, сделав несколько шагов, распахивал свою грудную клетку и показывал внутренности, "заполненные лилиями". Ученый является изобретателем скафандра, подводной лодки, парохода, ластов. У него есть рукопись, в которой показывается возможность погружения на большую глубину без скафандра благодаря использованию особой газовой смеси (секрет которой он сознательно уничтожил). Чтобы ее изобрести, необходимо было хорошо разбираться в биохимических процессах человеческого организма, которые совершенно не были известны в то время! Это он первым предложил устанавливать на бронированных кораблях батареи огнестрельных орудий (подал идею броненосца!), изобрел вертолет, велосипед, планер, парашют, танк, пулемет, отравляющие газы, дымовую завесу для войск, увеличительное стекло (за 100 лет до Галилея!).

Леонардо да Винчи изобрел текстильные машины, ткацкие станки, машины для изготовления иголок, мощные подъемные краны, системы осушения болот посредством труб, арочные мосты. Он создал чертежи воротов, рычагов и винтов, предназначенных поднимать огромные тяжести, - механизмы, которых не было в его время. Поразительно, что Леонардо да Винчи подробно описывает эти машины и механизмы, хотя их и невозможно было сделать в то время из-за того, что тогда не знали шарикоподшипников (но сам Леонардо знал это - сохранился соответствующий рисунок). Иногда кажется, что да Винчи просто хотел узнать как можно больше об этом мире, коллекционируя информацию. Зачем она ему была нужна в таком виде и в таком количестве? Ответа на этот вопрос он не оставил.


Биологические знания в средние века


В средневековых текстах, имевших в известной мере естественнонаучный характер, естественнонаучное и образное видение мира как бы сливаются. Это не позволяет выделить в них собственно биологические знания. Поэтому о биологии в средние века можно говорить очень условно. В это время наука вообще, и биология в частности, еще не выделились в самостоятельные области, не отделились от целостного религиозно-философского, искаженного восприятия мира. Средневековая биология - скорее отражение средневековой культуры, нежели отрасль естествознания с собственным предметом изучения.

Источниками сведений о биологических предприятиях в период раннего средневековья служат сочинения типа "Физиолога", "Бестиария" и т. п. В этих книгах содержались описания упоминаемых в Библии животных и фантастических чудовищ, а также рассказы по мотивам (весьма вольно истолковываемым) из жизни животных, целью которых были религиозно-нравственные поучения. Сведения о животных и растениях содержались в "Поучении Владимира Мономаха" (XI в.), ходившем в списках на Руси, и других источниках.

Наиболее фундаментальными источниками сведений о биологических знаниях средневековья являются многотомные сочинения энциклопедического характера Альберта Великого и Венсана де Бове, относящиеся к XIII в. В энциклопедии Альберта Великого есть специальные разделы "О растениях" и "О животных". Детальные описания известных в то время видов растительного и животного царств во многом заимствованы у древних, главным образом у Аристотеля. Следуя за Аристотелем, Альберт связывал жизнедеятельность растений с "вегетативной душой". Развивая учение о функциях отдельных частей растений (ствол, ветви, корни, листва, плоды), Альберт Великий отмечал их функциональное подобие с отдельными органами у животных. В частности, корень он считал тождественным рту животного.

В средние века было обнаружено наличие растительных масел и ядовитых веществ в плодах некоторых растений. Были описаны разнообразные факты по селекции культурных растений. Идея изменяемости растений под воздействием среды выражалась в довольно фантастических утверждениях, будто бук превращается в березу, пшеница - в ячмень, а дубовые ветви - в виноградные лозы. Растения в сочинениях Альберта располагались в алфавитном порядке. Зоологические сведения у него, представлены также весьма подробно. Они даются, как и ботанические, в чисто описательном плане со ссылками на Аристотеля, Плиния, Галена как на высшие авторитеты. Деление животных на бескровных и обладающих кровью заимствовано у Аристотеля. Физиология сводится исключительно к описанию, нередко весьма выразительному, поведения и нравов животных. В духе средневековых антропоморфных воззрений говорилось об уме, глупости, осторожности, хитрости животных. Механизм размножения у животных излагался по Гиппократу: семя возникает во всех частях тела, но собирается в органах размножения. У Аристотеля было заимствовано представление о том, что женское семя содержит материю будущего плода, а мужское, кроме того, побуждает эту материю к развитию.

Уши, по словам Венсана де Бове, предназначены воспринимать слова людей, глаза же, зрящие творения,- воспринимать слово Божие. Соответственно этим задачам, глаза расположены спереди, а уши по бокам, как бы обозначая то, что наше внимание должно быть, прежде всего, обращено на Бога, и лишь потом на ближнего.

Источниками сведений не только о химических, но и о биологических знаниях могут служить алхимические трактаты. Алхимики оперировали не только с объектами минерального царства, но и с растительными и животными объектами. "Книга растений" знаменитого алхимика XV столетия Иоанна Исаака Голланда представляет значительный интерес как своеобразный алхимический свод биологических знаний. Изучая процессы гниения, брожения, алхимики знакомились с химическим составом растительного вещества. В связи с врачеванием к изучению животных и растений допускалось иное, порой чисто практическое отношение. Лечебные действия трав и минеральных веществ становились предметом специального интереса врачующих монахов позднего средневековья.

Вопрос об инстинктах и поведении животных и человека рассматривал Роджер Бэкон. Сравнивая поведение животных с сознательной деятельностью человека, он считал, что животным свойственны только восприятия, возникающие независимо от опыта, тогда как человек обладает разумом.

Круг тогдашних представлений о животных и растительности дальних стран расширяли поэтические описания путешествий в заморские края. Так, например, византийский поэт Мануил Фил (XIII-XIV вв.) побывал в Персии, Аравии, Индии. Его перу принадлежат три стихотворных сочинения, содержавших большой познавательный биологический материал. Это поэмы "О свойствах животных", "Краткое описание слона" и "О растениях". Фил любил рассказывать об экзотических, иногда фантастических, зверях. Однако и фантастические образы животных сложены у него из вполне реальных, хорошо известных и точно переданных элементов, отражавших уровень зоологических знаний XIV в.


Достижения


Медицина в средневековье развивалась в сложных и неблагоприятных условиях. Тем не менее, объективные закономерности развития общества и логика научного мышления неизбежно способствовали формированию в ее недрах предпосылок будущей медицины великой эпохи Возрождения. В связи с техническими открытиями еще более возросла роль научных исследований. Так как догматические воззрения исчезли, и загадки более не казались неразрешимыми, объектом изучения стало все, включая тело человека и его болезни. Вплоть до XVI века предполагалось, что болезнь является следствием ненормального смещения четырех жидких сред организма (крови, мокроты, желтой и черной желчи). Первым вызов этой теории бросил швейцарский алхимик Парацельс (1493-1541 знаменитый алхимик, врач и окулист ) , который утверждал, что болезни связаны с нарушениями различных органов и могут быть излечены при помощи химических препаратов. Примерно в это же время первое тщательное анатомическое исследование человека было проведено Андреасом Везалием (1514-1564 врач и анатом. ) . Однако основы современной медицинской науки были заложены почти сто лет спустя, когда английский ученый Уильям Гарвей (1578-1657 английский медик, основоположник физиологии и эмбриологии. ) открыл, что кровь в теле человека циркулирует по замкнутому кругу благодаря сокращениям сердца, а не печени, как полагали ранее.

Медицина средневековья не была бесплодной. Она накопила большой опыт в области хирургии, распознавания и предупреждения инфекционных болезней, разработала ряд мер противоэпидемического характера; возникли больничная помощь, формы организации медпомощи в городах, санитарное законодательство и т. д.


На языке математики


Новая наука пыталась подтвердить справедливость наблюдений путем экспериментов и перевести результаты на универсальный язык математики. Галилей был первым ученым, осознавшим, что именно такой подход является ключом к пониманию всего сущего, и утверждал, что "книга природы... написана математическими знаками". Прогресс математического метода был стремителен. К началу XVII века самые обычные арифметические символы (сложения, вычитания, умножения, деления и равенства) вошли в повсеместное употребление. Затем в 1614 году Джон Непер (1550-1617 шотландский барон, математик, один из изобретателей логарифмов, первый публикатор логарифмических таблиц. ) ввел в обиход логарифмы. Первая суммирующая машина - далекий предок компьютера - была сконструирована Блезом Паскалем (1623-1662 французский математик, физик, литератор и философ. Классик французской литературы, один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики. ) в 1640-х годах, а спустя 30 лет великий немецкий философ Готфрид Вильгельм Лейбниц (1646-1716 немецкий философ, математик, юрист, дипломат. ) изобрел машину, способную производить умножение. Лейбниц также был одним из создателей дифференциального исчисления, ставшего наиболее важным математическим методом того времени. К сходным результатам независимо от Лейбница пришел и Исаак Ньютон, и эти два великих человека с далеко не научным пылом вступили в дискуссию по поводу того, кому из них принадлежат лавры первенства.


Вперед к прогрессу


Итак, к XVII веку наука действительно далеко продвинулась в своем развитии и этому немало доказательств.

В 13 веке были изобретены механические часы. Совершенствование их конструкции в свою очередь привело к изобретению деталей (например, указатель скорости, храповики, зубчатые зацепления), которые впоследствии были использованы в других механизмах.

В средневековых европейских городах развиваются системы водоснабжения. Для этого сооружались насосные станции, приводимые в действие все тем же гидродвигателем. Некоторые города имели такую систему водоснабжения уже в начале 16-го века.

В XIV столетии в Европе начинается применение пороха, который хотя и был изобретен в Китае, однако опять-таки именно в Европе он получил повсеместное использование и дальнейшее совершенствование. Луки, копья и арбалеты стали обмениваться на огнестрельное оружие и пушки, которые в дальнейшем предопределили доминирование европейцев на мировой арене. Кроме того были изобретены телескоп, такие приборы, как микроскоп, термометр, барометр и воздушный насос. Научные достижения постоянно множились. Ньютон открыл волновую природу света и продемонстрировал, что поток света, кажущийся нам белым, состоит из спектральных цветов, на которые его можно разделить при помощи призмы. Двумя другими знаменитыми английскими экспериментаторами были Уильям Гилберт (1544-1603 английский физик, учёный и врач. ) , заложивший основы изучения электричества и магнетизма, и Роберт Гук (1635-1703 английский естествоиспытатель, учёный-энциклопедист ) , который ввел понятие "клетка" для описания того, что увидел через линзы усовершенствованного им микроскопа.

Ирландец Роберт Бойль (1627-1691 физик, химик и богослов ) проводил физические работы в области молекулярной физики, световых и электрических явлений, гидростатики, акустики, теплоты, механики. В 1660 усовершенствовал воздушный насос Герике, установил новые факты, которые изложил в "Новых физико-химических опытах, касающихся упругости воздуха". Показал зависимость точки кипения воды от степени разряжения окружающего воздуха и доказал, что подъем жидкости в узкой трубке не связан с атмосферным давлением. В 1661 открыл закон Бойля, сконструировал барометр и ввел название барометр. Сделал первые исследования упругости твердых тел, был сторонником атомизма. В 1663 открыл цветные кольца в тонких слоях (кольца Ньютона). В 1661 сформулировал понятие химического элемента и ввел в химию экспериментальный метод, положил начало химии как науки.

А голландский ученый Христиан Гюйгенс(1629-1695 нидерландский математик, физик, астроном и изобретатель. ) изобрел маятниковые часы со спусковым механизмом, доказав правильность вывода Галилея, что маятниковое устройство можно использовать для контроля за временем.

Перечисление всевозможных изобретений и заслуг средневековых ученых можно еще долго перечислять.

Впереди еще будут изобретения, парового двигателя, электричества и телефона. Землю опутают провода и железные дороги, а космонавты выйдут в открытый космос. А пока…пока одинокий средневековый ученый в своей полутемной комнатушке ковал историю науки…

Заключение


"Никогда история мира не принимает такой важности и значительности, никогда не показывает она такого множества индивидуальных явлений, как в средние века".

(Н.В. Гоголь)

Техника возникла вместе с возникновением человека, и долгое время развивалась независимо от всякой науки. Сама наука не имела долгое время особой дисциплинарной организации и не была ориентирована на сознательное применение создаваемых ею знаний в технической сфере. Рецептурно-техническое знание достаточно долго противопоставлялось научному знанию, об особом научно-техническом знании вопрос не ставился вообще. "Научное" и "техническое" принадлежали фактически к различным культурным ареалам. Именно инженеры, художники и практические математики эпохи средневековья сыграли решающую роль в принятии нового типа практически ориентированной теории. Выдвигался идеал новой науки, способный решать теоретическими средствами инженерные задачи, и новой, основанной на науке, техники. Этот идеал в конечном итоге привел к дисциплинарной организации науки и техники. Великие технические изобретения, сделанные в средневековье, оказали огромное влияние на все области экономики и культуры, в том числе и на развитие науки. Долгое время средневековье характеризовали как период духовного упадка, период между великими эпохами: античностью и возрождением. Но без этого времени, без его открытий и технических усовершенствований, наступление нового времени было бы невозможно. Технические успехи возрождения стали возможными в результате использования и развития изобретений и открытий средних веков, которые взятые вместе раскрыли перед Европейцами большие возможности управления и, в конечном счете, понимания мира, чем они могли бы получить от классического наследства.

Список используемых источников и литературы

наука открытие средневековье ньютон

1.Бернал Дж. Наука в истории общества/Дж. Бернал; пер. с англ. А.М.Вязьминой; общ. ред. Б.М.Кедрова, И.В.Кузнецова.- М.: Иностранная лит.,1956.-735с.

Горелов А.А. Концепции современного естествознания: учеб. пособие.- М.: Высшее образование,2008.-335с. - (Основы наук)

Соломатин В.А. История и концепции современного естествознания: учебник для ВУЗов. - М.: ПЕР СЭ,2002.-464с. - (Современное образование)

."100 человек, которые изменили ход истории" еженедельное издание, выпуск №9,2008

История биологии с древнейших времен до наших дней [Электронный ресурс] http://www.biolhistory.ru/

Историческая физика. Леонардо да Винчи [Электронный ресурс] http://www.abitura.com/

Википедия Свободная энциклопедия [Электронный ресурс] http://ru.wikipedia.org/wiki/


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

  1. Введение
  2. Заключение
  3. Литература

Введение

Средние века – более чем тысячелетний (V – XV вв.) период в истории человечества. Этот время господства религиозного мировоззрения в духовной жизни, когда три мировые религии, зародившиеся на Востоке - буддизм, христианство и ислам, - определяют философские учения и развитие художественной культуры. Когда культура существует в фольклорно-обрядовой и культово-религиозной формах, а художественный канон имеет большее значение, чем личность художника.

Средневековая культура была исторически закономерным и во многом прогрессивным этапом в развития человечества. Положительный вклад средневековья в историю мировой культуры объективно велик. Он сказался отчасти в философии, содержавшей, несмотря на господство идеализма и схоластики, ценные материалистические и диалектические тенденции. Он проявился также в области научных знаний. Средневековая культура это не застывший мир, а живое движение по пути поисков высшего совершенства. Материальную основу средневековой культуры составляли феодальные отношения. Переход к феодализму и его развитие происходили у разных народов по-разному.

История средних веков ближе к нашему времени, чем история древнего мира. Много ее «следов» сохранилось на поверхности земли. В старинных городах и сейчас можно видеть целые кварталы, застроенные домами средневековых ремесленников, купцов, крепостные стены и башни, величественные храмы.

От средних веков сохранилось много исторических сочинений, хроник. До нас дошло также немало произведений художественной литературы и сочинений ученых. До изобретения книгопечатания в середине XV в. Все документы были рукописными.

Развитие наук в средневековой Европе

Восточные государства значительно опережали Европу в экономическом и культурном развитии в течение эпохи раннего средневековья (VII-XI вв.) Если, например, Бируни переводил Птолемея, определял радиус Земли, размышлял о гелиоцентрической системе мира, то в Европе господствовали наивные представления о Земле как о плоской лепешке, накрытой хрустальным колпаком и опоясанной океаном.

Однако уже с X в. начинают развиваться экономические и культурные связи Европы и Востока. Большую роль в этом сыграли со второй половины XI в. знаменитые крестовые походы, доставившие европейцам новые сведения: экономические, технические и культурные.

Происходящее в Европе развитие ремесла и торговли способствовало оживлению экономики и культуры. Появляются первые университеты, сначала в Испании, где уже арабами был организован университет в Кордове, затем в Италии, Париже и Англии. Университет средневековой Европы существенно отличался от современного университета, однако до нашего времени сохранились ученые степени доктора и магистра, звания профессора и доцента, лекции как основная форма сообщения знаний, факультеты как подразделения университета.

Лекция (буквально - чтение) в средневековом университете по необходимости была основной формой сообщения знаний. Книг было мало, они были дороги, и поэтому чтение и комментирование богословских и научных трудов являлось важной формой информации.

Преподавание велось на латинском языке, равно как и богослужение в католических храмах. До XVIII в. латинский язык был международным научным языком, на нем писали Коперник, Ньютон и Ломоносов.

Другой предпосылкой будущего расцвета науки послужило развитие техники. Механические часы, очки, книгопечатание, производство бумаги сыграли огромную роль в развитии естествознания.

Основным фактором, определившим революционные изменения в развитии общества и науки, было то, что внутри феодального общества вызревали новые производительные силы, пришедшие в противоречие с феодальными производственными отношениями и потребовавшие как новых форм общественного бытия, так и новой науки. Пока же культивировавшаяся в университетах схоластическая наука базировалась на антинаучном по самой сути принципе - истина уже открыта в священном писании и в трудах богословских авторитетов (к которым причислялся и приспособленный к нуждам церковного мировоззрения Аристотель), и долг ученых - изучать и комментировать эту истину.

В этих условиях науке было трудно развиваться; свободная, самостоятельная мысль беспощадно подавлялась. Эта эпоха вошла в историю науки как «период застоя», как «темная ночь средневековья». Однако и в это время жили и работали люди, возвышавшиеся над общим уровнем, искавшие новых путей познания. Таким был, например, знаменитый монах Роджер Бэкон (1214-1294). Бэкон родился в Англии в графстве Сомерсет, учился в Оксфордском и Парижском университетах, в 1250 г. вступил в монашеский орден францисканцев. В Оксфорде он занимался научными исследованиями.

Независимость в мышлении навлекла на него обвинение в ереси, и он был заключен в тюрьму. Освобожденный папой Климентом IV, он уехал во Францию, но там вновь подвергся преследованиям и вышел из тюрьмы только глубоким стариком в 1288 г.

Бэкон не ограничивался указанием на большое значение опыта. Он неутомимо экспериментировал и сам производил химические, оптические, физические эксперименты и астрономические наблюдения.

Бэкон знал действие камер-обскуры, увеличивающее действие выпуклых линз, установил, что вогнутые зеркала фокусируют параллельные пучки в точку, лежащую между центром и вершиной зеркала, предвидел возможность построения оптических приборов. Он сделал шаг вперед в объяснении явления радуги, сравнивая ее цвета с радужными цветами при преломлении света в хрустале, в каплях росы, в водяных брызгах.

При этом он установил, что угол, образованный направлением падающего на водяные капли луча с лучом, направленным от радуги в глаз, составляет 42°.

В XIVв. начинается реакция. Усиливается со стороны церкви борьба с «ересью», вводится пытка. Было осуждено учение и сожжен труд Николая из Отрикура, который, следуя атомистам, утверждал, что в мире нет ничего, кроме сочетания и разделения атомов Он был вынужден отречься от своего учения. Церковь осудила также учение Вильгельма Оккама, который защищал возможность двух видов познания - научного и божественного откровения - и требовал свободы для научного познания. Тем не менее и в XIV в. жизнь не стояла на месте. Продолжается развитие техники, появляются башенные колесные часы в Париже, в Германии, в Москве. В 1440 г. Иоганн Гуттенберг (1400-1468) изобретает книгопечатание отдельными вырезными буквами. Наступала новая эпоха в развитии цивилизации и науки.

В 1519-1522 гг. экспедиция Фердинанда Магеллана совершила первое кругосветное путешествие, доказав экспериментально шарообразность Земли и по существу открыв ее как космическое тело. После Магеллана держаться устаревших средневековых представлений о Земле стало невозможно. Магеллан открыл путь новому пониманию Вселенной, и такое понимание было дано Николаем Коперником. Оно подготовлялось не одними географическими открытиями. Уже в XVв. были люди, провозгласившие новый подход к пониманию природы.

Начиная со второй половины XV столетия на историческую арену выходят великие художники итальянского Возрождения: Микеланджело, Леонардо да Винчи, Рафаэль и другие; религиозные реформаторы: Лютер и Кальвин; великие гуманисты: Томас Мор, Эразм Роттердамский, Франсуа Рабле и другие; отважные путешественники: Колумб, Васко да Гама, Магеллан и многие другие; ученые: Николай Кузанский, Тарталья, Кардано, Рамус, Коммандино, Телезий, Гвидо Убальди, Порта. Список имен можно было бы значительно расширить.

Леонардо да Винчи является предшественником Галилея, Декарта, Кеплера, Ньютона и других основателей современного естествознания. Он одним из первых начал борьбу со схоластическим методом, провозгласил основы нового метода и начал применять его к решению конкретных задач, в частности к изучению движения.

Леонардо живет в другое время, существенно отличное от времени Аристотеля. Он знает порох, наблюдал неоднократно полет снарядов и пуль, и число наблюдаемых движений, продолжающихся и после действия толкающей силы, у него больше, чем у Аристотеля. Поэтому он делает следующий шаг в понимании природы движения и фиксирует в природе наличие инерции и инерционного движения, приписывая его сохранению «природы насилия».

Механика Леонардо, Галилея и Ньютона обобщила новую практику артиллеристов, конструкторов оружия, кораблестроителей, мореплавателей.

Наблюдательность и острота физического мышления Леонардо позволили ему сделать интересные наблюдения и сформулировать ряд положений и задач. Так, он фиксирует важное свойство звуковых и водяных волн распространяться, не мешая друг другу (принцип суперпозиции).

Шифрованные записи Леонардо не вошли своевременно в жизнь науки, и его богатое научное наследие не смогло послужить делу научного прогресса. Но то, что Леонардо жил, работал, думал, имело огромное значение. Устои средневековой науки расшатывались, и деятельность Леонардо, художника, инженера, мыслителя, помогала сокрушать старое и создавать новое.

Наука на средневековом Востоке

Арабские ученые отличались любовью к математике. Усвоив знания древних греков и индусов, они вводят использование десятичной системы и нуля, квадратных и кубических корней. Здесь впервые правильно вычислили размеры Земли, составили самый точный календарь. Первым после начала н.э. измерением Земли мы обязаны халифу Аль-Мамуну: около 820 г. два арабских астронома Халид Ибн Малик и Али Ибн Иса по приказанию этого халифа измерили на равнине Сенжадлину одного градуса земной окружности.

Успешно развивались астрономия и астрология. Так, багдадский ученый-астроном Альбумаэор (IХ в.) описывает пары планеты Марс и комментирует этот факт уже как астролог, говоря, что воспламенения этих паров предвещают смерть царям и смену царств, ибо таковы действия влияния Марса. Интенсивно развивались химия и алхимия: арабы в результате поисков эликсира молодости и философского камня открыли спирт, скипидар, серную кислоту, изобрели пушки.

Сведения об уровне развития арабской медицины приводятся в трактате Ибн-Али Усейбии «Источник сведений о различных классах врачей». В нем помимо данных об уровне развития медицины того времени дан анализ развития медицины разных регионов Арабского Востока: Ирака, Персии, Индии, Египта, Ирака, Испании и Магриба. Приводятся сведения о 400 врачах и уровне их заслуг. Наибольшей известностью пользовался врач и философ Абу-Али Ибн Сина (Авиценна), который помимо изучения анатомии человека составил уникальные рецептурные справочники. Склонность к систематизации многочисленных научных наблюдений прослеживается и в филологии, и в биологии, и в географии.

Арабский Восток славился своими картографами: их топографические карты, составленные высококлассными рисовальщиками во время путешествий, отличались удивительной точностью. Удачный инструмент для упорядочения историко-географического материала был найден арабским географом и путешественником Х в. Шамс-ад-дином Абу Абдаллахом Мукалдаси в виде описания стран дифференцированно «по Климатам». Впоследствии Мухаммед Идриси тоже выделил «семь климатов» и описал присущие им страны.

В VIII – IX веках на арабский язык были переведены многие научные труды древнегреческих, иранских, индийских и других ученых. Особенно много переводов было сделано при Харуне ар-Рашиде и его сыне. В Багдаде тогда был основан «дом мудрости» - хранилище рукописей, где переводили и переписывали книги. По примеру Багдада в других больших городах были созданы «дома мудрости»; в них ученые получали книги, жилье и денежные средства.

Арабским математикам были известны труды Пифагора, Евклида и Архимеда, работы индийских астрономов и математиков. Они создали алгебру (от слова «алджебр» - счет), стали пользоваться индийскими цифрами. У арабов эти цифры потом заимствовали европейцы. До сих пор в Европе эти цифры называют арабскими.

В Багдаде и Дамаске действовали обсерватории. Пользуясь сложными инструментами, астрономы сумели приблизительно вычислить окружность Земли, описали положение видимых звезд на небе. Ученый Аль Бируни (973-1048) из Средней Азии написал множество ценных трудов по различным отраслям знания: географии, истории, астрономии и другим наукам. Он высказал гениальную догадку, что центром нашей Вселенной является Солнце, а Земля движется вокруг него.

Письменная история родилась у арабов вместе с исламом. Появились предания и сообщения о Мухаммеде, его биографии, сведения о том, как возник ислам. Историки прославляли завоевания арабов и в кратком виде излагали историю римских, византийских и иранских правителей.

В большом почете у арабов была география. Об этом говорит пословица: «Кто отправляется в путь ради науки, перед тем открываются двери рая». Географы не только изучали сообщения о других странах, но и стремились побывать в них, с риском для жизни совершали далекие путешествия. Арабские путешественники и купцы описали страны халифата, Индию, Китай, проникли далеко в глубь Африки и Восточной Европы. Они составили карты известных им стран и морей.

Успешно развивалась медицина. В Средней Азии жил великий ученый Ибн-Сина (980-1037), в Европе его называли Авиценна. Он был очень разносторонним мыслителем - философ, астроном, географ, медик, поэт. Ему принадлежит более ста научных трудов. На Востоке Ибн-Сину называли главой ученых. Особенно прославился Ибн-Сина как врач. В своем знаменитом труде по медицине он описал признаки многих болезней, которые до него не умели различать. Автор энциклопедии теоретической и клинической медицины, обобщивший взгляды и опыт греческих, римских индийских и среднеазиатских врачей «Канон врачебной науки». Много веков этот труд был для врачей обязательным руководством.

Значителен был вклад арабов в математическую науку. Живший в Х в. Абул-Вафа вывел теорему синусов сферической тригонометрии, вычислял таблицу синусов с интервалом в 15 , ввел отрезки, соответствующие секансу и косекансу.

Поэт, ученый Омар Хайям написал «Алгебру» - выдающееся сочинение, в котором содержалось систематическое исследование уравнений третьей степени. Он также успешно занимался проблемой иррациональных и действительных чисел. Ему принадлежит философский трактат «О всеобщности бытия». В 1079 г. он ввел календарь, более точный, чем современный григорианский.

Выдающимся ученым Египта был Ибн-аль-Хайсам, математик и физик, автор знаменитых трудов по оптике.

Больших успехов достигла медицина - она развивалась более успешно, чем в Европе или на Дальнем Востоке. Абу Бакр Мухаммед ар-Разщ известный багдадский хирург, дал классическое описание оспы и кори, применял оспопрививание. Сирийская семья Бахтишо дала семь поколений знаменитых врачей.

Развивалась и историческая мысль. Если в VII-VIII вв. на арабском языке еще не было написано собственно исторических сочинений и существовало просто множество преданий о Мухаммеде, походах и завоеваниях арабов, то в IХ в. составляются крупные труды по истории. Ведущими представителями исторической науки были ал-Белазури, писавший об арабских завоеваниях, аль-Накуби, ааг-Табара и ал-Масуди, авторы трудов по всеобщей истории. Именно история останется той фактически единственной отраслью научного знания, которая будет развиваться в XIII – XV вв. при господстве фанатически настроенного мусульманского духовенства, когда на Арабском Востоке не развивались ни точные науки, ни математика. Наиболее известными историками XIV – XV вв. были египтянин Макризи, составивший историю коптов, и Ибy - Халдун, первый из арабских историков попытавшийся создать теорию истории. В качестве главного фактора, определяющего исторический процесс, он выделил природные условия страны.

Арабская словесность также пользовалась вниманием ученых: на рубеже VIII – IX вв. была составлена арабская грамматика, которая легла в основу всех последующих грамматик.

К Х в. во многих городах появились средние и высшие мусульманские школы - медресе. В Х - ХIII вв. в Европе сnала известна по арабским сочинениям знаковая десятичная система для записи цифр, получившая название «арабские цифры».

Индийские математики впервые в истории мировой математической науки ввели десятичную позиционную систему счисления и стали употреблять нуль для обозначения отсутствия единиц данного разряда.

Современное начертание цифр: 1, 2, 3, 4, 5, 6, 7, 8, 9

Не арабского как думали раньше, а индийского происхождения. Оказывается арабы пользовались позиционной десятичной системой счисления, которую они позаимствовали у индийцев, а затем постепенно перенесли в Европу.

Индийские математики создали алгебру, свободно оперировали не только с дробями, но и иррациональными, но и отрицательными числами.

Индийский астроном и математик Ариабхата дал приближенное вычисление числа с точностью до четвертого знака: =3,1416. В алгебре дал правило извлечения квадратных корней из чисел, рассматривал задачи на составление и решение в целых числах неопределенных уравнений. Занимался суммированием кубов натуральных чисел и т.д.

Знаменитый индийский математик и астроном Бхаскара-Акария родился в 1114 г. Решал в целых числах неопределенные уравнения вида: , дал трактовку деления на нуль и некоторые вопросы вычислительной геометрии.

Великим достижение китайской математики стали результаты вычислений, сделанные в V в. отцом и сыном Цзу Чунчжи и Цзу Гэньчжи. С помощью не известных нам методов они получили точное число до десятого знака после запятой. Это достижение было зафиксировано в летописи, сами же труды бесследно исчезли.

Китайцы открыли способ измерения физических тел на расстоянии, пришли к выводу, что «земля имеет форму, а небо лишено тела». Впервые в истории календаря в Китае использовали прецессию, знали около полугора тысяч звезд. Разработали диагностику заболеваний: исходя из учения о темном и светлом началах, объяснили связь между физиологией, патологией и заболеванием, открыли методы биологического контроля за растениями.

В V в. был разработан процесс сплавления металлов, при котором чугун и ковкая сталь плавились до получения новой стали.

В III в. впервые в мировой практике китайцы научились отливать металлические стремена совершенной формы. На запад их принесли с собой воины племени жуань-жуань, которое стало известно под именем аваров. Появился навигационный «кибернетический прибор», работающий по принципу обратной связи. Его называли «повозкой, указывающей на юг». Это устройство не имело ничего общего с магнитным компасом и представляло собой именно повозку, увенчанную нефритовой фигуркой мудреца. Куда бы ни поворачивалась повозка, даже если она ездила по кругу, вытянутая рука мудреца всегда показывала на юг.

Одним из наиболее удивительных предметов, созданных китайскими мастерами, были «волшебные зеркала». Они существовали уже в V в. Выпуклая отражающая сторона зеркала отливалась из светлой бронзы и полировалась до блеска. Оборотная сторона покрывалась литыми бронзовыми рисунками и иероглифами. Под яркими лучами солнца через отражающую поверхность можно было смотреть насквозь и видеть узоры обратной стороны, словно бронза становилась прозрачной. Тайну разгадали только в ХХ в., когда изучению доступна стала микроструктура металлических поверхностей.

В VI в. появились в Китае первые спички. Считается, что своим появлением они обязаны осаде императорского дворца в 577 г. в северном царстве Ци.

Великие открытия Средневекового Китая были немыслимы без развития научных знаний. Усилиями математиков были созданы основы китайской алгебры. Благодаря изобретениям буддийского монаха И Сина (683-727) стало возможно измерить скорость движения небесных тел. Развитию медицины способствовало создание в Танскую эпоху медицинского управления, с помощью которого было положено начало преподаванию различных специальностей медицинской практики. Расцвет географии связан с появлением записей о горных и речных системах Китая и Западного края. Была создана «Карта китайцев и варваров, проживающих в пределах четырех морей».

Выдающимися открытиями были книгопечатание, порох и компас. В IХ в. с резных досок была напечатана первая книга. В середине ХI в. появился подвижной глиняный наборный иероглифический шрифт, а примерно в ХII в. - и многокрасочная печать. Эти достижения привели к созданию первых крупных библиотек и газетного дела. Опыты китайских алхимиков завершились в Х в. изобретением пороха. В ХII в. китайские мореплаватели первыми в мире стали использовать компас.

Общекультурное значение имело также изобретение бумажных денег - ассигнаций. Они появились в стране в конце VIII в. и назывались тогда «летающими деньгами», так как ветер легко уносил их из рук.

В Х в. возникло понятие вакцинации, когда стала практиковаться прививка против оспы.

Китаю принадлежало и первенство в изобретении механических часов. Их сделал И Син, а усовершенствовал в 976 г. Чжан Сисюнь. Их изобретения стали ступенями на пути создания «Космической машины» - величайших китайских часов эпохи Средневековья, построенных Су Супом в 1092 г. Они представляли собой астрономическую часовую башню 10-метровой высоты. Принцип часов Су Супа лег в основу первых механических часов Европы.

Чудом инженерной техники своего времени стал первый арочный мост протяженностью 37,5 м, называемый китайцами и поныне Великим каменным мостом. Он был построен в 610 г. Ли Чунем через реку Цзяо в предгорьях Шаньси на окраине Великой китайской равнины. Самый же известный средневековый пологий арочный мост Китая получил имя Марко Поло потому, что был им подробно описан во время путешествия по стране и назван «самым замечательным в мире». Этот мост был возведен через реку Юядин в 1189 г. к западу от Пекина. Действующий до сих пор, он состоит из 11 арок, длина пролета каждой составляет 19 м, а общая протяженность - 213 м.

Еще одним китайским чудом литейного и инженерного искусства является восьмиугольная колонна - так называемая «Небесная ось». На ее сооружение в 695 г. пошло 1325 т чугуна. Колонна (32 м в высоту и 3,бм в диаметре) покоилась на фундаменте окружностью 51 м и высотой 6 м. На ее вершине был расположен «облачный свод» с четырьмя бронзовыми драконами (каждый высотой 3,6 м), поддерживавшими позолоченную жемчужину.

Самым же знаменитым научным открытием эпохи Юань был календарь, в котором длительность года составляла 365, 2425 суток, что лишь на 26 секунд расходилось с тем временем, в течение которого Земля совершает один полный оборот вокруг Солнца. Это совпадает с действующим в настоящее время григорианским календарем, который появился на 300 лет позже.

В империи Мин была возрождена традиционная система образования, однако она не смогла достичь размаха Сунского времени. В обеих минских столицах, Пекине и Нанкине, были открыты высшие государственные школы, в которых обучали военным наукам, медицине и даже магии. Восстанавливались местные школы-академии, областные, окружные и уездные училища. Указом 1375 г. предписывалось создать сеть начальных деревенских (общинных) школ. Наряду с государственными открывались частные учебные заведения. Все типы школ находились под контролем администрации.

Развитие научных знаний отразилось в практике создания трудов энциклопедического характера, в которых обобщались знания по сельскому хозяйству, технике ремесленного производства, фармакологии. Особое развитие в эпоху Мин получила история. В начале ХV в. был издан «Великий свод годов правления Юн-лэ». Эта энциклопедия состояла из 11095 томов и 22877 глав и содержала разделы по истории, географии, медицине, технике и искусству.

Расширению географического кругозора способствовали описания земель, сделанные участниками грандиозной экспедиции под руководством Чжэн Хэ, и составленная входе нее «Карта морских плаваний Чжэн Хэ». С 1405 по 1435 гг. в страны Юго-Восточной Азии, Индию, Аравию и Африку было совершено семь экспедиций китайского флота под руководством Чжэн Хэ, который в разных походах вел от 48 до 62 только крупных кораблей. Кроме культурнопознавательных экспедиции имели торговые и дипломатические цели.

Выдающейся фигурой эпохи Хэйань в Японии был буддийский монах, писатель, каллиграф, просветитель Кукай, известный также под именем Кобо-дайси. Ему приписывают создание первой японской слоговой азбуки хираганы на основе китайского курсивного иероглифического письма. Позже звуки той же азбуки стали записываться знаками другой системы. Так родилась катакана.

Появляется особый раздел графического искусства красивого письма - каллиграфия. Ее выдающимися представителями наряду с Кукаем были Косэй (971-1027), Цофу (925-996) и Сари (933-988). Образцом им обычно служили китайские иероглифы. Однако их кисть всегда рождала самобытную красоту.

В начале IХ в. усилиями Кукая была открыта и первая школа для детей простых горожан и чиновников низкого ранга. Для высшей аристократии был создан столичный университет, имевший четыре факультета: ведущий историко-филологический, юридический, исторический и математический. Обучение велось по китайскому образцу и включало овладение шестью конфуцианским искусствами: ритуалом, музыкой, литературой, математикой, стрельбой из лука и управлением колесницей. Собственные школы имели некоторые знатные аристократические семьи, однако эталоном для них оставалось университетское образование.

Храмы были настоящими исследовательскими центрами древних майя. Основы математики, астрономии, письменности они переняли у ольмеков. В то время эти науки были тесно связаны между собой. Наблюдения за звездным небом фиксировались письмом и связывались в последовательности и периодичности математикой. Впервые в мире майя разработали точную систему нумерации и применили идею учета местоположения при записи больших чисел. На тысячи лет раньше Европы они оперировали понятием нуля и выражали бесконечно большие величины.

Мысль о том, что все живое (в том числе звезды, светила, люди) подчинено числовым периодичным законам гармонии, необходимости и стабильности, привела к появлению астрологии. Зодиак майя представлял собой иллюстрацию модели космоса, привязанную к реинкарнационному циклу человека. В нем было 13 главных созвездий.

Майя определили продолжительность года (365,242129 дня) и период обращения Луны вокруг Земли (29,53059 дня), с необычной точностью, даже для нашего времени, предсказывали затмение Луны и фазы Марса и т. п. Остается загадкой, как смогли они получить такие точные цифры столь примитивными средствами: вертикально поставленной палкой и нитками для проведения визуальных линий! Тем не менее, майя имели самую точную среди древних цивилизаций систему летоисчисления.

Майя также имели весьма обширные знания по минералогии и сейсмологии, географии и геодезии, метеорологии и медицине. Высокого уровня достигли диагностика, гомеопатия, искусство массажа и хирургическая практика. Проводились сложные операции по удалению опухолей, соскабливанию катаракты с использованием наркотических средств в качестве наркоза.

Майя развили, обогатили и усложнили ольмекское иероглифическое письмо новыми элементами. В большинстве своем их иероглифы имеют строго определенное фонетическое значение и являются слогами. Долгое время они не поддавались расшифровке, и только в 1959 г. ленинградский ученый Ю.В. Кнорозов впервые их прочитал. Это позволяло ознакомиться с содержанием книг майя. К сожалению, до нас дошло всего три майяских манускрипта - многое было сожжено испанскими завоевателями в ХVI в.

Немногочисленные сохранившиеся книги майя условно называют кодексами и различают по месту хранения: Парижский, Дрезденский, Мадридский. Кроме них еще имеется несколько рукописей, написанных латиницей в первые годы завоевания Америки европейцами. Это «Пополь-Вух» и «Чилам-Балам». «Пополь-Вух» состоит их трех главных частей: космогонической, мифологической (о двух братьях-близнецах Хун-Ахпу и Шбаланке и их путешествии в преисподнюю - Шибальбу) и антропогонической (о создании прародителей человечества). Текст передает религиозные, философские и эстетические воззрения майя.

Среди инков были хорошие математики, астрономы, инженеры и врачи. Основой инкской науки была математика. Она базировалась на десятеричной системе и положила начало развитию статистики.

Широкое применение нашла математика в астрономии. По всей территории Перу были размещены обсерватории, где определялись дни солнцестояния и равноденствия, наблюдали за Солнцем, Луной, Венерой, Сатурном, Марсом, Меркурием, созвездиями Плеяд, Южного Креста и т.д. Солнечный год инков делился на двенадцать месяцев по тридцать дней каждый плюс один добавочный месяц из пяти дней.

В Тауантинсуйу были свои географы и картографы, делавшие прекрасные рельефные карты, а также историки.

Но наиболее развитой наукой в государстве признана медицина. Болезни считались следствием греха, поэтому врачебной практикой занимались жрецы и знахари. Они лечили магическими приемами, постом, кровопусканиями. Промываниями желудка и кишечника, а также травами. В тяжелых случаях прибегали к операциям (трепанация черепа, ампутирование конечностей) и т.д. Применяли особый способ обработки ран - с помощью муравьев, а также обезболивающие средства, например коку, ценившаяся очень высоко. Свидетельством эффективности инкской медицины служило долголетие жителей империи - 90-150 лет.

Однако несмотря на отлаженную государственную систему и высокий уровень достижений великой державы Солнца, она просуществовала недолго и ее настигла участь всех цивилизаций доколумбовой Америки ХVI в. При встрече с европейцами она гибнет, сломленная натиском непонятного для инков мира алчности и вероломства.

Особенности средневековой науки

Важнейшей особенностью средневековой науки является особая роль христианского вероучения и христианской церкви. Церковь оказывала огромное влияние на формирование религиозного мировоззрения, распространяя идеи христианства, проповедуя любовь, всепрощение и всем понятные нормы социального общежития, веру во всеобщее счастье, равенство, добро. В средние века картина мира основывалась главным образом на образах и толкованиях Библии. Исходным пунктом объяснения мира было полное, безусловное противопоставление Бога и природы, Неба и Земли, души и тела. В сознании человека эпохи средневековья мир виделся как арена противоборства добра и зла, как некая иерархическая система, в которой нашлось место и Богу, и ангелам, и людям, и потусторонним силам тьмы. При этом сознание человека эпохи средневековья было глубоко магическим. Это была культура молитв, сказок, мифов, волшебных заклятий.

Средневековая культура раннего средневековья получила религиозную окраску. Пришли в упадок математические и естественные научные дисциплины. Обучение было полностью монополизировано церковью. Она утверждала школьную программу и отбирала контингент учащихся.

В средние века не произошло подлинной дифференциации научного знания. Многие ученые занимались разными науками. Ученый Аль Бируни из Средней Азии написал множество ценных трудов по различным отраслям знания: география, история, астрономия и другим наукам. Ученый Ибн Сина был очень разносторонним мыслителем – философ, астроном, географ, медик, поэт. Ему принадлежат более ста научных трудов.

В средние века процветали такие своеобразные науки, как астрология и алхимия. Астрологи утверждали, будто бы по звездам можно определять будущее. С ними советовались короли, полководцы и путешественники, прежде чем что–либо предпринять. Алхимики были заняты поисками «волшебного камня», с помощью которого можно было бы превратить любой металл в золото. Как ни фантастичны были цели алхимиков и астрологов, их наблюдения и опыты способствовали накоплению знаний по астрономии и химии. Алхимики, например, открыли и усовершенствовали способы получения красок, металлических сплавов, лекарственных веществ, создали многие химические приборы и приспособления для проведения опытов.

Заключение

В средние века человечество сделало крупный шаг вперед по сравнению с древностью в развитии хозяйства, культуры и морали.

Многие из ныне существующих городов появились в средние века. Это дало огромный толчок развитию хозяйства и культуры.

Со времен средних веков люди стали пользоваться фарфоровой посудой, зеркалами, вилками, мылом, очками, пуговицами, механическими часами. Мускулы человека в некоторых видах работ были вытеснены водяным двигателем. Появились доменные печи, а металл стали обрабатывать на сверлильных, токарных, шлифовальных станках. В производстве тканей начали пользоваться самопрялкой с ножным управлением и горизонтальным ткацким станком. Для развития военного дела решающее значение имело изобретение пороха и огнестрельного оружия.

В мореплавании люди применили компас и другие приборы. Они научились строить более совершенные корабли. Смелые путешественники обследовали значительную часть суши, морей и океанов, открыли Америку, обогнули с юга Африку. Человек окончательно убедился в шарообразности Земли.

Литература

  1. Агибалова Е.В., Донской Г.М. «История средних веков»: Учеб. Для 6 кл. общеобразоват. учреждений. – 5-е изд. – М.: Просвещение, 1999
  2. «История арифметики». Пособие для учителей. Государственное учебно – педагогическое издательство министерства просвещения РСФСР, Москва 1959.
  3. Культурология. История мировой культуры: Учебник для вузов/ Под ред. проф. А.Н.Марковой. – 2-е изд., перераб. и доп. – М.:ЮНИТИ, 2002.
  4. Культурология для технических вузов. «Учебник для технических вузов». Ростов н/Д: «Феникс», 2001.
  5. Энциклопедический словарь юного математика/ Сост. А.П.Савин. – М.: Педагогика, 1989.

Похожие материалы

Учёные Средневековья .

Фома Аквинский

Средневековый философ и богослов. Жил примерно в период от 1223- 1274 гг. Родился в итальянской дворянской семье. Несмотря на протесты родителей, стал монахом – доминиканцем и учился у одного из известных теологов своего времени в Кёльне. Затем, он преподавал в Париже, и даже какое-то время находился при папском дворе. Фома с раннего детства интересовался книгами и размышлял о Боге.

Он был тихим, полным, молчаливым и на редкость серьезным мальчиком, постоянно искал ответы на вопросы о существовании Бога. Фома любил книги и, наверное, предпочел бы их всем сокровищам на свете. Однажды его спросили, за что он благодарен Богу больше всего, Фома ответил: «Я понял каждую страницу, которую читал».

Фома Аквинский стал основателем движения, которое получило название – схоластика. Оно опиралось на авторитет Аристотеля, а так же ранних отцов церкви. Именно благодаря Фоме Аквинскому работы Аристотеля были признаны в христианской Западной Европе. Основные его мысли изложены в работе «Сумма теологии». Фома Аквинский понимал человека как совокупность тела и души. Он считал душу бессмертной. Душа в понимании философа – это некая духовная основа личности. Личностью же является весь человек.

Фома Аквинский считал, что каждая душа принадлежит к своему телу в строгом соответствии, и их единство формирует саму личность. В своих трудах, он развивает мысль о том, что человек такое творение, которое обладает способностью к познанию, а так же наделен свободной волей. А добродетели проявляются в человеке, если развились так называемые духовные способности, чем являются интеллект и воля. Он выдвигает пять доказательств существования Бога и говорил о том, что научные истины и догматы веры противоречить друг другу не могут, потому они гармонично связанны друг с другом. Он рассуждал о мудрости, как о стремлении постигать Бога, а науку рассматривал как средство, которое этому способствует. После смерти ему был присвоен титул «ангельский доктор», а через какое-то время Фомупричислили к лику святых.

Роджер Бэкон

Роджер Бэкон жил в период между 1214 -1294 гг. Он был философом, естествоиспытателем, преподавал в Оксфорде и был монахом-францисканцем. Отличался большими энциклопедическими познаниями в разных сферах науки, написал несколько трактатов среди них: «Большое сочинение», «Малое сочинение», «Третье сочинение» и «Компендий философии».

Роджер обращал большое внимание «опытной науке» и считал, что именно на ней основывается любая другая наука. Он стремился формировать так называемую энциклопедию наук, в рамках которой хотел объединить философию математику, физику и этику.

Он доказывал, что человек сам по себе всегда стремится к абсолютной истине, но ему открывается только та часть, которую Бог пожелает ему открыть. Был противником диктата схоластической философии, которая в то время была ведущей. Бэкон говорил о том, что существует три типа познания: авторитет, опыт и рассуждение. Опыт он делил на два типа - внутренний и внешний.

Последователем идей Роджера Бэкона можно считать Леонардо да Винчи, который так же в своих трудах ориентировался на практический опыт и с недоверием относился к отвлеченной науке. Идеи Бэкона не находили поддержки, и более того учение философа было осуждено орденом францисканцев, но несмотря на это, именно его понятие об «опытной науки» и достижения в области естествознания дали толчок к развитию философии Нового времени. Роджер Бэкон выдвинул немало идей и технических мыслей (например,идеи о создании телескова и летательных аппаратов), которые во многом опережали свою эпоху..

Юлия Шерстюк - лингвист, политолог. Москва.

В Европе в эпоху Средневековья, которая приходится на промежуток между пятым и семнадцатым веком, наиболее важными считались такие науки как философия, богословие, математика и механика, поэтому наиболее знаменитыми учёными того времени считаются люди, которые внесли большой вклад в развитие именно этих областей научного знания.

Николай Коперник

Польский учёный, который известнее каждому современному человеку тем, что обосновал теорию устройства мира, по которой все планеты движутся вокруг Солнца. Кроме этого, он сделал другие важные открытия:

  • написал свой автопортрет;
  • написал труд «О вращениях небесных сфер»;
  • сделал несколько важных открытий в медицине и успешно лечил своих современников.

Галилео Галиллей

Учёный-физик и астроном, который продолжил дело Николая Коперника и на основе его трудов начал исследовать перемещение тел на самой Земле. Он построил телескоп, описал принцип маятника и сделал множество открытий в физике, которыми пользуются современные учёные.

Роджер Бэкон

Также он известен как Удивительный доктор, поскольку получил степень доктора философии, несмотря на тюремное заключение и критику авторитетных учёных – философов. Бэкон совершил множество открытий в различных областях науки:

  • занимался теорией увеличительных стёкол и перспективой;
  • оспаривал главенство схоластической философии;
  • исследовал состав металлов и их пользу для медицины.

Уильям Оккам

Он был монахом францисканского ордена и написал огромное количество трудов по философии, став родоначальником современной науки – эпистемологии. Эта область философского знания пользуется принципом, который именуется «Бритва Оккама» и гласит: «Не стоит умножать сущее без необходимости».

Леонардо из Пизы

Более известен он как Фибоначчи был крупным математиком эпохи Средневековья. Он первым стал использовать десятичную систему исчисления при решении задач, а также записывал свои вычисления арабскими цифрами, которые стали привычными для большинства современных людей. В своих трудах он оставил множество загадок, над которыми до сих пор «ломают голову» математики всего мира.

Николай Коперник - польский астроном. Сделал вывод о том, что Земля вращается вокруг Солнца и вокруг своей оси.

Джорджано Бруно - итальянский астроном.Его научные исследования позволили сделать вывод о том, что вселенная бесконечна.

Галилео Галилей - изобретатель телескопа, исследовал законы падения тел, открыл спутники Юпитера.

Исаак Ньютон - создал первый зеркальный телескоп, открыл закон всемирного тяготения, законы распространения света; разработал теорию, доказывающую, что природа подчиняется законам механики.

Френсис Бекон предложил опытный метод изучения явлений природы.