Si les logarithmes ont des bases différentes. Calcul de logarithmes, exemples, solutions

  • 21.10.2019

L'objectif de cet article est logarithme. Ici, nous donnerons une définition d'un logarithme, montrerons la notation acceptée, donnerons des exemples de logarithmes et parlerons des logarithmes naturels et décimaux. Après cela, nous considérerons l'identité logarithmique de base.

Navigation dans les pages.

Définition du logarithme

Le concept de logarithme surgit lors de la résolution d'un problème dans un certain sens inverse, lorsque vous devez trouver un exposant à partir d'une valeur d'exposant connue et d'une base connue.

Mais assez de préfaces, il est temps de répondre à la question « qu’est-ce qu’un logarithme » ? Donnons la définition correspondante.

Définition.

Logarithme de b en base a, où a>0, a≠1 et b>0 est l'exposant auquel vous devez augmenter le nombre a pour obtenir b en conséquence.

À ce stade, notons que le mot « logarithme » devrait immédiatement soulever deux questions complémentaires : « quel nombre » et « sur quelle base ». En d’autres termes, il n’existe tout simplement pas de logarithme, mais seulement le logarithme d’un nombre par rapport à une base.

Entrons tout de suite notation logarithmique: le logarithme d'un nombre b en base a est généralement noté log a b. Le logarithme d'un nombre b en base e et le logarithme en base 10 ont respectivement leurs propres désignations spéciales lnb et logb, c'est-à-dire qu'ils n'écrivent pas log e b, mais lnb, et non log 10 b, mais lgb.

On peut maintenant donner : .
Et les dossiers cela n'a aucun sens, puisque dans le premier d'entre eux il y a un nombre négatif sous le signe du logarithme, dans le second il y a un nombre négatif en base, et dans le troisième il y a un nombre négatif sous le signe du logarithme et une unité dans la base.

Parlons maintenant de règles de lecture des logarithmes. Log a b se lit comme « le logarithme de b en base a ». Par exemple, log 2 3 est le logarithme de trois en base 2 et le logarithme de deux virgule deux tiers en base racine carrée de cinq. Le logarithme en base e s'appelle un algorithme naturel, et la notation lnb se lit "logarithme naturel de b". Par exemple, ln7 est le logarithme népérien de sept, et nous le lirons comme le logarithme népérien de pi. Le logarithme en base 10 a également un nom spécial - logarithme décimal, et lgb se lit comme "logarithme décimal de b". Par exemple, lg1 est le logarithme décimal de un et lg2,75 est le logarithme décimal de deux virgule sept cinq centièmes.

Il convient de s'attarder séparément sur les conditions a>0, a≠1 et b>0, sous lesquelles la définition du logarithme est donnée. Expliquons d'où viennent ces restrictions. Une égalité de la forme appelée , qui découle directement de la définition du logarithme donnée ci-dessus, nous aidera à y parvenir.

Commençons par a≠1. Puisque un à n’importe quelle puissance est égal à un, l’égalité ne peut être vraie que lorsque b=1, mais log 1 1 peut être n’importe quel nombre réel. Pour éviter cette ambiguïté, a≠1 est supposé.

Justifions l’opportunité de la condition a>0. Avec a=0, par définition d'un logarithme, on aurait l'égalité, ce qui n'est possible qu'avec b=0. Mais alors log 0 0 peut être n'importe quel nombre réel non nul, puisque zéro à toute puissance non nulle est zéro. La condition a≠0 permet d’éviter cette ambiguïté. Et quand un<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

Enfin, la condition b>0 découle de l'inégalité a>0, puisque , et la valeur d'une puissance de base positive a est toujours positive.

Pour conclure ce point, disons que la définition énoncée du logarithme permet d'indiquer immédiatement la valeur du logarithme lorsque le nombre sous le signe du logarithme est une certaine puissance de la base. En effet, la définition d'un logarithme permet d'affirmer que si b=a p, alors le logarithme du nombre b en base a est égal à p. Autrement dit, le journal d'égalité a a p = p est vrai. Par exemple, nous savons que 2 3 =8, alors log 2 8=3. Nous en parlerons davantage dans l'article.

Expressions logarithmiques, résolution d'exemples. Dans cet article, nous examinerons les problèmes liés à la résolution de logarithmes. Les tâches posent la question de trouver le sens d'une expression. Il convient de noter que le concept de logarithme est utilisé dans de nombreuses tâches et qu’il est extrêmement important d’en comprendre la signification. Quant à l'examen d'État unifié, le logarithme est utilisé lors de la résolution d'équations, dans des problèmes appliqués, ainsi que dans des tâches liées à l'étude des fonctions.

Donnons des exemples pour comprendre le sens même du logarithme :


Identité logarithmique de base :

Propriétés des logarithmes qu'il faut toujours retenir :

*Le logarithme du produit est égal à la somme des logarithmes des facteurs.

* * *

*Le logarithme d'un quotient (fraction) est égal à la différence entre les logarithmes des facteurs.

* * *

*Le logarithme d'un exposant est égal au produit de l'exposant par le logarithme de sa base.

* * *

*Transition vers une nouvelle fondation

* * *

Plus de propriétés :

* * *

Le calcul des logarithmes est étroitement lié à l'utilisation des propriétés des exposants.

Citons-en quelques-uns :

L'essence de cette propriété est que lorsque le numérateur est transféré au dénominateur et vice versa, le signe de l'exposant change à l'opposé. Par exemple:

Un corollaire de cette propriété :

* * *

Lorsqu'on élève une puissance à une puissance, la base reste la même, mais les exposants sont multipliés.

* * *

Comme vous l’avez vu, le concept de logarithme en lui-même est simple. L'essentiel est que vous ayez besoin d'une bonne pratique, qui vous confère une certaine compétence. Bien entendu, la connaissance des formules est requise. Si les compétences nécessaires à la conversion de logarithmes élémentaires n'ont pas été développées, vous pouvez facilement commettre une erreur lors de la résolution de tâches simples.

Entraînez-vous, résolvez d'abord les exemples les plus simples du cours de mathématiques, puis passez aux exemples plus complexes. À l'avenir, je montrerai certainement comment les logarithmes « effrayants » sont résolus : ils n'apparaîtront pas à l'examen d'État unifié, mais ils sont intéressants, ne les manquez pas !

C'est tout! Bonne chance à toi!

Cordialement, Alexandre Krutitskikh

P.S : je vous serais reconnaissant de me parler du site sur les réseaux sociaux.

    Commençons avec propriétés du logarithme de un. Sa formulation est la suivante : le logarithme de l'unité est égal à zéro, c'est-à-dire enregistrer un 1=0 pour tout a>0, a≠1. La preuve n'est pas difficile : puisque a 0 =1 pour tout a satisfaisant les conditions ci-dessus a>0 et a≠1, alors l'égalité log a 1=0 à prouver découle immédiatement de la définition du logarithme.

    Donnons des exemples d'application de la propriété considérée : log 3 1=0, log1=0 et .

    Passons à la propriété suivante : le logarithme d'un nombre égal à la base est égal à un, c'est, log a a = 1 pour une>0, une≠1. En effet, puisque a 1 =a pour tout a, alors par définition du logarithme log a a=1.

    Des exemples d'utilisation de cette propriété des logarithmes sont les égalités log 5 5=1, log 5,6 5,6 et lne=1.

    Par exemple, log 2 2 7 =7, log10 -4 =-4 et .

    Logarithme du produit de deux nombres positifs x et y sont égaux au produit des logarithmes de ces nombres : log a (x y)=log a x+log a y, une>0 , une≠1 . Démontrons la propriété du logarithme d'un produit. En raison des propriétés du diplôme un journal a x+log a y =un journal a x ·un journal a y, et puisque par l'identité logarithmique principale un log a x =x et un log a y =y, alors un log a x ·a log a y =x·y. Ainsi, un log a x+log a y =x·y, d'où, par la définition d'un logarithme, découle l'égalité prouvée.

    Montrons des exemples d'utilisation de la propriété du logarithme d'un produit : log 5 (2 3)=log 5 2+log 5 3 et .

    La propriété du logarithme d'un produit peut être généralisée au produit d'un nombre fini n de nombres positifs x 1 , x 2 , …, x n comme log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n . Cette égalité peut être prouvée sans problème.

    Par exemple, le logarithme naturel du produit peut être remplacé par la somme de trois logarithmes naturels des nombres 4, e et.

    Logarithme du quotient de deux nombres positifs x et y sont égaux à la différence entre les logarithmes de ces nombres. La propriété du logarithme d'un quotient correspond à une formule de la forme , où a>0, a≠1, x et y sont des nombres positifs. La validité de cette formule est prouvée ainsi que celle du logarithme d'un produit : puisque , puis par définition d'un logarithme.

    Voici un exemple d'utilisation de cette propriété du logarithme : .

    Passons à propriété du logarithme de la puissance. Le logarithme d'un degré est égal au produit de l'exposant et du logarithme du module de la base de ce degré. Écrivons cette propriété du logarithme d'une puissance sous forme de formule : log a b p =p·log a |b|, où a>0, a≠1, b et p sont des nombres tels que le degré b p a du sens et b p >0.

    Nous prouvons d’abord cette propriété pour b positif. L'identité logarithmique de base nous permet de représenter le nombre b comme un log a b , alors b p =(a log a b) p , et l'expression résultante, en raison de la propriété de puissance, est égale à a p·log a b . On arrive donc à l'égalité b p =a p·log a b, d'où, par la définition d'un logarithme, on conclut que log a b p =p·log a b.

    Il reste à prouver cette propriété pour b négatif. Notons ici que l'expression log a b p pour b négatif n'a de sens que pour les exposants pairs p (puisque la valeur du degré b p doit être supérieure à zéro, sinon le logarithme n'aura pas de sens), et dans ce cas b p =|b| p. Alors bp =|b| p =(a log a |b|) p =a p·log a |b|, d'où log a b p =p·log a |b| .

    Par exemple, et ln(-3) 4 =4·ln|-3|=4·ln3 .

    Il découle de la propriété précédente propriété du logarithme à partir de la racine: le logarithme de la nième racine est égal au produit de la fraction 1/n par le logarithme de l'expression radicale, soit , où a>0, a≠1, n est un nombre naturel supérieur à un, b>0.

    La preuve est basée sur l'égalité (voir), qui est valable pour tout b positif, et la propriété du logarithme de la puissance : .

    Voici un exemple d'utilisation de cette propriété : .

    Maintenant, prouvons formule pour passer à une nouvelle base de logarithme gentil . Pour ce faire, il suffit de prouver la validité de l'égalité log c b=log a b·log c a. L'identité logarithmique de base nous permet de représenter le nombre b comme un log a b , alors log c b=log c a log a b . Il reste à utiliser la propriété du logarithme du degré : journal c a journal a b = journal a b journal c a. Cela prouve l'égalité log c b=log a b·log c a, ce qui signifie que la formule de transition vers une nouvelle base du logarithme a également été prouvée.

    Montrons quelques exemples d'utilisation de cette propriété des logarithmes : et .

    La formule de passage à une nouvelle base vous permet de passer au travail avec des logarithmes ayant une base « pratique ». Par exemple, il peut être utilisé pour accéder à des logarithmes naturels ou décimaux afin de pouvoir calculer la valeur d'un logarithme à partir d'un tableau de logarithmes. La formule de passage à une nouvelle base de logarithme permet également, dans certains cas, de retrouver la valeur d'un logarithme donné lorsque les valeurs de certains logarithmes avec d'autres bases sont connues.

    Un cas particulier de formule de transition vers une nouvelle base de logarithme pour c=b de la forme est souvent utilisé . Cela montre que log a b et log b a – . Par exemple, .

    La formule est également souvent utilisée , ce qui est pratique pour trouver des valeurs de logarithme. Pour confirmer nos propos, nous montrerons comment il peut être utilisé pour calculer la valeur d'un logarithme de la forme . Nous avons . Pour prouver la formule il suffit d'utiliser la formule de passage à une nouvelle base du logarithme a : .

    Reste à prouver les propriétés de comparaison des logarithmes.

    Montrons que pour tout nombre positif b 1 et b 2, b 1 log a b 2 , et pour a>1 – l'inégalité log a b 1

    Enfin, il reste à prouver la dernière des propriétés répertoriées des logarithmes. Limitons-nous à la preuve de sa première partie, c'est-à-dire que nous prouverons que si a 1 >1, a 2 >1 et a 1 1 est vrai log a 1 b>log a 2 b . Les autres affirmations de cette propriété des logarithmes sont prouvées selon un principe similaire.

    Utilisons la méthode inverse. Supposons que pour un 1 >1, un 2 >1 et un 1 1 est vrai log a 1 b≤log a 2 b . Sur la base des propriétés des logarithmes, ces inégalités peuvent être réécrites comme Et respectivement, et il en résulte que log b a 1 ≤log b a 2 et log b a 1 ≥log b a 2, respectivement. Alors, selon les propriétés des puissances de mêmes bases, les égalités b log b a 1 ≥b log b a 2 et b log b a 1 ≥b log b a 2 doivent être vraies, c'est-à-dire a 1 ≥a 2 . Nous sommes donc arrivés à une contradiction avec la condition a 1

Bibliographie.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. et autres Algèbre et débuts de l'analyse : Manuel pour les classes 10 - 11 des établissements d'enseignement général.
  • Gusev V.A., Mordkovitch A.G. Mathématiques (un manuel pour ceux qui entrent dans les écoles techniques).

propriétés principales.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x : y).

motifs identiques

Log6 4 + log6 9.

Maintenant, compliquons un peu la tâche.

Exemples de résolution de logarithmes

Et si la base ou l’argument d’un logarithme était une puissance ? Ensuite, l'exposant de ce degré peut être soustrait du signe du logarithme selon les règles suivantes :

Bien entendu, toutes ces règles ont du sens si l'ODZ du logarithme est respectée : a > 0, a ≠ 1, x >

Tâche. Trouvez le sens de l’expression :

Transition vers une nouvelle fondation

Soit le logarithme logax. Alors pour tout nombre c tel que c > 0 et c ≠ 1, l'égalité est vraie :

Tâche. Trouvez le sens de l’expression :

Voir également:


Propriétés de base du logarithme

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



L'exposant est 2,718281828…. Pour mémoriser l'exposant, vous pouvez étudier la règle : l'exposant est égal à 2,7 et deux fois l'année de naissance de Léon Nikolaïevitch Tolstoï.

Propriétés de base des logarithmes

Connaissant cette règle, vous connaîtrez à la fois la valeur exacte de l'exposant et la date de naissance de Léon Tolstoï.


Exemples de logarithmes

Expressions logarithmiques

Exemple 1.
UN). x=10ac^2 (a>0,c>0).

En utilisant les propriétés 3.5, nous calculons

2.

3.

4. .



Exemple 2. Trouver x si


Exemple 3. Soit la valeur des logarithmes

Calculer log(x) si




Propriétés de base des logarithmes

Les logarithmes, comme tous les nombres, peuvent être ajoutés, soustraits et transformés de toutes les manières possibles. Mais comme les logarithmes ne sont pas exactement des nombres ordinaires, il existe ici des règles appelées propriétés principales.

Vous devez absolument connaître ces règles - sans elles, aucun problème logarithmique grave ne peut être résolu. De plus, il y en a très peu - on peut tout apprendre en une journée. Alors, commençons.

Additionner et soustraire des logarithmes

Considérons deux logarithmes avec les mêmes bases : logax et logay. Ensuite, ils peuvent être ajoutés et soustraits, et :

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x : y).

Ainsi, la somme des logarithmes est égale au logarithme du produit et la différence est égale au logarithme du quotient. Attention : le point clé ici est motifs identiques. Si les raisons sont différentes, ces règles ne fonctionnent pas !

Ces formules vous aideront à calculer une expression logarithmique même lorsque ses parties individuelles ne sont pas prises en compte (voir la leçon « Qu'est-ce qu'un logarithme »). Jetez un œil aux exemples et voyez :

Puisque les logarithmes ont les mêmes bases, nous utilisons la formule de somme :
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Tâche. Trouvez la valeur de l'expression : log2 48 − log2 3.

Les bases sont les mêmes, on utilise la formule de différence :
log2 48 − log2 3 = log2 (48 : 3) = log2 16 = 4.

Tâche. Trouvez la valeur de l'expression : log3 135 − log3 5.

Là encore les bases sont les mêmes, on a donc :
log3 135 − log3 5 = log3 (135 : 5) = log3 27 = 3.

Comme vous pouvez le constater, les expressions originales sont constituées de « mauvais » logarithmes, qui ne sont pas calculés séparément. Mais après les transformations, on obtient des nombres tout à fait normaux. De nombreux tests sont basés sur ce fait. Oui, des expressions de type test sont proposées très sérieusement (parfois avec pratiquement aucun changement) lors de l'examen d'État unifié.

Extraire l'exposant du logarithme

Il est facile de voir que la dernière règle suit les deux premières. Mais il vaut quand même mieux s'en souvenir - dans certains cas, cela réduira considérablement le nombre de calculs.

Bien sûr, toutes ces règles ont du sens si l'ODZ du logarithme est observé : a > 0, a ≠ 1, x > 0. Et encore une chose : apprenez à appliquer toutes les formules non seulement de gauche à droite, mais aussi vice versa , c'est à dire. Vous pouvez saisir les nombres avant le signe du logarithme dans le logarithme lui-même. C'est ce qui est le plus souvent demandé.

Tâche. Trouvez la valeur de l'expression : log7 496.

Débarrassons-nous du degré dans l'argument en utilisant la première formule :
log7 496 = 6 log7 49 = 6 2 = 12

Tâche. Trouvez le sens de l’expression :

Notez que le dénominateur contient un logarithme dont la base et l'argument sont des puissances exactes : 16 = 24 ; 49 = 72. On a :

Je pense que le dernier exemple nécessite quelques éclaircissements. Où sont passés les logarithmes ? Jusqu'au tout dernier moment, nous travaillons uniquement avec le dénominateur.

Formules de logarithme. Exemples de solutions de logarithmes.

Nous avons présenté la base et l'argument du logarithme sous forme de puissances et avons retiré les exposants - nous avons obtenu une fraction « à trois étages ».

Examinons maintenant la fraction principale. Le numérateur et le dénominateur contiennent le même nombre : log2 7. Puisque log2 7 ≠ 0, nous pouvons réduire la fraction - 2/4 resteront au dénominateur. Selon les règles de l'arithmétique, le quatre peut être transféré au numérateur, ce qui a été fait. Le résultat fut la réponse : 2.

Transition vers une nouvelle fondation

En parlant des règles d'addition et de soustraction de logarithmes, j'ai spécifiquement souligné qu'elles ne fonctionnent qu'avec les mêmes bases. Et si les raisons étaient différentes ? Et s’il ne s’agissait pas de puissances exactes du même nombre ?

Les formules de transition vers une nouvelle fondation viennent à la rescousse. Formulons-les sous la forme d'un théorème :

Soit le logarithme logax. Alors pour tout nombre c tel que c > 0 et c ≠ 1, l'égalité est vraie :

En particulier, si on pose c = x, on obtient :

De la deuxième formule, il s'ensuit que la base et l'argument du logarithme peuvent être intervertis, mais dans ce cas, l'expression entière est « retournée », c'est-à-dire le logarithme apparaît au dénominateur.

Ces formules se retrouvent rarement dans les expressions numériques ordinaires. Il est possible d'évaluer leur commodité uniquement lors de la résolution d'équations logarithmiques et d'inégalités.

Cependant, il existe des problèmes qui ne peuvent être résolus qu’en passant à une nouvelle fondation. Examinons-en quelques-uns :

Tâche. Trouvez la valeur de l'expression : log5 16 log2 25.

Notez que les arguments des deux logarithmes contiennent des puissances exactes. Supprimons les indicateurs : log5 16 = log5 24 = 4log5 2 ; log2 25 = log2 52 = 2log2 5 ;

Maintenant, « inversons » le deuxième logarithme :

Étant donné que le produit ne change pas lors de la réorganisation des facteurs, nous avons calmement multiplié quatre par deux, puis nous sommes occupés des logarithmes.

Tâche. Trouvez la valeur de l'expression : log9 100 lg 3.

La base et l'argument du premier logarithme sont des puissances exactes. Écrivons cela et débarrassons-nous des indicateurs :

Débarrassons-nous maintenant du logarithme décimal en passant à une nouvelle base :

Identité logarithmique de base

Souvent, dans le processus de résolution, il est nécessaire de représenter un nombre sous forme de logarithme sur une base donnée. Dans ce cas, les formules suivantes nous aideront :

Dans le premier cas, le nombre n devient l’exposant de l’argument. Le nombre n peut être absolument n'importe quoi, car il s'agit simplement d'une valeur logarithmique.

La deuxième formule est en fait une définition paraphrasée. C'est comme ça que ça s'appelle : .

En fait, que se passe-t-il si le nombre b est élevé à une puissance telle que le nombre b à cette puissance donne le nombre a ? C'est vrai : le résultat est le même nombre a. Relisez attentivement ce paragraphe – de nombreuses personnes restent bloquées dessus.

Comme les formules pour passer à une nouvelle base, l’identité logarithmique de base est parfois la seule solution possible.

Tâche. Trouvez le sens de l’expression :

Notez que log25 64 = log5 8 - prend simplement le carré de la base et l'argument du logarithme. En tenant compte des règles de multiplication des puissances de même base, on obtient :

Si quelqu'un ne le sait pas, c'était une véritable tâche de l'examen d'État unifié :)

Unité logarithmique et zéro logarithmique

En conclusion, je donnerai deux identités qui peuvent difficilement être qualifiées de propriétés - elles sont plutôt des conséquences de la définition du logarithme. Ils apparaissent constamment dans les problèmes et, étonnamment, créent des problèmes même pour les étudiants « avancés ».

  1. logaa = 1 est. Rappelez-vous une fois pour toutes : le logarithme de n’importe quelle base a de cette base elle-même est égal à un.
  2. loga 1 = 0 est. La base a peut être n'importe quoi, mais si l'argument en contient un, le logarithme est égal à zéro ! Parce que a0 = 1 est une conséquence directe de la définition.

C'est toutes les propriétés. Assurez-vous de vous entraîner à les mettre en pratique ! Téléchargez l'aide-mémoire au début de la leçon, imprimez-la et résolvez les problèmes.

Voir également:

Le logarithme de b en base a désigne l'expression. Calculer le logarithme signifie trouver une puissance x () à laquelle l'égalité est satisfaite

Propriétés de base du logarithme

Il est nécessaire de connaître les propriétés ci-dessus, car presque tous les problèmes et exemples liés aux logarithmes sont résolus sur cette base. Le reste des propriétés exotiques peut être dérivé par des manipulations mathématiques avec ces formules

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Lorsque vous calculez la formule de la somme et de la différence des logarithmes (3.4), vous la rencontrez assez souvent. Le reste est quelque peu complexe, mais dans un certain nombre de tâches, ils sont indispensables pour simplifier des expressions complexes et calculer leurs valeurs.

Cas courants de logarithmes

Certains des logarithmes courants sont ceux dont la base est même dix, exponentielle ou deux.
Le logarithme en base dix est généralement appelé logarithme décimal et est simplement noté lg(x).

Il ressort clairement de l’enregistrement que les bases ne sont pas écrites dans l’enregistrement. Par exemple

Un logarithme népérien est un logarithme dont la base est un exposant (noté ln(x)).

L'exposant est 2,718281828…. Pour mémoriser l'exposant, vous pouvez étudier la règle : l'exposant est égal à 2,7 et deux fois l'année de naissance de Léon Nikolaïevitch Tolstoï. Connaissant cette règle, vous connaîtrez à la fois la valeur exacte de l'exposant et la date de naissance de Léon Tolstoï.

Et un autre logarithme important en base deux est noté

La dérivée du logarithme d'une fonction est égale à un divisé par la variable

Le logarithme intégral ou primitive est déterminé par la relation

Le matériel fourni vous suffit pour résoudre une large classe de problèmes liés aux logarithmes et aux logarithmes. Pour vous aider à comprendre le matériel, je ne donnerai que quelques exemples courants issus du programme scolaire et des universités.

Exemples de logarithmes

Expressions logarithmiques

Exemple 1.
UN). x=10ac^2 (a>0,c>0).

En utilisant les propriétés 3.5, nous calculons

2.
Par la propriété de différence des logarithmes on a

3.
En utilisant les propriétés 3.5, nous trouvons

4. .

Une expression apparemment complexe est simplifiée pour être formée à l'aide d'un certain nombre de règles

Trouver des valeurs de logarithme

Exemple 2. Trouver x si

Solution. Pour le calcul, on applique aux derniers termes 5 et 13 les propriétés

Nous l'enregistrons et pleurons

Puisque les bases sont égales, on assimile les expressions

Logarithmes. Premier niveau.

Soit la valeur des logarithmes

Calculer log(x) si

Solution : Prenons un logarithme de la variable pour écrire le logarithme à travers la somme de ses termes


Ce n'est que le début de notre connaissance des logarithmes et de leurs propriétés. Entraînez-vous aux calculs, enrichissez vos compétences pratiques - vous aurez bientôt besoin des connaissances acquises pour résoudre des équations logarithmiques. Après avoir étudié les méthodes de base pour résoudre de telles équations, nous élargirons vos connaissances à un autre sujet tout aussi important : les inégalités logarithmiques...

Propriétés de base des logarithmes

Les logarithmes, comme tous les nombres, peuvent être ajoutés, soustraits et transformés de toutes les manières possibles. Mais comme les logarithmes ne sont pas exactement des nombres ordinaires, il existe ici des règles appelées propriétés principales.

Vous devez absolument connaître ces règles - sans elles, aucun problème logarithmique grave ne peut être résolu. De plus, il y en a très peu - on peut tout apprendre en une journée. Alors, commençons.

Additionner et soustraire des logarithmes

Considérons deux logarithmes avec les mêmes bases : logax et logay. Ensuite, ils peuvent être ajoutés et soustraits, et :

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x : y).

Ainsi, la somme des logarithmes est égale au logarithme du produit et la différence est égale au logarithme du quotient. Attention : le point clé ici est motifs identiques. Si les raisons sont différentes, ces règles ne fonctionnent pas !

Ces formules vous aideront à calculer une expression logarithmique même lorsque ses parties individuelles ne sont pas prises en compte (voir la leçon « Qu'est-ce qu'un logarithme »). Jetez un œil aux exemples et voyez :

Tâche. Trouvez la valeur de l'expression : log6 4 + log6 9.

Puisque les logarithmes ont les mêmes bases, nous utilisons la formule de somme :
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Tâche. Trouvez la valeur de l'expression : log2 48 − log2 3.

Les bases sont les mêmes, on utilise la formule de différence :
log2 48 − log2 3 = log2 (48 : 3) = log2 16 = 4.

Tâche. Trouvez la valeur de l'expression : log3 135 − log3 5.

Là encore les bases sont les mêmes, on a donc :
log3 135 − log3 5 = log3 (135 : 5) = log3 27 = 3.

Comme vous pouvez le constater, les expressions originales sont constituées de « mauvais » logarithmes, qui ne sont pas calculés séparément. Mais après les transformations, on obtient des nombres tout à fait normaux. De nombreux tests sont basés sur ce fait. Oui, des expressions de type test sont proposées très sérieusement (parfois avec pratiquement aucun changement) lors de l'examen d'État unifié.

Extraire l'exposant du logarithme

Maintenant, compliquons un peu la tâche. Et si la base ou l’argument d’un logarithme était une puissance ? Ensuite, l'exposant de ce degré peut être soustrait du signe du logarithme selon les règles suivantes :

Il est facile de voir que la dernière règle suit les deux premières. Mais il vaut quand même mieux s'en souvenir - dans certains cas, cela réduira considérablement le nombre de calculs.

Bien sûr, toutes ces règles ont du sens si l'ODZ du logarithme est observé : a > 0, a ≠ 1, x > 0. Et encore une chose : apprenez à appliquer toutes les formules non seulement de gauche à droite, mais aussi vice versa , c'est à dire. Vous pouvez saisir les nombres avant le signe du logarithme dans le logarithme lui-même.

Comment résoudre des logarithmes

C'est ce qui est le plus souvent demandé.

Tâche. Trouvez la valeur de l'expression : log7 496.

Débarrassons-nous du degré dans l'argument en utilisant la première formule :
log7 496 = 6 log7 49 = 6 2 = 12

Tâche. Trouvez le sens de l’expression :

Notez que le dénominateur contient un logarithme dont la base et l'argument sont des puissances exactes : 16 = 24 ; 49 = 72. On a :

Je pense que le dernier exemple nécessite quelques éclaircissements. Où sont passés les logarithmes ? Jusqu'au tout dernier moment, nous travaillons uniquement avec le dénominateur. Nous avons présenté la base et l'argument du logarithme sous forme de puissances et avons retiré les exposants - nous avons obtenu une fraction « à trois étages ».

Examinons maintenant la fraction principale. Le numérateur et le dénominateur contiennent le même nombre : log2 7. Puisque log2 7 ≠ 0, nous pouvons réduire la fraction - 2/4 resteront au dénominateur. Selon les règles de l'arithmétique, le quatre peut être transféré au numérateur, ce qui a été fait. Le résultat fut la réponse : 2.

Transition vers une nouvelle fondation

En parlant des règles d'addition et de soustraction de logarithmes, j'ai spécifiquement souligné qu'elles ne fonctionnent qu'avec les mêmes bases. Et si les raisons étaient différentes ? Et s’il ne s’agissait pas de puissances exactes du même nombre ?

Les formules de transition vers une nouvelle fondation viennent à la rescousse. Formulons-les sous la forme d'un théorème :

Soit le logarithme logax. Alors pour tout nombre c tel que c > 0 et c ≠ 1, l'égalité est vraie :

En particulier, si on pose c = x, on obtient :

De la deuxième formule, il s'ensuit que la base et l'argument du logarithme peuvent être intervertis, mais dans ce cas, l'expression entière est « retournée », c'est-à-dire le logarithme apparaît au dénominateur.

Ces formules se retrouvent rarement dans les expressions numériques ordinaires. Il est possible d'évaluer leur commodité uniquement lors de la résolution d'équations logarithmiques et d'inégalités.

Cependant, il existe des problèmes qui ne peuvent être résolus qu’en passant à une nouvelle fondation. Examinons-en quelques-uns :

Tâche. Trouvez la valeur de l'expression : log5 16 log2 25.

Notez que les arguments des deux logarithmes contiennent des puissances exactes. Supprimons les indicateurs : log5 16 = log5 24 = 4log5 2 ; log2 25 = log2 52 = 2log2 5 ;

Maintenant, « inversons » le deuxième logarithme :

Étant donné que le produit ne change pas lors de la réorganisation des facteurs, nous avons calmement multiplié quatre par deux, puis nous sommes occupés des logarithmes.

Tâche. Trouvez la valeur de l'expression : log9 100 lg 3.

La base et l'argument du premier logarithme sont des puissances exactes. Écrivons cela et débarrassons-nous des indicateurs :

Débarrassons-nous maintenant du logarithme décimal en passant à une nouvelle base :

Identité logarithmique de base

Souvent, dans le processus de résolution, il est nécessaire de représenter un nombre sous forme de logarithme sur une base donnée. Dans ce cas, les formules suivantes nous aideront :

Dans le premier cas, le nombre n devient l’exposant de l’argument. Le nombre n peut être absolument n'importe quoi, car il s'agit simplement d'une valeur logarithmique.

La deuxième formule est en fait une définition paraphrasée. C'est comme ça que ça s'appelle : .

En fait, que se passe-t-il si le nombre b est élevé à une puissance telle que le nombre b à cette puissance donne le nombre a ? C'est vrai : le résultat est le même nombre a. Relisez attentivement ce paragraphe – de nombreuses personnes restent bloquées dessus.

Comme les formules pour passer à une nouvelle base, l’identité logarithmique de base est parfois la seule solution possible.

Tâche. Trouvez le sens de l’expression :

Notez que log25 64 = log5 8 - prend simplement le carré de la base et l'argument du logarithme. En tenant compte des règles de multiplication des puissances de même base, on obtient :

Si quelqu'un ne le sait pas, c'était une véritable tâche de l'examen d'État unifié :)

Unité logarithmique et zéro logarithmique

En conclusion, je donnerai deux identités qui peuvent difficilement être qualifiées de propriétés - elles sont plutôt des conséquences de la définition du logarithme. Ils apparaissent constamment dans les problèmes et, étonnamment, créent des problèmes même pour les étudiants « avancés ».

  1. logaa = 1 est. Rappelez-vous une fois pour toutes : le logarithme de n’importe quelle base a de cette base elle-même est égal à un.
  2. loga 1 = 0 est. La base a peut être n'importe quoi, mais si l'argument en contient un, le logarithme est égal à zéro ! Parce que a0 = 1 est une conséquence directe de la définition.

C'est toutes les propriétés. Assurez-vous de vous entraîner à les mettre en pratique ! Téléchargez l'aide-mémoire au début de la leçon, imprimez-la et résolvez les problèmes.

(du grec λόγος - « mot », « relation » et ἀριθμός - « nombre ») b basé sur un(log α b) s'appelle un tel nombre c, Et b= un c, c'est-à-dire enregistre le journal α b=c Et b = unc sont équivalents. Le logarithme a du sens si a > 0, a ≠ 1, b > 0.

Autrement dit logarithme Nombres b basé sur UN formulé comme un exposant auquel un nombre doit être élevé un pour obtenir le numéro b(le logarithme n'existe que pour les nombres positifs).

De cette formulation il résulte que le calcul x= log α b, équivaut à résoudre l’équation a x = b.

Par exemple:

log 2 8 = 3 car 8 = 2 3 .

Soulignons que la formulation indiquée du logarithme permet de déterminer immédiatement valeur du logarithme, lorsque le nombre sous le signe du logarithme agit comme une certaine puissance de la base. En effet, la formulation du logarithme permet de justifier que si b = un c, puis le logarithme du nombre b basé sur unéquivaut à Avec. Il est également clair que le thème des logarithmes est étroitement lié au thème puissances d'un nombre.

Le calcul du logarithme s'appelle logarithme. Le logarithme est l'opération mathématique consistant à prendre un logarithme. Lors de la prise de logarithmes, les produits de facteurs sont transformés en sommes de termes.

Potentialisation est l'opération mathématique inverse du logarithme. Lors de la potentialisation, une base donnée est élevée jusqu'au degré d'expression sur lequel la potentialisation est effectuée. Dans ce cas, les sommes de termes sont transformées en un produit de facteurs.

Assez souvent, les logarithmes réels sont utilisés avec les bases 2 (binaire), le nombre d'Euler e ≈ 2,718 (logarithme naturel) et 10 (décimal).

A ce stade, il convient de considérer échantillons de logarithme journal 7 2 , dans 5, lg0.0001.

Et les entrées lg(-3), log -3 3.2, log -1 -4.3 n'ont pas de sens, puisque dans la première d'entre elles un nombre négatif est placé sous le signe du logarithme, dans la seconde il y a un nombre négatif dans la base, et dans le troisième il y a un nombre négatif sous le signe du logarithme et l'unité à la base.

Conditions de détermination du logarithme.

Il convient de considérer séparément les conditions a > 0, a ≠ 1, b > 0.sous lesquelles on obtient définition du logarithme. Voyons pourquoi ces restrictions ont été prises. Une égalité de la forme x = log α nous y aidera b, appelée identité logarithmique de base, qui découle directement de la définition du logarithme donnée ci-dessus.

Prenons la condition une≠1. Puisque un à n’importe quelle puissance est égal à un, alors l’égalité x=log α b ne peut exister que lorsque b=1, mais le journal 1 1 sera n'importe quel nombre réel. Pour lever cette ambiguïté, nous prenons une≠1.

Montrons la nécessité de la condition une>0. À une=0 selon la formulation du logarithme, ne peut exister que lorsque b=0. Et en conséquence alors journal 0 0 peut être n'importe quel nombre réel non nul, puisque zéro à toute puissance non nulle est zéro. Cette ambiguïté peut être éliminée par la condition une≠0. Et quand un<0 il faudrait rejeter l'analyse des valeurs rationnelles et irrationnelles du logarithme, puisqu'un degré avec un exposant rationnel et irrationnel n'est défini que pour des bases non négatives. C'est pour cette raison que la condition est stipulée une>0.

Et la dernière condition b>0 découle de l’inégalité une>0, puisque x=log α b, et la valeur du diplôme avec une base positive un toujours positif.

Caractéristiques des logarithmes.

Logarithmes caractérisé par un caractère distinctif caractéristiques, ce qui a conduit à leur utilisation généralisée pour faciliter considérablement les calculs fastidieux. En passant « dans le monde des logarithmes », la multiplication se transforme en une addition beaucoup plus simple, la division se transforme en soustraction, et l'exponentiation et l'extraction de racine se transforment respectivement en multiplication et division par l'exposant.

La formulation des logarithmes et un tableau de leurs valeurs (pour les fonctions trigonométriques) ont été publiés pour la première fois en 1614 par le mathématicien écossais John Napier. Les tableaux logarithmiques, élargis et détaillés par d'autres scientifiques, ont été largement utilisés dans les calculs scientifiques et techniques et sont restés pertinents jusqu'à l'utilisation de calculatrices électroniques et d'ordinateurs.