Équations logarithmiques ! Qu'est-ce qu'un logarithme ?

  • 13.10.2019

Aujourd'hui, nous parlerons de formules logarithmiques et nous donnerons à titre indicatif exemples de solutions.

Ils impliquent eux-mêmes des modèles de solutions selon les propriétés fondamentales des logarithmes. Avant d'appliquer des formules de logarithme à résoudre, rappelons toutes les propriétés :

Maintenant, sur la base de ces formules (propriétés), nous allons montrer exemples de résolution de logarithmes.

Exemples de résolution de logarithmes basés sur des formules.

Logarithme un nombre positif b en base a (noté log a b) est un exposant auquel a doit être élevé pour obtenir b, avec b > 0, a > 0 et 1.

D'après la définition, log a b = x, ce qui équivaut à a x = b, donc log a a x = x.

Logarithmes, exemples:

log 2 8 = 3, car 2 3 = 8

log 7 49 = 2, car 7 2 = 49

log 5 1/5 = -1, car 5 -1 = 1/5

Logarithme décimal- il s'agit d'un logarithme ordinaire dont la base est 10. Il est noté lg.

log 10 100 = 2, car 10 2 = 100

Un algorithme naturel- aussi un logarithme ordinaire, un logarithme, mais de base e (e = 2,71828... - un nombre irrationnel). Noté ln.

Il est conseillé de mémoriser les formules ou les propriétés des logarithmes, car nous en aurons besoin plus tard lors de la résolution de logarithmes, d'équations logarithmiques et d'inégalités. Reprenons chaque formule avec des exemples.

  • Identité logarithmique de base
    un journal a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Le logarithme du produit est égal à la somme des logarithmes
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1*10) = log 3 81 = 4

  • Le logarithme du quotient est égal à la différence des logarithmes
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Propriétés de la puissance d'un nombre logarithmique et de la base du logarithme

    Exposant du nombre logarithmique log a b m = mlog a b

    Exposant de la base du logarithme log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    si m = n, on obtient log a n b n = log a b

    journal 4 9 = journal 2 2 3 2 = journal 2 3

  • Transition vers une nouvelle fondation
    log a b = log c b/log c a,

    si c = b, on obtient log b b = 1

    alors log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Comme vous pouvez le constater, les formules des logarithmes ne sont pas aussi compliquées qu’il y paraît. Maintenant, après avoir examiné des exemples de résolution de logarithmes, nous pouvons passer aux équations logarithmiques. Nous examinerons plus en détail des exemples de résolution d'équations logarithmiques dans l'article : "". Ne manquez pas!

Si vous avez encore des questions sur la solution, écrivez-les dans les commentaires de l'article.

Remarque : nous avons décidé de suivre une formation différente et d'étudier à l'étranger en option.

1.1. Détermination de l'exposant pour un exposant entier

X1 = X
X2 = X * X
X 3 = X * X * X

X N = X * X * … * X — N fois

1.2. Zéro degré.

Par définition, il est généralement admis que la puissance nulle de tout nombre est 1 :

1.3. Degré négatif.

X-N = 1/XN

1.4. Pouvoir fractionnaire, racine.

X 1/N = N racine de X.

Par exemple : X 1/2 = √X.

1.5. Formule pour ajouter des puissances.

X (N+M) = XN *XM

1.6.Formule pour soustraire des puissances.

X (N-M) = X N /X M

1.7. Formule pour multiplier les puissances.

XN*M = (XN)M

1.8. Formule pour élever une fraction à une puissance.

(X/Y) N = X N /Oui N

2. Numéro e.

La valeur du nombre e est égale à la limite suivante :

E = lim(1+1/N), comme N → ∞.

Avec une précision de 17 chiffres, le nombre e est 2,71828182845904512.

3. L'égalité d'Euler.

Cette égalité relie cinq nombres qui jouent un rôle particulier en mathématiques : 0, 1, e, pi, unité imaginaire.

E (je*pi) + 1 = 0

4. Fonction exponentielle exp(x)

exp(x) = ex

5. Dérivée de la fonction exponentielle

La fonction exponentielle a une propriété remarquable : la dérivée de la fonction est égale à la fonction exponentielle elle-même :

(exp(x))" = exp(x)

6. Logarithme.

6.1. Définition de la fonction logarithme

Si x = b y, alors le logarithme est la fonction

Y = Journal b(x).

Le logarithme montre à quelle puissance un nombre doit être élevé - la base du logarithme (b) pour obtenir un nombre donné (X). La fonction logarithme est définie pour X supérieur à zéro.

Par exemple : Log 10 (100) = 2.

6.2. Logarithme décimal

Voici le logarithme en base 10 :

Y = Journal 10 (x) .

Noté Log(x) : Log(x) = Log 10 (x).

Un exemple d’utilisation du logarithme décimal est le décibel.

6.3. Décibel

L'élément est mis en évidence sur une page séparée Décibel

6.4. Logarithme binaire

Voici le logarithme en base 2 :

Y = Journal 2 (x).

Noté Lg(x) : Lg(x) = Log 2 (X)

6.5. Un algorithme naturel

Voici le logarithme en base e :

Y = Journal e (x) .

Noté Ln(x) : Ln(x) = Log e (X)
Le logarithme népérien est la fonction inverse de la fonction exponentielle exp(X).

6.6. Points caractéristiques

Log(1) = 0
Log a (a) = 1

6.7. Formule du logarithme du produit

Log a (x*y) = Log a (x)+Log a (y)

6.8. Formule du logarithme du quotient

Log a (x/y) = Log a (x)-Log a (y)

6.9. Logarithme de la formule de puissance

Log a (x y) = y*Log a (x)

6.10. Formule de conversion en logarithme avec une base différente

Log b (x) = (Log a (x))/Log a (b)

Exemple:

Journal 2 (8) = Journal 10 (8)/Journal 10 (2) =
0.903089986991943552 / 0.301029995663981184 = 3

7. Des formules utiles dans la vie

Il existe souvent des problèmes de conversion du volume en surface ou en longueur et le problème inverse : la conversion de la surface en volume. Par exemple, les planches sont vendues en cubes (mètres cubes), et nous devons calculer quelle surface de mur peut être recouverte de planches contenues dans un certain volume, voir calcul des planches, combien de planches y a-t-il dans un cube. Ou, si les dimensions du mur sont connues, vous devez calculer le nombre de briques, voir calcul des briques.


Il est permis d'utiliser les éléments du site à condition qu'un lien actif vers la source soit installé.

Comme vous le savez, lors de la multiplication d'expressions avec des puissances, leurs exposants s'additionnent toujours (ab *a c = a b+c). Cette loi mathématique a été dérivée par Archimède et plus tard, au VIIIe siècle, le mathématicien Virasen a créé un tableau d'exposants entiers. Ce sont eux qui ont servi à la découverte ultérieure des logarithmes. Des exemples d'utilisation de cette fonction peuvent être trouvés presque partout où vous devez simplifier une multiplication fastidieuse par une simple addition. Si vous passez 10 minutes à lire cet article, nous vous expliquerons ce que sont les logarithmes et comment les utiliser. Dans un langage simple et accessible.

Définition en mathématiques

Un logarithme est une expression de la forme suivante : log a b=c, c'est-à-dire le logarithme de tout nombre non négatif (c'est-à-dire tout positif) « b » à sa base « a » est considéré comme la puissance « c » à laquelle la base « a » doit être élevée pour obtenir finalement la valeur « b ». Analysons le logarithme à l'aide d'exemples, disons qu'il existe une expression log 2 8. Comment trouver la réponse ? C’est très simple, il faut trouver une puissance telle que de 2 à la puissance recherchée on obtienne 8. Après avoir fait quelques calculs dans sa tête, on obtient le chiffre 3 ! Et c’est vrai, car 2 à la puissance 3 donne la réponse 8.

Types de logarithmes

Pour de nombreux élèves et étudiants, ce sujet semble compliqué et incompréhensible, mais en fait les logarithmes ne sont pas si effrayants, l'essentiel est de comprendre leur signification générale et de mémoriser leurs propriétés et certaines règles. Il existe trois types distincts d'expressions logarithmiques :

  1. Logarithme népérien ln a, où la base est le nombre d'Euler (e = 2,7).
  2. Décimal a, où la base est 10.
  3. Logarithme de n'importe quel nombre b en base a>1.

Chacun d'eux est résolu de manière standard, y compris la simplification, la réduction et la réduction ultérieure à un seul logarithme à l'aide de théorèmes logarithmiques. Pour obtenir les valeurs correctes des logarithmes, vous devez vous rappeler leurs propriétés et la séquence d'actions lors de leur résolution.

Règles et quelques restrictions

En mathématiques, il existe plusieurs règles-contraintes qui sont acceptées comme un axiome, c'est-à-dire qu'elles ne sont pas sujettes à discussion et sont la vérité. Par exemple, il est impossible de diviser des nombres par zéro, et il est également impossible d’extraire la racine paire de nombres négatifs. Les logarithmes ont également leurs propres règles, à la suite desquelles vous pouvez facilement apprendre à travailler même avec des expressions logarithmiques longues et volumineuses :

  • La base « a » doit toujours être supérieure à zéro et non égale à 1, sinon l'expression perdra son sens, car « 1 » et « 0 » à quelque degré que ce soit sont toujours égaux à leurs valeurs ;
  • si a > 0, alors a b >0, il s'avère que « c » doit également être supérieur à zéro.

Comment résoudre des logarithmes ?

Par exemple, la tâche est de trouver la réponse à l'équation 10 x = 100. C'est très simple, vous devez choisir une puissance en élevant le nombre dix auquel on obtient 100. Ceci, bien sûr, est 10 2 = 100.

Représentons maintenant cette expression sous forme logarithmique. On obtient log 10 100 = 2. Lors de la résolution de logarithmes, toutes les actions convergent pratiquement pour trouver la puissance à laquelle il faut entrer dans la base du logarithme pour obtenir un nombre donné.

Pour déterminer avec précision la valeur d'un diplôme inconnu, vous devez apprendre à travailler avec un tableau des diplômes. Cela ressemble à ceci :

Comme vous pouvez le constater, certains exposants peuvent être devinés intuitivement si vous avez un esprit technique et une connaissance de la table de multiplication. Cependant, pour des valeurs plus importantes, vous aurez besoin d’une table de puissance. Il peut être utilisé même par ceux qui ne connaissent rien aux sujets mathématiques complexes. La colonne de gauche contient des nombres (base a), la rangée supérieure de nombres est la valeur de la puissance c à laquelle le nombre a est élevé. A l'intersection, les cellules contiennent les valeurs numériques qui sont la réponse (a c =b). Prenons par exemple la toute première cellule avec le chiffre 10 et mettons-la au carré, nous obtenons la valeur 100, qui est indiquée à l'intersection de nos deux cellules. Tout est si simple et facile que même le plus véritable humaniste comprendra !

Équations et inégalités

Il s'avère que sous certaines conditions, l'exposant est le logarithme. Par conséquent, toute expression numérique mathématique peut être écrite sous la forme d’une égalité logarithmique. Par exemple, 3 4 = 81 peut être écrit comme le logarithme en base 3 de 81 égal à quatre (log 3 81 = 4). Pour les puissances négatives les règles sont les mêmes : 2 -5 = 1/32 on l'écrit sous forme de logarithme, on obtient log 2 (1/32) = -5. L’une des sections les plus fascinantes des mathématiques est celle des « logarithmes ». Nous examinerons des exemples et des solutions d'équations ci-dessous, immédiatement après avoir étudié leurs propriétés. Voyons maintenant à quoi ressemblent les inégalités et comment les distinguer des équations.

L'expression suivante est donnée : log 2 (x-1) > 3 - c'est une inégalité logarithmique, puisque la valeur inconnue « x » est sous le signe logarithmique. Et aussi dans l'expression deux quantités sont comparées : le logarithme du nombre souhaité en base deux est supérieur au nombre trois.

La différence la plus importante entre les équations logarithmiques et les inégalités est que les équations avec des logarithmes (par exemple, le logarithme 2 x = √9) impliquent une ou plusieurs valeurs numériques spécifiques dans la réponse, tandis que lors de la résolution d'une inégalité, la plage des valeurs acceptables les valeurs et les points sont déterminés en brisant cette fonction. En conséquence, la réponse n’est pas un simple ensemble de nombres individuels, comme dans la réponse à une équation, mais une série continue ou un ensemble de nombres.

Théorèmes de base sur les logarithmes

Lors de la résolution de tâches primitives consistant à trouver les valeurs du logarithme, ses propriétés peuvent ne pas être connues. Cependant, lorsqu'il s'agit d'équations ou d'inégalités logarithmiques, il est tout d'abord nécessaire de comprendre clairement et d'appliquer dans la pratique toutes les propriétés de base des logarithmes. Nous examinerons des exemples d'équations plus tard ; examinons d'abord chaque propriété plus en détail.

  1. L'identité principale ressemble à ceci : a logaB =B. Cela s'applique uniquement lorsque a est supérieur à 0, non égal à un, et B est supérieur à zéro.
  2. Le logarithme du produit peut être représenté par la formule suivante : log d (s 1 * s 2) = log d s 1 + log d s 2. Dans ce cas, la condition obligatoire est : d, s 1 et s 2 > 0 ; une≠1. Vous pouvez donner une preuve de cette formule logarithmique, avec des exemples et une solution. Soit log a s 1 = f 1 et log a s 2 = f 2, puis a f1 = s 1, a f2 = s 2. On obtient que s 1 * s 2 = a f1 *a f2 = a f1+f2 (propriétés de degrés ), puis par définition : log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, ce qui devait être prouvé.
  3. Le logarithme du quotient ressemble à ceci : log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Le théorème sous forme de formule prend la forme suivante : log a q b n = n/q log a b.

Cette formule est appelée « propriété du degré du logarithme ». Cela ressemble aux propriétés des diplômes ordinaires, et ce n’est pas surprenant, car toutes les mathématiques sont basées sur des postulats naturels. Regardons la preuve.

Soit log a b = t, il s'avère que a t = b. Si on élève les deux parties à la puissance m : a tn = b n ;

mais puisque a tn = (a q) nt/q = b n, donc log a q b n = (n*t)/t, alors log a q b n = n/q log a b. Le théorème a été prouvé.

Exemples de problèmes et d’inégalités

Les types de problèmes les plus courants sur les logarithmes sont des exemples d’équations et d’inégalités. On les trouve dans presque tous les livres de problèmes et constituent également une partie obligatoire des examens de mathématiques. Pour entrer dans une université ou réussir les examens d'entrée en mathématiques, vous devez savoir comment résoudre correctement ces tâches.

Malheureusement, il n'existe pas de plan ou de schéma unique pour résoudre et déterminer la valeur inconnue du logarithme, mais certaines règles peuvent être appliquées à chaque inégalité mathématique ou équation logarithmique. Tout d’abord, vous devez savoir si l’expression peut être simplifiée ou réduite à une forme générale. Vous pouvez simplifier les expressions logarithmiques longues si vous utilisez correctement leurs propriétés. Faisons rapidement connaissance avec eux.

Lors de la résolution d'équations logarithmiques, nous devons déterminer de quel type de logarithme nous disposons : un exemple d'expression peut contenir un logarithme naturel ou décimal.

Voici les exemples ln100, ln1026. Leur solution se résume au fait qu’ils doivent déterminer la puissance à laquelle la base 10 sera respectivement égale à 100 et 1026. Pour résoudre des logarithmes naturels, vous devez appliquer des identités logarithmiques ou leurs propriétés. Examinons des exemples de résolution de problèmes logarithmiques de différents types.

Comment utiliser les formules logarithmiques : avec des exemples et des solutions

Voyons donc des exemples d'utilisation des théorèmes de base sur les logarithmes.

  1. La propriété du logarithme d'un produit peut être utilisée dans des tâches où il est nécessaire de décomposer une grande valeur du nombre b en facteurs plus simples. Par exemple, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. La réponse est 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - comme vous pouvez le voir, en utilisant la quatrième propriété de la puissance du logarithme, nous avons réussi à résoudre une expression apparemment complexe et insoluble. Il vous suffit de factoriser la base puis de retirer les valeurs des exposants du signe du logarithme.

Devoirs de l'examen d'État unifié

Les logarithmes se retrouvent souvent dans les examens d'entrée, en particulier de nombreux problèmes logarithmiques lors de l'examen d'État unifié (examen d'État pour tous les diplômés de l'école). En règle générale, ces tâches sont présentes non seulement dans la partie A (la partie test la plus simple de l'examen), mais également dans la partie C (les tâches les plus complexes et les plus volumineuses). L'examen nécessite une connaissance précise et parfaite du thème « Logarithmes naturels ».

Des exemples et des solutions aux problèmes sont tirés des versions officielles de l'examen d'État unifié. Voyons comment ces tâches sont résolues.

Étant donné log 2 (2x-1) = 4. Solution :
réécrivons l'expression en la simplifiant un peu log 2 (2x-1) = 2 2, par la définition du logarithme on obtient que 2x-1 = 2 4, donc 2x = 17 ; x = 8,5.

  • Il est préférable de réduire tous les logarithmes à la même base afin que la solution ne soit pas lourde et déroutante.
  • Toutes les expressions sous le signe du logarithme sont indiquées comme positives, par conséquent, lorsque l'exposant d'une expression qui est sous le signe du logarithme et comme sa base est retiré comme multiplicateur, l'expression restant sous le logarithme doit être positive.

Le logarithme d'un nombre positif b en base a (a>0, a n'est pas égal à 1) est un nombre c tel que a c = b : log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Notez que le logarithme d'un nombre non positif n'est pas défini. De plus, la base du logarithme doit être un nombre positif qui n'est pas égal à 1. Par exemple, si on met -2 au carré, on obtient le nombre 4, mais cela ne veut pas dire que le logarithme à la base -2 de 4 est égal à 2.

Identité logarithmique de base

a log a b = b (a > 0, a ≠ 1) (2)

Il est important que la portée de la définition des côtés droit et gauche de cette formule soit différente. Le côté gauche est défini uniquement pour b>0, a>0 et a ≠ 1. Le côté droit est défini pour tout b et ne dépend pas du tout de a. Ainsi, l’application de « l’identité » logarithmique de base lors de la résolution d’équations et d’inégalités peut conduire à une modification de la DO.

Deux conséquences évidentes de la définition du logarithme

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

En effet, en élevant le nombre a à la puissance premier, on obtient le même nombre, et en l'élevant à la puissance zéro, on obtient un.

Logarithme du produit et logarithme du quotient

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Je voudrais mettre en garde les écoliers contre l'utilisation inconsidérée de ces formules lors de la résolution d'équations logarithmiques et d'inégalités. Lorsqu'on les utilise « de gauche à droite », l'ODZ se rétrécit, et lorsqu'on passe de la somme ou de la différence des logarithmes au logarithme du produit ou du quotient, l'ODZ s'agrandit.

En effet, l'expression log a (f (x) g (x)) est définie dans deux cas : lorsque les deux fonctions sont strictement positives ou lorsque f(x) et g(x) sont tous deux inférieurs à zéro.

En transformant cette expression en somme log a f (x) + log a g (x), on est obligé de se limiter uniquement au cas où f(x)>0 et g(x)>0. Il y a un rétrécissement de la plage des valeurs acceptables, ce qui est catégoriquement inacceptable, car cela peut conduire à une perte de solutions. Un problème similaire existe pour la formule (6).

Le degré peut être retiré du signe du logarithme

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

Et encore une fois, je voudrais appeler à l’exactitude. Prenons l'exemple suivant :

Log a (f (x) 2 = 2 log a f (x)

Le côté gauche de l’égalité est évidemment défini pour toutes les valeurs de f(x) sauf zéro. Le côté droit est uniquement pour f(x)>0 ! En retirant le degré du logarithme, nous réduisons à nouveau l'ODZ. La procédure inverse conduit à un élargissement de la plage des valeurs acceptables. Toutes ces remarques s’appliquent non seulement à la puissance 2, mais aussi à toute puissance paire.

Formule pour passer à une nouvelle fondation

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Ce cas rare où l'ODZ ne change pas pendant la transformation. Si vous avez judicieusement choisi la base c (positive et non égale à 1), la formule pour passer à une nouvelle base est totalement sûre.

Si l'on choisit le nombre b comme nouvelle base c, on obtient un cas particulier important de formule (8) :

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Quelques exemples simples avec des logarithmes

Exemple 1. Calculez : log2 + log50.
Solution. log2 + log50 = log100 = 2. Nous avons utilisé la formule de la somme des logarithmes (5) et la définition du logarithme décimal.


Exemple 2. Calculez : lg125/lg5.
Solution. log125/log5 = log 5 125 = 3. Nous avons utilisé la formule de déplacement vers une nouvelle base (8).

Tableau des formules liées aux logarithmes

un journal a b = b (une > 0, une ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Nous continuons à étudier les logarithmes. Dans cet article, nous parlerons de calculer des logarithmes, ce processus est appelé logarithme. Nous comprendrons d’abord le calcul des logarithmes par définition. Voyons ensuite comment les valeurs des logarithmes sont trouvées à l'aide de leurs propriétés. Après cela, nous nous concentrerons sur le calcul des logarithmes à travers les valeurs initialement spécifiées d'autres logarithmes. Enfin, apprenons à utiliser les tables de logarithmes. La théorie entière est fournie avec des exemples avec des solutions détaillées.

Navigation dans les pages.

Calculer des logarithmes par définition

Dans les cas les plus simples, il est possible d'effectuer assez rapidement et facilement trouver le logarithme par définition. Examinons de plus près comment ce processus se déroule.

Son essence est de représenter le nombre b sous la forme a c, à partir duquel, par définition d'un logarithme, le nombre c est la valeur du logarithme. Autrement dit, par définition, la chaîne d'égalités suivante correspond à la recherche du logarithme : log a b=log a a c =c.

Ainsi, calculer un logarithme revient par définition à trouver un nombre c tel que a c = b, et le nombre c lui-même est la valeur souhaitée du logarithme.

Compte tenu des informations contenues dans les paragraphes précédents, lorsque le nombre sous le signe du logarithme est donné par une certaine puissance de la base du logarithme, vous pouvez immédiatement indiquer à quoi est égal le logarithme - il est égal à l'exposant. Montrons les solutions à l'aide d'exemples.

Exemple.

Trouvez log 2 2 −3 et calculez également le logarithme népérien du nombre e 5,3.

Solution.

La définition du logarithme permet de dire immédiatement que log 2 2 −3 =−3. En effet, le nombre sous le signe du logarithme est égal à la base 2 à la puissance −3.

De même, on retrouve le deuxième logarithme : lne 5,3 =5,3.

Répondre:

log 2 2 −3 =−3 et lne 5,3 =5,3.

Si le nombre b sous le signe du logarithme n'est pas spécifié comme puissance de la base du logarithme, vous devez alors examiner attentivement s'il est possible de proposer une représentation du nombre b sous la forme a c . Souvent cette représentation est assez évidente, surtout lorsque le nombre sous le signe du logarithme est égal à la base à la puissance 1, ou 2, ou 3,...

Exemple.

Calculez les logarithmes log 5 25 , et .

Solution.

Il est facile de voir que 25=5 2, cela permet de calculer le premier logarithme : log 5 25=log 5 5 2 =2.

Passons au calcul du deuxième logarithme. Le nombre peut être représenté par une puissance de 7 : (à voir si nécessaire). Ainsi, .

Réécrivons le troisième logarithme sous la forme suivante. Maintenant tu peux voir ça , d'où nous concluons que . Par conséquent, par la définition du logarithme .

Brièvement, la solution pourrait s'écrire comme suit : .

Répondre:

journal 5 25=2 , Et .

Lorsqu'il existe un nombre naturel suffisamment grand sous le signe du logarithme, cela ne fait pas de mal de le prendre en compte en facteurs premiers. Il est souvent utile de représenter un nombre tel qu'une certaine puissance de la base du logarithme, et donc de calculer ce logarithme par définition.

Exemple.

Trouvez la valeur du logarithme.

Solution.

Certaines propriétés des logarithmes permettent de spécifier immédiatement la valeur des logarithmes. Ces propriétés incluent la propriété du logarithme de un et la propriété du logarithme d'un nombre égal à la base : log 1 1=log a a 0 =0 et log a a=log a a 1 =1. Autrement dit, lorsque sous le signe du logarithme se trouve un nombre 1 ou un nombre a égal à la base du logarithme, alors dans ces cas les logarithmes sont respectivement égaux à 0 et 1.

Exemple.

À quoi sont égaux les logarithmes et log10 ?

Solution.

Puisque , alors de la définition du logarithme il résulte .

Dans le deuxième exemple, le nombre 10 sous le signe du logarithme coïncide avec sa base, donc le logarithme décimal de dix est égal à un, c'est-à-dire lg10=lg10 1 =1.

Répondre:

ET lg10=1 .

Notez que le calcul des logarithmes par définition (dont nous avons parlé dans le paragraphe précédent) implique l'utilisation de l'égalité log a a p =p, qui est l'une des propriétés des logarithmes.

En pratique, lorsqu'un nombre sous le signe du logarithme et la base du logarithme sont facilement représentés comme une puissance d'un certain nombre, il est très pratique d'utiliser la formule , qui correspond à l'une des propriétés des logarithmes. Regardons un exemple de recherche d'un logarithme qui illustre l'utilisation de cette formule.

Exemple.

Calculez le logarithme.

Solution.

Répondre:

.

Les propriétés des logarithmes non mentionnées ci-dessus sont également utilisées dans les calculs, mais nous en parlerons dans les paragraphes suivants.

Trouver des logarithmes à l'aide d'autres logarithmes connus

Les informations contenues dans ce paragraphe poursuivent le sujet de l'utilisation des propriétés des logarithmes lors de leur calcul. Mais ici, la principale différence est que les propriétés des logarithmes sont utilisées pour exprimer le logarithme original en fonction d'un autre logarithme dont la valeur est connue. Donnons un exemple pour clarifier. Disons que nous savons que log 2 3≈1,584963, alors nous pouvons trouver, par exemple, log 2 6 en effectuant une petite transformation en utilisant les propriétés du logarithme : log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

Dans l’exemple ci-dessus, il nous suffisait d’utiliser la propriété du logarithme d’un produit. Cependant, il est beaucoup plus souvent nécessaire d'utiliser un arsenal plus large de propriétés de logarithmes afin de calculer le logarithme d'origine à travers ceux donnés.

Exemple.

Calculez le logarithme de 27 en base 60 si vous savez que log 60 2=a et log 60 5=b.

Solution.

Nous devons donc trouver le journal 60 27 . Il est facile de voir que 27 = 3 3 , et le logarithme original, en raison de la propriété du logarithme de la puissance, peut être réécrit sous la forme 3·log 60 3 .

Voyons maintenant comment exprimer log 60 3 en termes de logarithmes connus. La propriété du logarithme d'un nombre égal à la base permet d'écrire le log d'égalité 60 60=1. Par contre, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Ainsi, 2 log 60 2+log 60 3+log 60 5=1. Ainsi, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Enfin, nous calculons le logarithme original : log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

Répondre:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Séparément, il convient de mentionner la signification de la formule de transition vers une nouvelle base du logarithme de la forme . Il permet de passer de logarithmes à base quelconque à des logarithmes à base spécifique dont les valeurs sont connues ou il est possible de les retrouver. Habituellement, à partir du logarithme original, en utilisant la formule de transition, ils passent aux logarithmes dans l'une des bases 2, e ou 10, car pour ces bases il existe des tableaux de logarithmes qui permettent de calculer leurs valeurs avec un certain degré de précision. Dans le paragraphe suivant, nous montrerons comment cela se fait.

Tables de logarithme et leurs utilisations

Pour le calcul approximatif des valeurs du logarithme, vous pouvez utiliser tables de logarithme. La table de logarithme de base 2, la table de logarithme népérien et la table de logarithme décimal les plus couramment utilisées. Lorsque vous travaillez dans le système de nombres décimaux, il est pratique d'utiliser un tableau de logarithmes basé sur la base dix. Avec son aide, nous apprendrons à trouver les valeurs des logarithmes.










Le tableau présenté permet de retrouver les valeurs des logarithmes décimaux des nombres de 1 000 à 9 999 (avec trois décimales) avec une précision d'un dix millième. Nous analyserons le principe de trouver la valeur d'un logarithme à l'aide d'un tableau de logarithmes décimaux à l'aide d'un exemple précis - c'est plus clair ainsi. Trouvons log1.256.

Dans la colonne de gauche du tableau des logarithmes décimaux on retrouve les deux premiers chiffres du nombre 1,256, c'est-à-dire qu'on trouve 1,2 (ce nombre est entouré en bleu pour plus de clarté). Le troisième chiffre du nombre 1.256 (chiffre 5) se trouve dans la première ou la dernière ligne à gauche de la double ligne (ce nombre est entouré de rouge). Le quatrième chiffre du nombre initial 1.256 (chiffre 6) se trouve dans la première ou la dernière ligne à droite de la double ligne (ce nombre est entouré d'un trait vert). Nous trouvons maintenant les nombres dans les cellules du tableau logarithmique à l'intersection de la ligne marquée et des colonnes marquées (ces nombres sont surlignés en orange). La somme des nombres marqués donne la valeur souhaitée du logarithme décimal précis à la quatrième décimale, c'est-à-dire log1,236≈0,0969+0,0021=0,0990.

Est-il possible, à l'aide du tableau ci-dessus, de trouver les valeurs des logarithmes décimaux des nombres qui ont plus de trois chiffres après la virgule décimale, ainsi que ceux qui dépassent la plage de 1 à 9,999 ? Oui, vous pouvez. Montrons comment cela se fait avec un exemple.

Calculons lg102.76332. Vous devez d'abord écrire numéro sous forme standard: 102,76332=1,0276332·10 2. Après cela, la mantisse doit être arrondie à la troisième décimale, nous avons 1,0276332 10 2 ≈1,028 10 2, tandis que le logarithme décimal d'origine est approximativement égal au logarithme du nombre résultant, c'est-à-dire que nous prenons log102,76332≈lg1,028·10 2. Nous appliquons maintenant les propriétés du logarithme : lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2. Enfin, on retrouve la valeur du logarithme lg1.028 à partir du tableau des logarithmes décimaux lg1.028≈0.0086+0.0034=0.012. En conséquence, l'ensemble du processus de calcul du logarithme ressemble à ceci : log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1,028+lg10 2 =log1,028+2≈0,012+2=2,012.

En conclusion, il convient de noter qu'en utilisant un tableau de logarithmes décimaux, vous pouvez calculer la valeur approximative de n'importe quel logarithme. Pour ce faire, il suffit d'utiliser la formule de transition pour accéder aux logarithmes décimaux, retrouver leurs valeurs dans le tableau et effectuer le reste des calculs.

Par exemple, calculons log 2 3 . D'après la formule de transition vers une nouvelle base du logarithme, nous avons . À partir du tableau des logarithmes décimaux, nous trouvons log3≈0,4771 et log2≈0,3010. Ainsi, .

Bibliographie.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. et autres Algèbre et débuts de l'analyse : Manuel pour les classes 10 - 11 des établissements d'enseignement général.
  • Gusev V.A., Mordkovitch A.G. Mathématiques (un manuel pour ceux qui entrent dans les écoles techniques).